首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The filamentous non-heterocystous cyanobacterium Oscillatoria limosa was subjected to Western blot analyses using two antisera raised against the small subunit (Fe-protein) of the nitrogenase complex. Two polypeptides were recognized in nitrogen-fixing cultures irrespective of the antiserum used while no bands were detectable in nitrate-grown cultures. The apparent molecular weights of the two polypeptides were approximately 40.5 and 39.5 kDa respectively, with the former, probably an inactive form, dominating. In situ immunogold electron microscopy was used to reveal the cellular and subcellular localization on the Fe-protein. All cells of the trichomes of nitrogen-fixing O. limosa showed a dense label. The label was homogeneously distributed throughout the cytoplasm including the thylakoid area. Nitrate-grown cultures contained a very low label.Abbreviations SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis This study was supported by the Swedish Natural Science Research Counsil and the M. and M. Wallenberg Fund (to B. Bergman). We are grateful to Dr. S. Nordlund (University of Stockholm, Sweden) for providing us with the antiserum of Rhodospirillum rubrum nitrogenase and to Drs. S. Reich and P. Böger (University of Konstanz, FRG) for the antiserum of Anabaena variabilis. Skilful technical assistence by K. Östlund and E. Danielsson is gratefully acknowledged. We would also like to thank M. Villbrandt (University of Oldenburg, FRG) for providing cultures of Oscillatoria limosa and Dr. P. Lindblad for valuable discussions and suggestions.To whom correspondence should be addressed.  相似文献   

2.
The non-heterocystous cyanobacterium Oscillatoria sp. strain 23 fixes nitrogen under aerobic conditions. If nitrate-grown cultures were transferred to a medium free of combined nitrogen, nitrogenase was induced within about 1 day. The acetylene reduction showed a diurnal variation under conditions of continuous light. Maximum rates of acetylene reduction steadily increased during 8 successive days. When grown under alternating light-dark cycles, Oscillatoria sp. fixes nitrogen preferably in the dark period. For dark periods longer than 8 h, nitrogenase activity is only present during the dark period. For dark periods of 8 h and less, however, nitrogenase activity appears before the beginning of the dark period. This is most pronounced in cultures grown in a 20 h light – 4 h dark cycle. In that case, nitrogenase activity appears 3–4 h before the beginning of the dark period. According to the light-dark regime applied, nitrogenase activity was observed during 8–11 h. Oscillatoria sp. grown under 16 h light and 8 h dark cycle, also induced nitrogenase at the usual point of time, when suddenly transferred to conditions of continuous light. The activity appeared exactly at the point of time where the dark period used to begin. No nitrogenase activity was observed when chloramphenicol was added to the cultures 3 h before the onset of the dark period. This observation indicated that for each cycle, de novo nitrogenase synthesis is necessary.  相似文献   

3.
The effect of various nitrogen sources on the synthesis and activity of nitrogenase was studied in the marine, non-heterocystous cyanobacterium Trichodesmium sp. NIBB1067 grown under defined culture conditions. Cells grown with N2 as the sole inorganic nitrogen source showed light-dependent nitrogenase activity (acetylene reduction). Nitrogenase activity in cells grown on N2 was not suppressed after 7 h incubation with 2 mM NaNO3 or 0.02 mM NH4Cl. However, after 3 h of exposure to 0.5 mM of urea, nitrogenase was inactivated. Cells grown in medium containing 2 mM NaNO3, 0.5 mM urea or 0.02 mM NH4Cl completely lacked the ability to reduce acetylene. Western immunoblots tested with polyclonal antisera against the Fe-protein and the Mo–Fe protein, revealed the following: (1) both the Fe-protein and the Mo–Fe protein were synthesized in cells grown with N2 as well as in cells grown with NaNO3 or low concentration of NH4Cl; (2) two bands (apparent molecular mass of 38 000 and 40 000) which cross-reacted with the antiserum to the Fe-protein, were found in nitrogen-fixing cells; (3) only one protein band, corresponding to the high molecular mass form of the Fe-protein, was found in cells grown with NaNO3 or low concentration of NH4Cl; (4) neither the Fe-protein nor the Mo–Fe protein was found in cells grown with urea; (5) the apparent molecular mass of the Fe-protein of Trichodesmium sp. NIBB1067 was about 5000 dalton higher than that of the heterocystous cyanobacterium, Anabaena cylindrica IAM-M1.  相似文献   

