首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We fill a gap in understanding wetland vegetation diversity and relationship with environmental determinants in Bulgarian high mountains. A total of 615 phytosociological samples were taken from springs, mires, wet meadows and tall-forb habitats throughout Bulgaria, of which 234 relevés are from mire and spring vegetation above timberline. The vegetation was classified by TWINSPAN and the resulting vegetation types were reproduced by the formal definitions using the combination of Cocktail species groups based on phi-coefficient of joint co-occurrence of the species. Nine vegetation types of springs and fens have been clearly delimited above the timberline. All vegetation types include Balkan endemic species, the representation of which varies. Fens generally harbour more Balkan endemics than do springs, with the exception of species-poor high-altitude Drepanocladetum exannulati. The gradient structure of the vegetation was revealed by DCA and by CCA with forward selection of environmental factors. The major determinants of vegetation variation strongly differ above and below the timberline and likewise between springs and fens. The base-richness gradient controls the floristic variation of Bulgarian submontane fens, whereas the complete data set including both submontane and subalpine fens is governed by the altitude gradient from lowland and basin fens to subalpine fens rich in Balkan endemics. When focusing on sites above the timberline only, the first DCA axis separates fens from springs without organic matter. The major species turnover in springs follows the variation in water pH and mineral content in water, whereas fen vegetation variation is primarily controlled by succession gradient of peat accumulation. Altitude remains an important factor in all cases. Weak correlation between water pH and conductivity was found. This correlation was even statistically insignificant in fens above the timberline. Water pH is not influenced by mineral richness in Bulgarian high mountains, since it is buffered by decomposition of organic matter in fens. In springs, pH reaches maximum values due to strong aeration caused by water flow. The plant species richness decreases significantly with increasing altitude. The increase of species richness towards circumneutral pH, often found in mires, was not confirmed in Bulgarian high mountains. The correlation between species richness and pH was significant only when arctic-alpine species and allied European high-mountain species were considered separately. The richness of boreal species was independent on pH. Some of them had their optima shifted to more acidic fens as compared to regions below the timberline. Our results suggest that subalpine spring and fen vegetation should be analysed separately with respect to vegetation-environment correlations. Separate analysis of fens below and above timberline is quite appropriate.  相似文献   

2.
Abstract. The role of sheep grazing on vegetation change in upland mires removed from livestock farming and surrounded by conifer plantation was investigated with a grazing trial at Butterburn Flow in northern England. Paired grazed and ungrazed plots from central and peripheral locations were compared over 14 yr. Vegetation data from 34 mires in Kielder Forest provided an ordination framework within which vegetation trends were investigated. A gradient from dry moorland/hummock to wet mire/hollow vegetation dominated this framework and may reflect hydrological variability and structural vegetation differences between the mires. Some species were significantly affected by change in grazing intensity and there were differences between the edge and the centre of the mire. Overall vegetation change depended upon the grazing management and the position of the plots such that the removal of sheep grazing decreased the cover of species typical of wet ombrotrophic conditions, but only at the periphery of the mire. The vegetation in one plot became very similar to that of mires elsewhere in Kielder Forest where sheep were removed several decades ago. Cessation of grazing on upland mires is likely to lead to slow structural and species change in vegetation at the mire edge with a long‐term loss of ombrotrophic species. The nature conservation significance of these changes will depend upon whether or not management objectives target natural conditions or wish to maximize ombrotrophic vegetation. The context of external factors such as climate and pollution may, however, be more important in determining site condition on the wettest mires.  相似文献   

3.
The Evolutionary species pool hypothesis (ESPH) predicts that historically more common habitats will be richer in species because they have had greater opportunity for the evolution of suitably adapted species. We explored the relationship between mire species richness and pH, an important environmental variable in mires, in two regions that differ in habitat pH distribution: the West Carpathians and Bulgaria. Mire habitats in both the West Carpathians and Bulgaria demonstrate support for the ESPH prediction that habitats with more common pH values host more species. We also explored the influence of habitat history by examining the distribution of generalists and specialists along gradients of habitat pH, using extensive community-level vegetation data from European mires in these two regions. We found a striking pattern with the distribution of pH-specialists having three distinct peaks in both regions, whereas the total species pool peaked in near neutral pH habitats in both regions. Because the peaks in specialist richness do not correspond to regional pH distribution patterns, we hypothesize that historical explanations may be important, and that habitats currently rich in pH-specialists may have historically acted as pleniglacial refugia for many mire species. Our findings support the general predictions of the ESPH, but further suggest that historical processes such as patterns of glacial refugia, may significantly influence contemporary species distributions and the diversity of plant species in mire habitats.  相似文献   

