首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coccoid forms in cultures of a strain of the enteric pathogen Campylobacter jejuni were investigated. A culture containing 100% coccoid forms was non-viable. Coccoid forms had a lesser content of cytoplasmic components and nucleic acids than rods of C. jejuni. During the conversion to coccoid forms nucleotides leaked from the cells. The results of treatments with ionic and non-ionic detergents, and lysozyme and ethylenediaminetetraacetic acid indicated a changed cell wall in coccoid forms compared with rods. Using rate-zonal centrifugation coccoid forms were found to be less dense than rods. The results of this study indicate that the coccoid form of C. jejuni ATCC 29428 is a degenerate cell form which is undergoing cellular degradation.  相似文献   

2.
Factors influencing the production of coccoid forms in cultures and suspensions of a strain of the enteric pathogen Campylobacter jejuni during storage in air were investigated. Addition of blood or a supplement containing ferrous sulphate, sodium metabisulphite and sodium pyruvate minimized conversion of rods to coccoid forms in cultures. Exposure of cultures to light during storage in air increased the rate of production of coccoid forms. Ultraviolet radiation was shown to effect the viability of cells in suspensions but the increase in production of coccoid forms was low after irradiation. The presence of hydrogen peroxide and its dissociation products in bacterial suspensions increased conversion to coccoid forms. Addition of active superoxide dismutase, a superoxide anion scavenging enzyme, minimized production of coccoid forms in suspensions stored in air. Coccoid forms contained a lower level of superoxide dismutase than rods. It is deduced that a decreased level of the enzyme in cells is linked with production of coccoid forms.  相似文献   

3.
Factors influencing the production of coccoid forms in cultures and suspensions of a strain of the enteric pathogen Campylobacter jejuni during storage in air were investigated. Addition of blood or a supplement containing ferrous sulphate, sodium metabisulphite and sodium pyruvate minimized conversion of rods to coccoid forms in cultures. Exposure of cultures to light during storage in air increased the rate of production of coccoid forms. Ultraviolet radiation was shown to effect the viability of cells in suspensions but the increase in production of coccoid forms was low after irradiation. The presence of hydrogen peroxide and its dissociation products in bacterial suspensions increased conversion to coccoid forms. Addition of active superoxide dismutase, a superoxide anion scavenging enzyme, minimized production of coccoid forms in suspensions stored in air. Coccoid forms contained a lower level of superoxide dismutase than rods. It is deduced that a decreased level of the enzyme in cells is linked with production of coccoid forms.  相似文献   

4.
Morphology of viable but non-culturable Vibrio cholerae was monitored for 2 years by scanning and transmission electron microscopy. Morphological changes included very small coccoid forms, after extended incubation at 4 degrees C and room temperature, and sequential transformation from curved rods to irregular (approximately 1 microm) rods to approximately 0.8 microm coccoid cells and, ultimately, to tiny coccoid forms (0.07-0.4 microm). Irregular rod-shaped and coccoid cells were equally distributed in microcosms during the first 30-60 days of incubation at both temperatures, but only coccoid cells were observed after incubation for 60 days at 4 degrees C. When V. cholerae O1 and O139, maintained for 30-60 days at both temperatures, were heated to 45 degrees C for 60 s, after serial passage through 0.45 microm and 0.1 microm filters, and plating on Luria-Bertania (LB) agar, only cells larger than 1 microm yielded colonies on LB agar. Approximately 0.1% of heat-treated cultures were culturable. Cell division in the smallest coccoid cells was observed, yielding daughter cells of equal size, whereas other coccoid cells revealed bleb-like, cell wall evagination, followed by transfer of nuclear material. Coccoid cells of V. cholerae O1 and O139 incubated at 4 degrees C for more than 1 year remained substrate responsive and antigenic.  相似文献   

5.
Conditions influencing the conversion of oxygen into toxic derivatives in media were investigated for their effects on production of coccoid forms in cultures of the enteric pathogen Campylobacter jejuni. Compared with stored media, production of coccoid forms was less on freshly prepared media. Whether freshly prepared or stored before use, brucella agar media produced the fewest coccoid forms under the test conditions. Addition of supplements used as detoxifying agents minimized production of these forms on media but antibiotic formulations used in selective media did not influence production of coccoid forms. Furthermore, the type of incubation atmosphere and the strain of C. jejuni influenced the proportions of coccoid forms in cultures. It was deduced from electron microscopy observations during prolonged incubation of cultures that the process of conversion to coccoid forms involves a loss of spiral morphology, a shortening of the cell and retraction of the cytoplasm towards a cell terminal region. Coccoid forms and some intermediate forms in thin sections were found to lack cell integrity. It is concluded that coccoid form production in cultures is a degenerate response to toxic oxygen derivatives in cultures.  相似文献   