4.
Summary Trichodesmium is the first described example of a filamentous cyanobacterium without heterocysts that contains cells specialised for nitrogen fixation. The ultrastructure of cells with and without nitrogenase were compared using primarilyTrichodesmium tenue Wille, but alsoT. thiebautii Gomont andT. erythraeum Ehrenberg et Gomont. Immunohistochemistry demonstrated that the cytoplasm of certain cells was densely labelled with antibodies against Fe-protein (dinitrogenase reductase). Comparative TEM-image analysis revealed that these cells were also distinguished by a denser thylakoid network, dividing the vacuole-like space into smaller units. The nitrogenase-containing cells also exhibited less extensive gas vacuoles as well as fewer and smaller cyanophycin granules compared to cells which lacked nitrogenase. Carboxysomes were present in both cell types in equal proportion. Longitudinal sections showed that cells with nitrogenase were arranged adjacent to each other, and that groups of cells with and without nitrogenase may coexist in the same trichome. The correlation between modifications in ultrastructure and the presence of nitrogenase suggests a new type of cyanobacterial cell specialisation related to nitrogen fixation. The results obtained also question the systematic affiliation of the genusTrichodesmium.  相似文献   

5.
A filamentous cyanobacterium Oscillatoria sp. was isolated from a thermal spring of the Kamchatka peninsula. It contained a phycoerythrin unusual for cyanobacteria in that it had a phycourobilin prosthetic group. The absorption spectrum of the native purified phycoerythrin displayed maxima at 498 and 567 nm. The phycoerythrin comprised - and -subunits of molecular weights 18,700 and 19,800, respectively, in 1:1 stoichiometry. Polyacrylamide gel isoelectric focusing revealed one protein band at pI 4.6. The - and -subunits differed in their chromophore composition and content: -subunit carried two phycoerythrobilins while the -subunit had three phycoerythrobilins and one phycourobilin. The chromophore composition of all known phycoerythrins of cyanobacteria and red algae were compared, and on the basis of this comparative study designations C1- to C5-phycoerythrin were proposed for cyanobacterial red pigments.  相似文献   

6.
Cyanobacteria vary in their ability to grow in media contaning low amounts of biologically available iron. Some strains, such as Oscillatoria tenuis, are well adapted to thrive in low-iron environments. We investigated the mechanism of iron scavenging in O. tenuis and found that this cyanobacterium has a siderophore-mediated iron transport system that differs significantly from the traditional hydroxamate-siderophore transport system reported from other cyanobacteria. Unlike other cyanobacteria, this strain produces two types of siderophores, a hydroxamate-type siderophore and a catechol-type siderophore. Production of these two siderophores is expressed at two different iron levels in the medium, suggesting two different iron regulated uptake systems. We compared the production of each siderophore with the growth rate of the culture and found that the production of the catechol siderophore enhances the growth rate of the cyanobacterium, whereas the cells maintain lower than maximal growth rates when only the hydroxamate-type siderophore is being produced.Abbreviation EDDA ethylene diamine di-(o-hydroxyphenylacetic acid)  相似文献   

7.
The marine nitrogen-fixing cyanobacterium Oscillatoria limosa, strain 23 (Oldenburg) was investigated with respect to its dark anaerobic metabolism. As soon as the cells were incubated anaerobically in the dark, they started to ferment. Glycogen was presumably degraded via the heterolactic fermentative pathway. Glycogen-glucose was degraded to equimolar amounts of lactate, ethanol and carbon dioxide. The disaccharide trehalose, which serves as an osmoprotectant in O. limosa, was also catabolized. Most probably, this compound was fermented almost exclusively to acetate. Some hydrogen was produced as well. In the presence of elemental sulfur, fermentative hydrogen production ceased and sulfide was produced instead. The presence of elemental sulfur had no effect on the amounts and ratios of the fermentation products produced.  相似文献   

8.
A polymer-producing strain of unicellular cyanobacteria, Synechococcus sp., was isolated from a coastal lagoon in Florida. This strain, designated BG0011, excreted a highly viscous polysaccharide. Maximum observed growth rates for BG0011 were 2.5 div. day-2. BG0011 also exhibited nitrogen fixation (nitrogenase) activity under aerobic conditions and grew at near maximum rates in medium lacking reduced nitrogen. Growth and carbohydrate production were enhanced by carbon dioxide enrichment. Rheological study of the extracellular polysaccharide revealed a viscosity versus shear rate curve similar in shape to that of xanthan gum. Maximum observed rate of carbohydrate production was 1 g dry weight liter-1 month-1.  相似文献   