4.
We applied the Cocktail method to a large data set of 4 117 relevés of all Slovak vegetation types with the aim to create formalised definitions of all Slovakian mire plant associations. We defined 21 groups of species with the statistical tendency of joint occurrences in vegetation. These groups differed substantially in their position along the pH/calcium gradient. We further defined 24 plant associations according to presence and/or absence of certain groups and/or strong dominance of some species. Only six traditional plant associations were not possible to be reproduced this way. We applied our formalised definitions to the regional data set of mires from the surrounding of the Vysoké Tatry Mts. Combined with frequency-positive fidelity index this method has led to the classification of the majority of vegetation plots into ten associations. When the vegetation types obtained from Cocktail-based classification and from cluster analysis were compared with respect to measured pH and conductivity in the study region, 82% of pairs differed significantly either in pH or in water conductivity in the former classification and 69% in the latter one.  相似文献   

5.
Craneflies (Diptera Tipuloidea) are a typical but poorly known insect group in various moist environments, such as mires. The area of natural mires has strongly decreased in Finland, and there is an urgent need to study and describe the fauna of mires and to determine whether different mire categories support different assemblages of craneflies that might have indicator value. Craneflies were studied using Malaise traps in the Kauhaneva mire system in minerotrophic and ombrotrophic sites, the former subdivided into meso- and oligotrophic sites. A total of 29 cranefly species were recorded. Species richness was highest in mesotrophic sites while the number of species was equally low in oligo- and ombrotrophic sites. Phylidorea squalens, Erioptera flavata, Pedicia rivosa and Tricyphona immaculata were identified as indicators for mesotrophic sites, but no indicators were found for oligo- or ombrotrophic sites. No differences between the species composition of minerotrophic (meso- and oligotrophic combined) and ombrotrophic sites were detected, but when three classes of trophic status were compared, a statistical difference was found. Cranefly species richness in Kauhaneva was low compared to pristine spring habitats. Our results imply, that a focus towards conservation and restoration of mire types with high trophic status would benefit also the conservation of cranefly diversity in the boreal ecoregion. Bioassesments and ecological surveys of craneflies should be designed to cover adequately all trophic status classes within a mire, and especially the mire types with highest trophic status. We also review the distribution and ecology of some potentially regionally threatened cranefly species.  相似文献   

6.
7.
Summary

The main types of ombrotrophic mire vegetation in Scotland are described with reference to selected mire sites of national importance. The range of variation is controlled by two main environmental gradients, climate and altitude. In particular the degree of oceanicity is crucial, influencing both the vegetation and the hydro-morphology of individual mires. The framework described provided the basis for selection of 31 nationally important mire sites in Scotland identified in the Nature Conservation Review in 1977. Protection of these sites has been successful, except for two sites now afforested. Current threats to Scottish peatlands mainly relate to lowland raised mires.  相似文献   

8.
Aapa mires are EU priority habitats that harbour unique biodiversity values but face increasing global change threats. Here, we investigate the exposure of red-listed aapa mire species inhabiting fen and flark fen habitats to the impacts of land use and climate change. Climate change-based threats were assessed across the aapa mire zone of Finland based on climate velocities (a metric describing the speed and direction of climate movement) measured for mean January temperature (TJan), growing degree days (GDD5) and mean annual water balance (WAB). Land use threats were assessed based on the cover of drainage ditches and three other adverse land use types around the species occurrences. Our results suggest that rapid changes in TJan may alter winter thermal conditions and thereby also species performance, particularly in the northernmost part of the aapa mire zone, where the most valuable concentrations of red-listed species are situated. The land use and GDD5 threats are highest in the southern regions where the red-listed aapa mire species occurrences are sparser but face severe risks to their persistence. In the central part of the aapa mire zone, a number of valuable aapa mires with red-listed species are exposed to both intermediately high TJan and GDD5 velocities and a spatially varying amount of ditching. Three conservation approaches to support the persistence of red-listed aapa mire species: (i) restoration, (ii) establishment of new protected areas, and (iii) monitoring of the key habitats, should be flexibly and complementarily applied to the preservation of aapa mires subject to accelerating climate change.  相似文献   