6.
Conditions influencing the conversion of oxygen into toxic derivatives in media were investigated for their effects on production of coccoid forms in cultures of the enteric pathogen Campylobacter jejuni. Compared with stored media, production of coccoid forms was less on freshly prepared media. Whether freshly prepared or stored before use, brucella agar media produced the fewest coccoid forms under the test conditions. Addition of supplements used as detoxifying agents minimized production of these forms on media but antibiotic formulations used in selective media did not influence production of coccoid forms. Furthermore, the type of incubation atmosphere and the strain of C. jejuni influenced the proportions of coccoid forms in cultures. It was deduced from electron microscopy observations during prolonged incubation of cultures that the process of conversion to coccoid forms involves a loss of spiral morphology, a shortening of the cell and retraction of the cytoplasm towards a cell terminal region. Coccoid forms and some intermediate forms in thin sections were found to lack cell integrity. It is concluded that coccoid form production in cultures is a degenerate response to toxic oxygen derivatives in cultures.  相似文献   

7.
Peptidoglycans (PG) from Campylobacter coli, Campylobacter jejuni, and Campylobacter fetus were composed of muramic acid, glucosamine, alanine, glutamic acid, and diaminopimelic acid in a molar ratio of 1.1:1:1.7:1.1:09. Thirty percent of the amino groups of diaminopimelic acid were involved in cross-linkages between peptides. During cultivation, C. coli and C. jejuni changed from a spiral to a coccoid form. In C. coli, we could isolate PG only from the spiral forms in yields of 0.8-1.2% by dry weight. C. fetus did not change to a coccoid form, and always contained PG. Thus, it is possible that the morphological transformation from the spirals to the coccoid forms of C. coli and C. jejuni is accompanied by, and probably due to, the degradation of PG.  相似文献   

8.
9.
Production and viability of coccoid forms of Campylobacter jejuni   总被引:5,自引:2,他引:3  
Studies were conducted into the formation and physiological state of coccoid cells of a strain of the human and animal pathogen Campylobacter jejuni. It was found that growth phase and the presence of chloramphenicol did not affect the rate of shape transformation from spiral to coccoid, while nutrient limitation, aeration of the medium and the presence of free-radical scavengers had profound effects. Coccoid cells were found to reduce the tetrazolium salts INT (2-( p -iodophenyl)-3-( p -nitrophenyl)-5-phenyl tetrazolium chloride) and CTC (5-cyano-2,3-ditolyl tetrazolium chloride) to their respective formazans and this was linked to cellular respiration. However, respiring coccoid cells could not sustain their existence in prolonged adverse conditions, and it was concluded that they represent a degenerative stage rather than a dormant state of the organism.  相似文献   

10.
Campylobacter jejuni strains demonstrate a variety of growth phase-linked distinct morphological forms when grown in liquid culture. The typical spiral form of the organism, evident during logarithmic phase, undergoes elongation during stationary phase before becoming coccoid via the formation of membrane blebs and budded forms in decline phase. Cellular elongation and coccoid formation occurred despite the inhibition of protein synthesis and without a detectable change in the protein components of the inner and outer cell membranes.  相似文献   