9.
Incubation in the dark of photoautotrophically grown N2-fixing heterocystous cyanobacteria leads to a loss of nitrogenase activity. Original levels of nitrogenase activity are rapidly regained upon re-illumination of the filaments, in a process dependent on de novo protein synthesis. Ammonia, acting indirectly through some of its metabolic derivatives, inhibits the light-promoted development of nitrogenase activity in filaments of Anabaena sp. ATCC 33047 and several other cyanobacteria containing mature heterocysts. The ammonia-mediated control system is also operative in N2-fixing filaments in the absence of any added source of combined nitrogen, with the ammonia resulting from N2-fixation already partially inhibiting full expression of nitrogenase. High nitrogenase levels, about two-fold higher than those in normal N2-fixing Anabaena sp. ATCC 33047, are found in cell suspensions which have been treated with the glutamine synthetase inhibitor l-methionine-d,l-sulfoximine or subjected to nitrogen starvation. Filaments treated in either way are insensitive to the ammonia-promoted inhibition of nitrogenase development, although this insensitivity is only transitory for the nitrogen-starved filaments, which become ammonia-sensitive once they regain their normal nitrogen status.Abbreviations Chl chlorophyll - EDTA ethylenediaminetetraacetic acid - MSX l-methionine-d,l-sulfoximine  相似文献   

10.
The filamentous cyanobacterium Oscillatoria chalybea grows phototrophically on a mineral medium in the presence of either nitrate or ammonium ions as nitrogen source at similar growth rates. In the absence of any combined nitrogen source in the medium the cyanobacterium also grows, although at a reduced growth rate. The steady state rate of oxygen evolution by filaments from these three culture conditions is approximately constant if compared on an equal chlorophyll basis. Qualitative differences, however, emerge, if transient phenomena, e.g. the oxygen gush, are investigated. Only nitrate-and nitrogen-free-grown cultures show an oxygen gush, whereas ammonium sulfate-grown cultures do not show this phenomenon. Fluorescence induction in O. chalybea shows a fast monophasic rise, comparable to the fluorescence rise curves of higher plant chloroplasts in the presence of dithionite. The steady state level of fluorescence in ammonium sulfate-grown cells is up to seven times higher than in nitrate-grown cells when compared on an equal chlorophyll basis. In ammonium sulfate-grown cells, DCMU (N,N-3,4-Dichlorophenyl dimethylurea) causes a further increase in fluorescence level. In nitrate-grown cyanobacteria, however, the effect of DCMU consists of a decrease of the steady state level of fluorescence. In context with earlier research on Anabaena cylindrica, another filamentous cyanobacterium, it appears that the type of the nitrogen source used for growth determines the main location of the DCMU-block in this organism. It thus appears that in O. chalybea the site of DCMU inhibition lies on the oxygen-evolving side of photosystem II, if the organism is grown on nitrate. If grown on ammonium sulfate, no substantial difference of the location of the inhibition site when compared to algae or higher plant chloroplasts is found.Thylakoid preparations of O. chalybea perform the usual Hill reactions with ferricyanide, p-benzoquinone or silicomolybdate as electron acceptors. In each case it is seen that with thylakoids of nitrate-grown cells the steady-state level of fluorescence is lowered by DCMU in the presence of these acceptors, which should be the case, if DCMU inhibits electron transfer on the donor side of photosystem II. According to the literature silicomolybdate accepts electrons mainly before the DCMU-block in higher plant chloroplasts. Hence, in higher plants this reaction is mainly DCMU-insensitive. In thylakoids of O. chalybea, however, the Hill reaction with silicomolybdate is DCMU-sensitive which provides further evidence that the DCMU-block is on the oxygen-evolving side of photosystem II in O. chalybea provided the cells have been grown on nitrate.Abbreviations DCMU N-N-3,4-Dichlorophenyl dimethylurea  相似文献   

11.
Oscillatoria limnetica grown photoautotrophically under aerobic or anaerobic conditions contained a single superoxide dismutase (SOD) of identical electrophoretic mobility in both cases. Its activity was cyanide resistant and H2O2 sensitive, implicating Fe-SOD. The enzyme level was high in aerobically and low in anaerobically growing cells. Anaerobically grown cells were more sensitive than aerobic to photooxidation, as expressed by bleaching of phycocyanin and disintegration of the trichomes.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - SOD superoxide dismutase  相似文献   