9.
The draining of mires for silvicultural purposes has caused one of the most dramatic changes in the landscape during the last century in Finland. To study the effects of mire drainage, carabid beetle assemblages were sampled using pitfall trapping in three different mire habitat types. Carabids were sampled from mires in their natural state, drained mires and drained mires with an open power line to see whether the cleared power line can serve as an alternative habitat for mire dependent carabids. The draining of mires greatly increases the species richness of the carabid assemblages. Yet, the conservation value of the environment has dropped following the draining, since only common and abundant forest carabids have benefited from human impact. The role of the open power line as an alternative habitat for mire specialists remains questionable. A few carabid species have, however, benefited from the open habitat of the power line. The vegetation structure had a significant effect in determining the compositions of the carabid assemblages on the studied habitat types. It seems that mire dwelling carabids cannot survive on the drained mires, unless at least some characteristics, other than the mere openness of the cleared power lines, of natural mires remain.  相似文献   

10.
Abstract. Competition is considered an important force in structuring plant communities and in governing niche relations, but communities recovering from disturbance, may be less governed by species interactions and less orderly organized. To address this issue, we studied species richness, abundance and patterns of association between plant species at three spatial scales (1 m2, 1/25 m2, 1/625 m2) in two ombrotrophic mires in east-central Sweden. One was at a secondary successional stage following peat extraction 50 yr ago and the other was undisturbed. Peat extraction leads to a change in hydrology which is slowly restored by the formation of new peat. Niche breadth and niche overlap along the gradient of height above the water table were calculated for the five common Sphagnum species occurring at both mires in an attempt to better understand differences in species co-occurrence at each mire. Species cover differed between the mires, and the number of species per plot was higher in the undisturbed community at all scales, suggesting that the degree of species intermingling was greater than at the harvested site. At all scales, the number of non-random associations was higher, and niche overlap lower among ecologically similar species (e.g. hollow Sphagnum species) in the undisturbed mire. These differences indicate that random events are important in colonization, and that biotic interactions between neighbours later result in a higher degree of non-randomness. In addition, we surveyed a number of abandoned peat pit sites to test the effect of disturbance for species composition at a regional scale. Ombrotrophic peat pits contained several Sphagnum species normally associated with minerotrophic mires, and species of wooded mires occurred frequently in peat pits, making them more species-rich than undisturbed bogs. There were also Sphagnum species new to, or rare in, this part of Sweden which indicates effective long-distance dispersal. Even 50 yr after peat extraction had ceased, the vegetation had not recovered to its original composition.  相似文献   

11.
12.
The major environmental gradients underlying plant species distribution were outlined in two climatically and bio-geographically contrasting mires: a Swedish bog in the boreo-nemoral zone, and an Italian bog in the south-eastern Alps. Data on mire morphology, surface hydrology, floristic composition, peat chemistry and pore-water chemistry were collected along transects from the mire margin (i.e., the outer portion of the mire in contact with the surrounding mineral soil) towards the mire expanse (i.e., the inner portion of the mire). The delimitation and the extent of the minerotrophic mire margin were related to the steepness of the lateral mire slope which, in turns, controls the direction of surface water flow. The mineral soil water limit was mirrored in geochemical variables such as pH, alkalinity, Ca2+, Mg2+, Al3+, Mn2+, and SiO2 concentrations in pore-water, as well as Ca, Al, Fe, N and P contents in surface peat. Depending on regional requirements of plant species, different species were useful as fen limit indicators at the two sites. The main environmental factors affecting distribution of habitat types and plant species in the two mires were the acidity-alkalinity gradient, and the gradient in depth to the water table. The mire margin – mire expanse gradient corresponds to a complex gradient mainly reflected in a differentiation of vegetation structure in relation to the aeration of the peat substrate.  相似文献   