11.
The effect of temperature and the availability of nutrients on the transition of spiral Campylobacter jejuni cells to coccoid forms was investigated. Ageing of spiral C. jejuni cells in either nutrient-poor or nutrient-rich environments resulted in the formation of nonculturable coccoid cells at 4, 12, and 25 degrees C after different periods, with the cells incubated at 4 degrees C in nutrient-deficient media remaining culturable the longest. To study the phenomenon, ATP levels, protein profiles, and fatty acid compositions were monitored under conditions where the transition from spiral to coccoid cells occurred. During storage, the levels of intracellular ATP were highest in cells incubated at low temperatures (4 and 12 degrees C) and remained constant after a small initial decrease. During the transformation from spiral to coccoid forms, no alteration in protein profiles could be detected; indeed, inhibition of protein synthesis by chloramphenicol did not influence the transition. Furthermore, DNA damage by gamma irradiation had no effect on the process. Membrane fatty acid composition of cocci formed at low temperatures was found to be almost identical to that of spiral cells, whereas that of cocci formed at 25 degrees C was clearly different. Combining these results, it is concluded that the formation of cocci is not an active process. However, distinctions between cocci formed at different temperatures were observed. Cocci formed at 4 degrees C show characteristics comparable to those of spirals, and these cocci may well play a role in the contamination cycle of C. jejuni.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Helicobacter pylori (H. Pylori) is an actively dividing spiral bacterium that changes to coccoid morphology under stressful environments. The infectivity of the coccoids is still controversial. The aim of this study was to determine the viability and expression of two important virulence genes (babA and cagE), in antibiotic-induced coccoid forms. Three strains of H. pylori, the standard 26695 and two clinical isolates (p1, p2) were converted to coccoid form by amoxicillin. Coccoids were identified according to Gram-staining and microscopic morphology. The viability of the cells was analyzed by flow cytometry. The expression of cagE and babA in coccoid forms were evaluated and compared to the spirals by quantitative PCR assay. The coccoid forms were developed after 72 h exposure of H. pylori to ½ MIC of amoxicillin, and the conversion form was completed (100 %) at 144 h in all of three isolates. Flow cytometry analyses showed that the majority of the induced coccoids (90–99.9 %) were viable. Expression of cagE and babA was seen in coccoids; however, in lower rate (cagE, ~3-fold and babA, ~10-fold) than these in spiral forms. Coccoid forms of two clinical isolates significantly expressed higher rate of cagE and babA than standard 26695 strain (P = 0.01). These results suggest that the induced coccoid form of H. pylori is not a passive entity but can actively infect the human by expression of the virulence genes for long time in stomach and probably play a role in chronic and severe disease.  相似文献   

13.
The adhesion of Campylobacter jejuni to chicken skin, along with the associated morphological changes under aerobic conditions at 4, 25, and 37 degrees C and microaerobic (O2 5%, CO2 10%, N2 85%) conditions, were investigated using confocal laser scanning microscopy (CLSM), flow cytometry, and plate counting. The morphological change of C. jejuni from a spiral shape to a coccoid form or VBNC form (viable but nonculturable form) progressed rapidly under aerobic conditions at 25, 37, and 4 degrees C. As regards adhesion, the C. jejuni cells were mostly located in the crevices and feather follicles of the chicken skin, where the cells in the feather follicles floated freely in the entrapped water, even after the skin was rinsed quite thoroughly. CLSM also revealed the penetration of some spiral-shaped C. jejuni cells into the chicken skin. Even after changing their shape at various temperatures, coccoid-form C. jejuni cells were still found in the crevices and feather follicles of the chicken skin.  相似文献   

14.
When Campylobacter jejuni NCTC 11351 was grown microaerobically in rich medium at 39 degrees C, entry into stationary phase was followed by a rapid decline in viable numbers to leave a residual population of 1% of the maximum number or less. Loss of viability was preceded by sublethal injury, which was seen as a loss of the ability to grow on media containing 0.1% sodium deoxycholate or 1% sodium chloride. Resistance of cells to mild heat stress (50 degrees C) or aeration was greatest in exponential phase and declined during early stationary phase. These results show that C. jejuni does not mount the normal phenotypic stationary-phase response which results in enhanced stress resistance. This conclusion is consistent with the absence of rpoS homologues in the recently reported genome sequence of this species and their probable absence from strain NCTC 11351. During prolonged incubation of C. jejuni NCTC 11351 in stationary phase, an unusual pattern of decreasing and increasing heat resistance was observed that coincided with fluctuations in the viable count. During stationary phase of Campylobacter coli UA585, nonmotile variants and those with impaired ability to form coccoid cells were isolated at high frequency. Taken together, these observations suggest that stationary-phase cultures of campylobacters are dynamic populations and that this may be a strategy to promote survival in at least some strains. Investigation of two spontaneously arising variants (NM3 and SC4) of C. coli UA585 showed that a reduced ability to form coccoid cells did not affect survival under nongrowth conditions.  相似文献   

