首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
From the zebrafish Danio rerio, we have cDNA cloned and sequenced a novel type II and a novel type I keratin, termed DreK8 and DreK18, respectively. We identified DreK8/18 as the true orthologs of the human keratin pair K8/18 as follows: (i) MALDI-MS assignment to the biochemically identified K8 and K18 candidates that are co-expressed in simple epithelia and absent in epidermal keratinocytes; (ii) multiple sequence alignments and phylogenetic tree analysis, showing that DreK8, within the phylogenetic tree of type II keratins, forms a highly bootstrap-supported branch together with K8 from goldfish and rainbow trout, whereas DreK18, within the phylogenetic tree of type I keratins, groups with the K18 sequences from all other vertebrates studied; (iii) presence of a conserved motif in the tail domain of DreK8 (VxKxxETxDGxxVSESSxV) that is typical for all hitherto sequenced K8 orthologs. Moreover, several zebrafish type II keratin sequences published by other authors have now been assigned to epidermal keratins, previously identified biochemically.  相似文献   

2.
Keratin filaments arise from the copolymerization of type I and II sequences, and form a pancytoplasmic network that provides vital mechanical support to epithelial cells. Keratins 5 and 14 are expressed as a pair in basal cells of stratified epithelia, where they occur as bundled arrays of filaments. In vitro, bundles of K5-K14 filaments can be induced in the absence of cross-linkers, and exhibit enhanced resistance to mechanical strain. This property is not exhibited by copolymers of K5 and tailless K14, in which the nonhelical tail domain has been removed, or copolymers of K5 and K19, a type I keratin featuring a short tail domain. The purified K14 tail domain binds keratin filaments in vitro with specificity (kD approximately 2 microM). When transiently expressed in cultured cells, the K14 tail domain associates with endogenous keratin filaments. Utilization of the K14 tail domain as a bait in a yeast two-hybrid screen pulls out type I keratin sequences from a skin cDNA library. These data suggest that the tail domain of K14 contributes to the ability of K5-K14 filaments to self-organize into large bundles showing enhanced mechanical resilience in vitro.  相似文献   

3.
We have characterized the cells that form the human oral epithelia by analyzing their patterns of keratin expression in culture and in transplants. Keratinocytes of all oral regions synthesized high levels of keratins K5/K14 and K6/K16,K17, as expressed by cells of all stratified squamous epithelia in culture. However, cells from different regions varied in their expression in culture of retinoid-inducible (K19 and K13) and simple epithelial (K7, K8 and K18) keratins. By these criteria, all oral cells could be classified as belonging to one of three intrinsically distinct subtypes: "keratinizing" (gingiva, hard palate), "typical nonkeratinizing" (inner cheek, floor of mouth, ventral tongue) and "special non-keratinizing" (soft palate), all of which differed from the epidermal keratinocyte subtype. Cells from fetal floor of mouth expressed a pattern of keratins in culture markedly different from that of adult floor of mouth cells but identical to that of the adult "special nonkeratinizing" subtype and similar to that of several oral squamous cell carcinoma lines. When cultures of oral keratinocytes were grafted to the dermis of nude mice, they formed stratified epithelial structures after 10 days. In some areas of the stratified structures, the basal layer recapitulated the K19 expression pattern of the oral region from which they had originated. Thus, regional differentiation of the oral epithelium is based on an intrinsic specialization of regional keratinocyte stem cells. Additionally, oral cell transformation either frequently involves reversion to the fetal keratin program or else oral cells that express this keratin program are especially susceptible to transformation.  相似文献   

4.
Summary The internal epithelium of mouse forestomach represents a fully keratinized tissue that has many morphological aspects in common with the integumental epidermis. In the present study we have, therefore, analyzed keratin expression in the total epithelium, in subfractions of basal cells and in living and dead suprabasal cells that were obtained by Percoll density gradient centrifugation of trypsin-dissociated forestomach keratinocytes. The keratin analysis revealed that basal forestomach keratinocytes synthesize the same keratin types as basal epidermal cells (60 000, 52 000 and 47 000 daltons), whereas differentiating cells contain both the epidermal suprabasal keratin pair (67 000 and 59 000 daltons) and the suprabasal keratin pair characteristic for other internal squamous epithelia (57 000 and 47 000 daltons). Indirect immunofluorescence using an antibody recognizing the members of the epidermal-type suprabasal keratin pair and in-situ-hybridization experiments using specific cDNA probes for the members of the internal-type keratin pair showed that the two keratin pairs are uniformly coexpressed in living suprabasal forestomach keratinocytes. Furthermore, it could be shown that distinct cells in the basal cell layer acquire the ability to express both the 67 000/59 000 dalton and the 57 000/47 000 dalton keratin pair and that some basal cells apparently lose the ability to synthesize mRNAs for basal keratins.  相似文献   