13.
The use of data for present-day vegetation, modern and pretephra pollen have, together, allowed reconstruction of the spatial pattern of the vegetation of an oligotrophic mire, Shimo-kenashi Mire, in ad 915. The modern pollen data were compared with the surrounding vegetation, showing that pollen of Ericaceae, Rosaceae (excluding Sanguisorba), Sphagnum and Liliaceae, together with trees and shrubs, which form scrub or thicket, indicate the limits of the mires. Shimo-kenashi Mire was narrower in ad 915 and had more islands and peninsulas of scrub. Subsequently, the mire margin has advanced and the scrub islands and peninsulas have disappeared at some sites. The fact that the mire is spreading implies that conditions are wetter since ad 915, caused by changes in local hydrology. This history of vegetation at the site will contribute to the conservation and management of the mire as trends in vegetational change provide the basic information for conservation strategy.  相似文献   

14.
本研究以长白山区典型苔草沼泽为对象,分析了密丛型苔草(瘤囊苔草、乌拉草)沼泽和疏丛型苔草(毛苔草)沼泽的植物物种多样性.结果 表明:3种苔草沼泽植物群落共有83个物种,隶属于36科59属.其中,乌拉草沼泽有71个物种,瘤囊苔草沼泽有61个物种,毛苔草沼泽有26个物种.密丛型苔草沼泽植物物种数和物种丰富度明显高于疏丛型苔...  相似文献   

15.
1. This study on vascular plant species of boreal spruce and pine mires concentrated on two geometrical principles: whether single large or several small (SLOSS) reserves contain more species and whether patch shape should be as nearly circular as possible.
2. SLOSS and patch shape have usually been tested by using species richness. Only a few studies have taken the rarity of species into account, and taxonomic diversity has never been used. In our study, all three of these factors were used.
3. Our results showed that the number of species was not related to the spruce mire size, but it increased in relation to the pine mire size. In contrast, the rarity score increased in relation to the area of spruce mires, but it was not related to the area of pine mires. Taxonomic diversity was not related to size in the case of spruce mires, but it increased with pine mires.
4. The SLOSS comparison showed that several small mires contained more vascular plant species than a large one of equal size. Several small mires also had higher rarity scores and taxonomic diversity than a single large mire. The number of species, rarity score and taxonomic diversity increased in relation to the number of small mires in a group. The same results were obtained with both spruce and pine mires.
5. Species richness, rarity score and taxonomic diversity were not related to mire shape. The results did not depend on the mire type.  相似文献   

16.
The mapping and monitoring of Swiss mires has so far relied on a classification system based on expert judgement, which was not supported by a quantitative vegetation analysis and which did not include all wetland vegetation types described in the country. Based on a spatially representative sample of 17,608 relevés from 112 Swiss mires, we address the following questions: (1) How abundant are wetland vegetation types (phytosociological alliances) in Swiss mires? (2) How are they distributed across the country––is there a regional pattern? (3) How clearly are they separated from each other? (4) How clear and reliable is their ecological interpretation? Using published wetland vegetation relevés and lists of diagnostic species for phytosociological units (associations and alliances) established by experts, we developed a numerical method for assigning relevés to units through the calculation of similarity indices. We applied this method to our sample of 17,608 relevés and estimated the total area covered by each vegetation type in Switzerland. We found that vegetation types not included in previous mapping were either rare in Switzerland (partly due to mire drainage) or poorly distinguished from other vegetation units. In an ordination, the Swiss mire vegetation formed a triangular gradient system with the Sphagnion medii, the Caricion davallianae and the Phragmition australis as extreme types. Phytosociological alliances were clearly separated in a subset of 2,265 relevés, which had a strong similarity to one particular association, but poorly separated across all relevés, of which many could not be unequivocally assigned to one association. However, ecological gradients were reflected equally well by the vegetation types in either case. Overall, phytosociological alliances distinguished until now proved suitable schemes to describe and interpret vegetation gradients. Nevertheless, we see the urgent need to establish a data base of Swiss wetland relevés for a more reliable definition of some vegetation units.  相似文献   