15.
Campylobacter jejuni is a prevalent enteric pathogen that changes morphology from helical to coccoid under unfavorable conditions. Bacterial peptidoglycan maintains cell shape. As C. jejuni transformed from helical to coccoid, peptidoglycan dipeptides increased and tri‐ and tetrapeptides decreased. The DL‐carboxypeptidase Pgp1 important for C. jejuni helical morphology and putative N‐acetylmuramoyl‐L‐alanyl amidase AmiA were both involved in the coccoid transition. Mutants in pgp1 and amiA showed reduced coccoid formation, with ?pgp1?amiA producing minimal coccoids. Both ?amiA and ?amiA?pgp1 lacked flagella and formed unseparated chains of cells consistent with a role for AmiA in cell separation. All strains accumulated peptidoglycan dipeptides over time, but only strains capable of becoming coccoid displayed tripeptide changes. C. jejuni helical shape and corresponding peptidoglycan structure are important for pathogenesis‐related attributes. Concomitantly, changing to a coccoid morphology resulted in differences in pathogenic properties; coccoid C. jejuni were non‐motile and non‐infectious, with minimal adherence and invasion of epithelial cells and an inability to stimulate IL‐8. Coccoid peptidoglycan exhibited reduced activation of innate immune receptors Nod1 and Nod2 versus helical peptidoglycan. C. jejuni also transitioned to coccoid within epithelial cells, so the inability of the immune system to detect coccoid C. jejuni may be significant in its pathogenesis.  相似文献   

16.
AIMS: To evaluate the survival of Campylobacter jejuni relative to that of Escherichia coli in groundwater microcosms varying in nutrient composition. METHODS AND RESULTS: Studies were conducted in groundwater and deionized water incubated for up to 470 days at 4 degrees C. Samples were taken for culturable and total cell counts, nutrient and molecular analysis. Die-off in groundwater microcosms was between 2.5 and 13 times faster for C. jejuni than for E. coli. Campylobacter jejuni had the lowest decay rate and longest culturability in microcosms with higher dissolved organic carbon (4 mg l(-1)). Escherichia coli survival was the greatest when the total dissolved nitrogen (12.0 mg l(-1)) was high. The transition of C. jejuni to the coccoid stage was independent of culturability. CONCLUSION: The differences in the duration of survival and response to water nutrient composition between the two organisms suggest that E. coli may be present in the waters much longer and respond to water composition much differently than C. jejuni. SIGNIFICANCE AND IMPACT OF THE STUDY: The data from these studies would aid in the evaluation of the utility of E. coli as an indicator of C. jejuni. This study also provided new information about the effect of nutrient composition on C. jejuni viability.  相似文献   

17.
Helicobacter pylori exists in two morphologic forms: spiral shaped and coccoid. The nonculturable coccoid forms were believed to be the morphologic manifestations of cell death for a long time. However, recent studies indicate the viability of such forms. This form of H. pylori is now suspected to play a role in the transmission of the bacteria and is partly responsible for relapse of infection after antimicrobial treatment. Urease activity of H. pylori is an important maintenance factor. Determination of urease activity and possible mutations in the DNA sequences of coccoid bacteria will hence contribute to the understanding of pathogenesis of infections, which these forms might be responsible for. In this study, our aim was to analyze the urease activity and investigate the urease gene sequences of coccoid H. pylori forms induced by different factors with respect to the spiral form. For this purpose, the urease activities of H. pylori NCTC 11637 standard strain and two clinical isolates were examined before and after transformation of the cells to coccoid forms by different methods such as exposure to amoxicillin, aerobiosis, cold starvation, and aging. The effects of these conditions on the urease gene were examined by the amplification of 411-bp ureA gene and 115-bp ureB gene regions by PCR technique and sequencing of the ureA gene. The urease activities of coccoid cells were found to be lower than those of the spiral form. ureA and ureB gene regions were amplified in all coccoid cells by PCR. Inducing the change to coccoid form by different methods was found to have no effect on the nucleotide sequence of the ureA gene. These results show that the urease gene region of coccoid H. pylori is highly protected under various mild environmental conditions.  相似文献   