5.
Transforming growth factor beta (TGF-beta) is a multifunctional cytokine which plays an important role in cutaneous wound repair. To gain insight into the mechanisms of action of this growth and differentiation factor in the skin, we searched for genes which are regulated by TGF-beta1 in cultured HaCaT keratinocytes. Using the differential display RT-PCR technology we identified a gene which was strongly downregulated by TGF-beta1. The identified cDNA includes sequences of the keratin 15 (K15) gene which encodes a component of the cytoskeleton of basal cells in stratified epithelia. Surprisingly, our cDNA also included an unknown sequence. Since this cDNA lacks an open reading frame, the corresponding mRNA is likely to be nonfunctional. However, we also demonstrate a strong negative regulation of the expression of the published, functional K15 variant. Expression of K15 was also suppressed by tumor necrosis factor alpha (TNF-alpha) and to a lesser extent by epidermal growth factor (EGF) and keratinocyte growth factor (KGF). By contrast, the major basal type I keratin, K14, was upregulated by TGF-beta1, whereas TNF-alpha, EGF, and KGF had no effect. Consistent with the in vitro data, we found a significant reduction of the K15 mRNA levels after skin injury, whereas K14 expression increased during the wound healing process. Immunostaining revealed the presence of K15 in all basal cells of the epidermis adjacent to the wound, but not in the hyperproliferative epithelium above the granulation tissue. These data demonstrate that K15 is excluded from the activated keratinocytes of the hyperthickened wound epidermis, possibly as a result of increased growth factor expression in injured skin.  相似文献   

6.
《The Journal of cell biology》1994,127(4):1049-1060
In epidermal cells, keratin intermediate filaments connect with desmosomes to form extensive cadherin-mediated cytoskeletal architectures. Desmoplakin (DPI), a desmosomal component lacking a transmembrane domain, has been implicated in this interaction, although most studies have been conducted with cells that contain few or no desmosomes, and efforts to demonstrate direct interactions between desmoplakin and intermediate filaments have not been successful. In this report, we explore the biochemical nature of the connections between keratin filaments and desmosomes in epidermal keratinocytes. We show that the carboxy terminal "tail" of DPI associates directly with the amino terminal "head" of type II epidermal keratins, including K1, K2, K5, and K6. We have engineered and purified recombinant K5 head and DPI tail, and we demonstrate direct interaction in vitro by solution- binding assays and by ligand blot assays. This marked association is not seen with simple epithelial type II keratins, vimentin, or with type I keratins, providing a possible explanation for the greater stability of the epidermal keratin filament architecture over that of other cell types. We have identified an 18-amino acid residue stretch in the K5 head that is conserved only among type II epidermal keratins and that appears to play some role in DPI tail binding. This finding might have important implications for understanding a recent point mutation found within this binding site in a family with a blistering skin disorder.  相似文献   

7.
Injury to stratified epithelia causes a strong induction of keratins 6 (K6) and 16 (K16) in post-mitotic keratinocytes located at the wound edge. We show that induction of K6 and K16 occurs within 6 h after injury to human epidermis. Their subsequent accumulation in keratinocytes correlates with the profound reorganization of keratin filaments from a pan-cytoplasmic distribution to one in which filaments are aggregated in a juxtanuclear location, opposite to the direction of cell migration. This filament reorganization coincides with additional cytoarchitectural changes and the onset of re-epithelialization after 18 h post-injury. By following the assembly of K6 and K16 in vitro and in cultured cells, we find that relative to K5 and K14, a well- characterized keratin pair that is constitutively expressed in epidermis, K6 and K16 polymerize into short 10-nm filaments that accumulate near the nucleus, a property arising from K16. Forced expression of human K16 in skin keratinocytes of transgenic mice causes a retraction of keratin filaments from the cell periphery, often in a polarized fashion. These results imply that K16 may not have a primary structural function akin to epidermal keratins. Rather, they suggest that in the context of epidermal wound healing, the function of K16 could be to promote a reorganization of the cytoplasmic array of keratin filaments, an event that precedes the onset of keratinocyte migration into the wound site.  相似文献   