17.
18.
The relationship of the poor-rich vegetation gradient with water chemistry and geochemical bedrock zones was studied with a data set from 36 pristine mire sites in the middle boreal zone, Finland. The bipartition of bedrock zones into a granitoid zone and three other, more alkaline bedrock zones was clearly connected to the poor-rich gradient in the study area. Mires in the granitoid bedrock zone were predominantly bogs and poor fens, while most of the rich fen sites were located in other bedrock zones. In fens with strongly minerogenous hydrology, the geochemically distinct bedrock zones showed significant differences in concentrations of calcium, manganese, phosphorus, as well as in the total equivalent charge of base cations and the ratio of calcium and magnesium. In light of the indicator species baseda priori poor-rich classification anda posteriori correlations with vegetation ordinations and a poor-rich indicator cover index, pH showed the strongest relationship of the water chemical variables with the poor-rich gradient. High calcium concentrations only separated extremely rich fens from other categories. The poor-rich gradient of mires is considered as a primarily pH-related vegetation continuum. A more general use of pH-classes along with hydrological and vegetation based classification is suggested for mire classification instead of the “poor-rich” terminology.  相似文献   

19.
Abstract. Despite existing management agreements, significant change has occurred on Carnwath Moss and Coladoir Bog, two mire complexes in central and western Scotland. Spontaneous succession has accelerated, resulting in extensive degradation of the mire vegetation on both sites and, in particular, widespread expansion of Calluna vulgaris‐ and Molinia caerulea‐dominated vegetation types. Vegetation surveys across strong gradients of change were conducted with the aim of quantifying the extent of early (desirable) and late (undesirable) successional vegetation on both sites. For each site multivariate analyses of the vegetation data were carried out using TWINSPAN, which clearly differentiated higher quality and degraded surfaces. In management terms percentage Sphagnum cover can act as a useful proxy measure of water level and shrub layer height can also serve as a useful indicator of the degree of degradation. A broad‐based, five class condition continuum was developed for the Carnwath Moss site. While such an assessment scheme is a somewhat arbitrary means of allocating mesotope areas to specific condition classes, it is rapid to apply and simple enough to be applied by a range of users. A drawback is that the methodology is data‐light in temporal terms and is not a long‐term substitute for properly‐funded monitoring programmes for important sites. For both mires, recommendations are made for management with the main emphasis being on maintaining water tables at appropriate levels to maximise the floristic diversity of active mires.  相似文献   

20.
Abstract Vegetation and environmental patterns, and associated ecological processes, were quantified from 42 sites on several transects in each of two extensive (5 and 220 ha) low-alpine patterned mires in the same region of south-central New Zealand. Plant communities, as derived from multivariate analyses, were correlated with 15 physical and chemical environmental factors. Various measures of water availability and chemistry were consistently the most significant factors in relation to vegetation patterns in both mires. In the smaller mire, plant cover adjacent to pools, which were partly or completely drained through underground tunnels, dominated the overall correlations. The nutrient status of surface water had a consistent negative relationship with water availability. No consistent spatial or temporal patterns were found in the concentrations of Ca, Mg, K or Na, nor pH or conductivity in pool water. Evaporative enrichment of cations on the surface of both mires was noted, with levels consistently higher in surface than in adjacent pool water. The somewhat higher nutrient status in the smaller mire may be a result of the size and/or the amounts of run-off from the surrounding slopes onto the mire surface or through the underground pipe system. Hydrogen (D) and oxygen (18O) isotopic compositions in water from pools, the mire surface and below ground from the smaller mire, suggested that there was negligible mixing of evaporation-enriched surface water with groundwater. Differences in overall nutrient levels in the two mires were relatively small and indicative of mesotrophic or marginally ombrotrophic status for these mires. Although of international significance, the wetland complex currently has inadequate formal protection. Possible options are assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号