18.
球状绿藻主要指绿藻门中多为单细胞, 形状为球形、近球形, 或由球形衍生出来的其他形状的藻类。球状绿藻分布广泛, 遍布全球, 生活于淡水、海水和亚气生等生境中, 其相似的简单形态下隐藏着复杂的物种多样性。球状绿藻分类学上主要位于绿藻门的两纲四目及其一些独立支系的类群。球状绿藻分类学正由传统的基于形态特征向基于分子信息的复合分类方法转变。球状绿藻隐性的物种多样性涉及约40属, 其中15属是依据新标本材料而建立的新属, 12个属是依据新证据建立的新组合。本文重点介绍了1998年以后在共球藻纲和绿藻纲中新发现和命名的单细胞球状绿藻, 介绍了它们的形态特征、分类学迁移及理由, 特别对常见的小球藻属和栅藻属的分类学概念变迁作了详细介绍, 对一些尚没有中文名的拉丁学名给出了中文命名。另外, 本文讨论了基于DNA的分类学方法在球状绿藻分类学中的应用, 目前系统发育位置的不同已经成为球状绿藻分类的主要依据。目前球状绿藻分类面临的问题是大多分类位置未用分子系统发育方法的验证。 未来, 球状绿藻分类学家应用系统发育研究结合形态学研究探索单细胞球状绿藻的生物多样性。  相似文献   

19.
Background. We used egg passage of bacteria stored in water to evaluate the culturability of the coccoid form of Helicobacter pylori , as a complement to the results obtained from various animal models. Egg passage was performed, as it is a simple, rapid, and well-characterized old method by which to culture and evaluate culturability of bacteria compared to experiments in animal models. Egg passage has been used in such experiments since 1938 for isolation and growth of, for example, Rickettsiae sp. and Chlamydia sp.
Materials and Methods. The rod-shaped form of H. pylori was produced by plate cultures for 4 and 7 days. The coccoid form of H. pylori was produced by culture on agar plates for 10 days, followed by storage in water. These preparations then were inoculated into the yolk sac of differently aged fertilized eggs.
Results. Positive culture was obtained from 14 of 17 eggs (82%) inoculated with rod-shaped H. pylori compared to 0 of 22 eggs (0%) inoculated with the coccoid form.
Conclusion. Culturability of H. pylori is reduced when it converts into the coccoid form produced by starvation and age followed by storage in water for several weeks at room temperature. Egg passage did not raise the culturability of the coccoid form of H. pylori. Our study demonstrates some clear differences between fresh rods and stored cocci forms of H. pylori in terms of culturability when passed through eggs.  相似文献   

20.
M M Lleo  P Canepari    G Satta 《Journal of bacteriology》1990,172(7):3758-3771
The two-competing-sites model for peptidoglycan assembly for bacterial cell shape regulation suggests that in rods, bacterial cell shape depends on the balance between two reactions (sites), one responsible for lateral wall elongation and the other responsible for septum formation. The two reactions compete with each other so that no lateral wall can be formed during septum formation and vice versa. When the site for lateral wall elongation overcomes that for septum formation, long rods or filaments are formed and cell division may be blocked. When the reaction leading to septum formation is hyperactive compared with the other, coccobacilli or cocci are formed. Other bacteria carry only one site for peptidoglycan assembly and can grow only as cocci. The two-competing-sites model predicts that two different types of cocci exist (among both morphology mutants and wild-type strains); one carries only the site for septum formation, whereas the other also carries the site for lateral wall elongation, the former site predominating over the latter. As a consequence of the inhibition (by antibiotics or by mutations) of septum formation in wild-type cocci of various species and in coccoid morphology mutants, some cocci are expected to undergo transition to rod shape and others are not. We have evaluated these predictions and show that they are in agreement. In fact, we found that among wild-type cocci belonging to 13 species, those of 6 species formed rods, whereas the remaining organisms maintained their coccal shape when septa were inhibited by antibiotics. Some coccoid morphology mutants of rod-shaped bacteria underwent coccus-to-rod transition after septum inhibition by antibiotics, whereas others maintained their coccal shape. When a mutation that causes septum inhibition was expressed in a morphology mutant of Klebsiella pneumoniae grown as a coccus, transition to rod shape was observed. A total of 914 mutants unable to form colonies at 42 degrees C were isolated from the coccoid species mentioned above. Between 75 and 95% of the mutants isolated from the species that formed rods when septum formation was inhibited by antibiotics but none of those isolated from the others underwent coccus-to-rod transition upon incubation at the nonpermissive temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号