8.
9.
10.
The crucial role of structural support fulfilled by keratin intermediate filaments (IFs) in surface epithelia likely requires that they be organized into cross-linked networks. For IFs comprised of keratins 5 and 14 (K5 and K14), which occur in basal keratinocytes of the epidermis, formation of cross-linked bundles is, in part, self-driven through cis-acting determinants. Here, we targeted the expression of a bundling-competent KRT5/KRT8 chimeric cDNA (KRT8bc) or bundling-deficient wild type KRT8 as a control to the epidermal basal layer of Krt5-null mice to assess the functional importance of keratin IF self-organization in vivo. Such targeted expression of K8bc rescued Krt5-null mice with a 47% frequency, whereas K8 completely failed to do so. This outcome correlated with lower than expected levels of K8bc and especially K8 mRNA and protein in the epidermis of E18.5 replacement embryos. Ex vivo culture of embryonic skin keratinocytes confirmed the ability of K8bc to form IFs in the absence of K5. Additionally, electron microscopy analysis of E18.5 embryonic skin revealed that the striking defects observed in keratin IF bundling, cytoarchitecture, and mitochondria are partially restored by K8bc expression. As young adults, viable KRT8bc replacement mice develop alopecia and chronic skin lesions, indicating that the skin epithelia are not completely normal. These findings are consistent with a contribution of self-mediated organization of keratin IFs to structural support and cytoarchitecture in basal layer keratinocytes of the epidermis and underscore the importance of context-dependent regulation for keratin genes and proteins in vivo.  相似文献   

11.
Of the >20 epithelial keratins, keratin 20 (K20) has an unusual distribution and is poorly studied. We began to address K20 function, by expressing human wild-type and Arg80-->His (R80H) genomic (18 kb) and cDNA K20 in cells and mice. Arg80 of K20 is conserved in most keratins, and its mutation in epidermal keratins causes several skin diseases. R80H but not wild-type K20 generates disrupted keratin filaments in transfected cells. Transgenic mice that overexpress K20 R80H have collapsed filaments in small intestinal villus regions, when expressed at moderate levels, whereas wild-type K20-overexpressing mice have normal keratin networks. Overexpressed K20 maintains its normal distribution in several tissues, but not in the pancreas and stomach, without causing any tissue abnormalities. Hence, K20 pancreatic and gastric expression is regulated outside the 18-kb region. Cross-breeding of wild-type or R80H K20 mice with mice that overexpress wild-type K18 or K18 that is mutated at the conserved K20 Arg80-equivalent residue show that K20 plays an additive and compensatory role with K18 in maintaining keratin filament organization in the intestine. Our data suggest the presence of unique regulatory domains for pancreatic and gastric K20 expression and support a significant role for K20 in maintaining keratin filaments in intestinal epithelia.  相似文献   

12.
Sequence and expression of a human type II mesothelial keratin   总被引:9,自引:3,他引:6       下载免费PDF全文
Using mRNA from cultured human mesothelial cells, we constructed bacterial plasmids and lambda phage vectors that contained cDNA sequences specific for the keratins expressed in these cells. A cloned cDNA encoding keratin K7 (55 kD) was identified by positive hybrid selection. Southern Blot analysis indicated that this sequence is represented only once in the human genome, and Northern Blot analysis demonstrated that the gene encoding K7 is expressed in abundance in cultured bronchial and mesothelial cells, but only weakly in cultured epidermal cells and not at all in liver, colon, or exocervical tissue. The predicted amino acid sequence of this keratin has revealed a striking difference between this keratin and the type II keratins expressed in epidermal cells: whereas all of the epidermal type II keratins thus far sequenced have long nonhelical termini rich in glycine and serine, this mesothelial type II keratin has amino and carboxy terminal regions that are unusually short and lack the inexact repeats of glycine and serine residues.  相似文献   