12.
The cytochrome oxidase activity (oxygen uptake in the dark) of a membrane preparation from Anabaena variabilis was found to be stimulated by cytochrome c-553 and plastocyanin obtained from this alga. Cytochrome c from horse heart was as active as cytochrome c-553, whereas little or no stimulation of oxygen uptake was obtained with cytochromes c 2 from two Rhodospirillaceae, the plastidic cytochrome c-552 from Euglena, and plastocyanin from spinach. Cytochrome c-553 (A. variabilis) stimulated photosystem 1 activity in the same preparation much more than cytochrome c (horse heart). The results indicate that cytochrome c-553 and plastocyanin, besides their established function as electron donors of photosystem 1, participate in respiratory electron transport as reductants of a terminal oxidase. Photooxidation and dark oxidation show a different donor specificity.Abbreviations Chl chlorophyll a - TMPD N,N,N,N-tetramethyl-p-phenylenediamine  相似文献   

13.
Nitrogen-limited chemostat cultures of Chlorella fusca var. vacuolata, when given nitrogen in the inorganic forms of nitrate, nitrite and ammonium divert photo-generated electrons, from CO2 fixation to nitrogen assimilation. Addition of nitrate or nitrite, but not ammonium, stimulates rate of oxygen evolution. All but the most severely nitrogen-deficient culture have increased dark respiration rates after addition of inorganic nitrogen. The nitrite reduction step of nitrogen assimilation is the most light-dependent reaction.Abbreviation DCMU 3-(3, 4-dichloro)-1-1-dimethyl urea - CCCP carbonyl cyanide m-chlorophenylhydrazone  相似文献   

14.
The oxidation of biphenyl by Cyanobacterium, Oscillatoria sp., strain JCM was studied. The organism grown photoautotrophically in the presence of biphenyl oxidized biphenyl to form 4-hydroxybiphenyl. The structure of the metabolite was elucidated by ultraviolet and mass spectra and shown to be identical to authentic 4-hydroxybiphenyl. In addition this metabolite had properties indentical to 4-hydroxybiphenyl when analyzed by thin-layer and high-pressure liquid chromatography. Experiments with [14C]-biphenyl showed that over a 24 h period the organism oxidized 2.9% of the added biphenyl to ethyl acetate-soluble products.Abbreviations tlc thin-layer chromatography - hplc high pressure liquid chromatography  相似文献   

15.
Loss of sulfide adaptation ability in a thermophilic Oscillatoria   总被引:1,自引:0,他引:1  
A spontaneous variant incapable of anoxygenic photosynthesis was derived from a fully competent strain of Oscillatoria amphigramulata which was originally isolated from a high sulfide-containing hot spring of New Zealand. Although the variant (Oa-2) acquired a slight ability to photosynthesize in the presence of 0.3–0.4 mM sulfide, this was only after a 24 h exposure to sulfide and represented oxygenic photosynthesis only. Unlike the parent strain, the incompetent variant never grew in the presence of sulfide >0.05 mM, nor was there any relief of the inhibition by DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] of CO2 photoincorporation when sulfide was present. The variant strain has retained all of these characteristics over a 4 year period with monthyl transfers in non-sulfide medium. The wild type, under identical conditions, has retained all of its competence with respect to sulfide.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   

16.
When cells of Synechocystis strain PCC 6308 are starved for nitrogen, the amount of stored carbohydrate increases, the phycocyanin to chlorophyll a ratio decreases, and the rates of oxygen evolution and of carbon dioxide fixation decrease. When nitrate-nitrogen is replenished, the amount of carbohydrate decreases, the rate of oxygen evolution increases immediately, preceeding the increase in phycocyanin or carbon dioxide fixation. The rate of respiration first increases and then decreases upon nitrogen addition. Nitrogen-starved cells show no variable fluorescence; variable fluorescence recovered in parallel with oxygen evolution. This suggests that photosystem II is inactive in nitrogen depleted cells and not blocked by a build up of metabolic endproducts. Since carbon dioxide fixation does not increase until two to four hours after nitrate is replenished to nitrogen starved cells, it is suggested that reducing power may first be needed within the cell for some other process than photosynthesis, such as nitrate reduction.  相似文献   

17.
Sporulation in the filamentous cyanobacterium Anabaena cylindrica involves the transformation of a vegetative cell into a thick-walled resistant structure. Because this process occurs at predictable loci in each filament and involves a significant increase in cell size, the course of sporulation in a culture can be quantitatively determined. Sporulation occurs during the late logarithmic phase of a culture, a time of slow but unbalanced growth. Under the conditions imployed here, sporulation is not a synchronous event either between or within filaments. The information in this paper provides an estimate of the rate of spore differentiation and supports the previous notion that in the formation of strings of more than one spore, a gradient of spore maturation exists.  相似文献   