13.
BPAG1n4 is essential for retrograde axonal transport in sensory neurons   总被引:1,自引:0,他引:1  
Disruption of the BPAG1 (bullous pemphigoid antigen 1) gene results in progressive deterioration in motor function and devastating sensory neurodegeneration in the null mice. We have previously demonstrated that BPAG1n1 and BPAG1n3 play important roles in organizing cytoskeletal networks in vivo. Here, we characterize functions of a novel BPAG1 neuronal isoform, BPAG1n4. Results obtained from yeast two-hybrid screening, blot overlay binding assays, and coimmunoprecipitations demonstrate that BPAG1n4 interacts directly with dynactin p150Glued through its unique ezrin/radixin/moesin domain. Studies using double immunofluorescent microscopy and ultrastructural analysis reveal physiological colocalization of BPAG1n4 with dynactin/dynein. Disruption of the interaction between BPAG1n4 and dynactin results in severe defects in retrograde axonal transport. We conclude that BPAG1n4 plays an essential role in retrograde axonal transport in sensory neurons. These findings might advance our understanding of pathogenesis of axonal degeneration and neuronal death.  相似文献   

14.
Discovery of new human beta-defensins using a genomics-based approach   总被引:31,自引:0,他引:31  
Epithelial beta-defensins are broad-spectrum cationic antimicrobial peptides that also act as chemokines for adaptive immune cells. In the human genome, all known defensin genes cluster to a <1 Mb region of chromosome 8p22-p23. To identify new defensin genes, the DNA sequence from a contig of large-insert genomic clones from the region containing human beta-defensin-2 (HBD-2) was analyzed for the presence of defensin genes. This sequence survey identified a novel beta-defensin, termed HBD-3. The HBD-3 gene contains two exons, is located 13 kb upstream from the HBD-2 gene, and it is transcribed in the same direction. A partial HBD-3 cDNA clone was amplified from cDNA derived from IL-1beta induced fetal lung tissue. The cDNA sequence encodes for a 67 amino acid peptide that is approximately 43% identical to HBD-2 and shares the beta-defensin six cysteine motif. By PCR analysis of two commercial cDNA panels, HBD-3 expression was detected in adult heart, skeletal muscle, placenta and in fetal thymus. From RT-PCR experiments, HBD-3 expression was observed in skin, esophagus, gingival keratinocytes, placenta and trachea. Furthermore, in fetal lung explants and gingival keratinocytes, HBD-3 mRNA expression was induced by IL-1beta. Additional sequence analysis identified the HE2 (human epididymis secretory protein) gene 17 kb upstream from the HBD-3 gene. One splice variant of this gene (HE2beta1) encodes a beta-defensin consensus cysteine motif, suggesting it represents a defensin gene product. HE2beta1 mRNA expression was detected in gingival keratinocytes and bronchial epithelia using RT-PCR analysis. The discovery of these novel beta-defensin genes may allow further understanding of the role of defensins in host immunity at mucosal surfaces.  相似文献   

15.
The cornified envelope is a layer of transglutaminase cross-linked protein that is assembled under the plasma membrane of keratinocytes in the outermost layers of the epidermis. We have determined the cDNA sequence of one of the proteins that becomes incorporated into the cornified envelope of cultured epidermal keratinocytes, a protein with an apparent molecular mass of 195 kD that is encoded by a mRNA with an estimated size of 6.3 kb. The protein is expressed in keratinizing and nonkeratinizing stratified squamous epithelia and in a number of other epithelia. Expression of the protein is upregulated during the terminal differentiation of epidermal keratinocytes in vivo and in culture. Immunogold electron microscopy was used to demonstrate an association of the 195-kD protein with the desmosomal plaque and with keratin filaments in the differentiated layers of the epidermis. Sequence analysis showed that the 195-kD protein is a member of the plakin family of proteins, to which envoplakin, desmoplakin, bullous pemphigoid antigen 1, and plectin belong. Envoplakin and the 195-kD protein coimmunoprecipitate. Analysis of their rod domain sequences suggests that the formation of both homodimers and heterodimers would be energetically favorable. Confocal immunofluorescent microscopy of cultured epidermal keratinocytes revealed that envoplakin and the 195-kD protein form a network radiating from desmosomes, and we speculate that the two proteins may provide a scaffolding onto which the cornified envelope is assembled. We propose to name the 195-kD protein periplakin.  相似文献   