18.
Transitions in growth irradiance level from 92 to 7 Em-2 s-1 and vice versa caused changes in the pigment contents and photosynthesis of Oscillatoria agardhii. The changes in chlorophyll a and C-phycocyanin contents during the transition from high to low irradiance (HL) were reflected in photosynthetic parameters. In the LH transition light utilization efficiencies of the cells changed faster than pigment contents. This appeared to be related to the lowering of light utilization efficiencies of photosynthesis. As a possible explanation it was hypothesized that excess photosynthate production led to feed back inhibition of photosynthesis. Time-scales of changes in the maximal rate of O2 evolution were discussed as changes in the number of reaction centers of photosystem II in relation to photosynthetic electron transport. Parameters that were subject to change during irradiance transitions obeyed first order kinetics, but hysteresis occurred when comparing HL with LH transients. Interpretation of first order kinetic analysis was discussed in terms of adaptive response vs changes in growth rate.Non-standard abbreviations Chla chlorophyll a - CPC C-phycocyanin - PS II photosystem II - PS I photosystem I - RC II reaction center of photosystem II - P photosynthetic O2-evolution - I irradiance, Em-2 s-1 - light utilization efficiency of cells, mmol O2·mg dry wt-1·h-1/Em-2 s-1 - light utilization efficiency of photosynthetic apparatus, mol O2·mol Chla -1·h-1/Em-2 s-1 - Pmax maximal rate of O2 evolution by cells, mol O2·mg dry wt-1·h-1 - Pmax maximal rate of O2 evolution by photosynthetic apparatus, mol O2·mol·Chla -1·h-1 - LL low light, E m-2 s-1 - HL high light, E m-2 s-1 - LH low to high light transition - HL high to low light transition - k specific rate of adaptation, h-1 - specific growth rate, h-1 - Q pool size of cell constituent, mol·mg dry wt-1 - q net synthesis rate of cell constituent, mol·mg dry wt-1·h-1  相似文献   

19.
Oscillatoria amphigranulata is a fast-growing (3 doublings/day) cyanobacterium isolated from sulfide hot springs in New Zealand. Photosynthesis, as measured by incorporation of [14C]-HCO 3 - , was initially inhibited by 0.3–1.5 mM sulfide at pH 7.9–8.1. However, conversion to sulfide-dependent anoxygenic photosynthesis occurred in about 2 h or less under light intensities of 3–14 klx. Under the stimulation of higher light intensity (8–14 klx) a partial recovery of oxygenic photosynthesis also occurred. It was concluded that oxygenic photosynthesis was responsible for 21–42% of the total incorporation at sulfide concentrations of 1.0–0.3 mM, respectively. This contribution was suppressed at 1.5 mM sulfide and not elicited under lower light intensities (3–7 klx). As judged by the inhibitory effect of 10 g/ml chloramphenicol protein synthesis was required for attainment of both anoxygenic photosynthesis and photosystem II recovery. Sulfide could not be replaced by thiosulfate, elemental sulfur or dithionite as electron donors in photosynthesis, but elemental sulfur could serve as the sole assimilatory source of sulfur. Oxygenic photosynthesis was inhibited by DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] or DBMIB (2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone), but sulfide relieved the effect of either inhibitor in adapted cells, indicating that electrons derived from sulfide enter the photosynthetic electron transport chain at a point beyond plastoquinone.Uncommon abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DBMIB 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone - DSPD disalicyclidene propanediamine - DNP-INT 2-4-dinitrophenyl ether of 2-iodo-4-nitrothymol - TMPD N,N,N,N-tetramethyl-p-phenylenediamine - PPO 2,5-diphenyloxazole - POPOP 1,4-bis-2-(5-phenyl oxzolyl) benzene  相似文献   

20.
Trichodesmium sp., isolated from the Great Barrier Reef lagoon, was cultured in artificial seawater media containing a range of Fe concentration. Fe additions stimulated growth, N2 fixation, cellular chlorophyll a content, light-saturated chlorophyll a-specific gross photosynthetic capacity (Pm chla) and the dark respiration rate (Rd chla). Cell yields only doubled for 9 nM Fe relative to zero added Fe, whereas N2 fixation increased 11-fold considerably for 450 nM Fe. The results suggest that N2 fixation of Trichodesmium is more sensitive to Fe limitation than are the cell yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号