16.
The goal of this study was to discover novel partners for perlecan, a major heparan sulfate proteoglycan of basement membranes, and to examine new interactions through which perlecan may influence cell behavior. We employed the yeast two-hybrid system and used perlecan domain V as bait to screen a human keratinocyte cDNA library. Among the strongest interacting clones, we isolated a approximately 1.6-kb cDNA insert that encoded extracellular matrix protein 1 (ECM1), a secreted glycoprotein involved in bone formation and angiogenesis. The sequencing of the clone revealed the existence of a novel splice variant that we name ECM1c. The interaction was validated by co-immunoprecipitation studies, using both cell-free systems and mammalian cells, and the specific binding site within each molecule was identified employing various deletion mutants. The C terminus of ECM1 interacted specifically with the epidermal growth factor-like modules flanking the LG2 subdomain of perlecan domain V. Perlecan and ECM1 were also co-expressed by a variety of normal and transformed cells, and immunohistochemical studies showed a partial expression overlap, particularly around dermal blood vessels and adnexal epithelia. ECM1 has been shown to regulate endochondral bone formation, stimulate the proliferation of endothelial cells, and induce angiogenesis. Similarly, perlecan plays an important role in chondrogenesis and skeletal development, as well as harboring pro- and anti-angiogenic activities. Thus, a physiological interaction could also occur in vivo during development and in pathological events, including tissue remodeling and tumor progression.  相似文献   

17.
Corneal epithelium transdifferentiation into a hair-bearing epidermis provides a particularly useful system for studying the possibility that transient amplifying (TA) cells are able to activate different genetic programs in response to a change in their fibroblast environment, as well as to follow the different steps of rebuilding an epidermis from induced stem cells. Corneal stem and TA cells are found in different locations - stem cells at the periphery, in the limbus, and TA cells more central. Moreover, the TA cells already express the differentiating corneal-type keratin pair K3/K12, whereas the limbal keratinocytes express the basal keratin pair K5/K14. In contrast, suprabasal epidermal keratinocytes express keratin pair K1-2/K10, and basal keratinocytes the keratin pair K5/K14. The results of tissue recombination experiments show that adult central corneal cells are able to respond to specific information originating from embryonic dermis. First, the cells located at the base of the corneal epithelium show a decrease in expression of K12 keratin, followed by an increase in K5 expression; they then proliferate and form hair follicles. The first K10 expressing cells appear at the junction of the new hair follicles and the covering corneal epithelium. Their expansion finally gives rise to epidermal strata, which displace the corneal suprabasal keratinocytes. Corneal TA cells can thus be reprogrammed to form epidermal cells, first by reverting to a basal epithelial-type, then to hair pegs and probably concomitantly to hair stem cells. This confirms the role of the hair as the main reservoir of epidermal stem cells and raises the question of the nature of the dermal messages which are both involved in hair induction and stem cell specification.  相似文献   

18.
Defining desmosomal plakophilin-3 interactions   总被引:5,自引:0,他引:5  
Plakophilin 3 (PKP3) is a recently described armadillo protein of the desmosomal plaque, which is synthesized in simple and stratified epithelia. We investigated the localization pattern of endogenous and exogenous PKP3 and fragments thereof. The desmosomal binding properties of PKP3 were determined using yeast two-hybrid, coimmunoprecipitation and colocalization experiments. To this end, novel mouse anti-PKP3 mAbs were generated. We found that PKP3 binds all three desmogleins, desmocollin (Dsc) 3a and -3b, and possibly also Dsc1a and -2a. As such, this is the first protein interaction ever observed with a Dsc-b isoform. Moreover, we determined that PKP3 interacts with plakoglobin, desmoplakin (DP) and the epithelial keratin 18. Evidence was found for the presence of at least two DP-PKP3 interaction sites. This finding might explain how lateral DP-PKP interactions are established in the upper layers of stratified epithelia, increasing the size of the desmosome and the number of anchoring points available for keratins. Together, these results show that PKP3, whose epithelial and epidermal desmosomal expression pattern and protein interaction repertoire are broader than those of PKP1 and -2, is a unique multiprotein binding element in the basic architecture of a vast majority of epithelial desmosomes.  相似文献   

19.
Thrombopoietin (TPO) is the major cytokine involved in platelet production and exerts its effects via the receptor c-Mpl. The yeast two-hybrid system has been used to screen the proteins interacting with c-Mpl. First, the cDNA fragment of c-Mpl intracellular domain was cloned into two-hybrid vector pAS2, and the resulting plasmid is designated as pASMM. Then a human placenta cDNA library was screened using the pASMM as a target plasmid. Seven positive clones were isolated from 150 000 independent transformants. Sequence analysis of one of the positive clones demonstrates that a part of coding sequence of vimentin from 611 bp to 3' end and flanking non-translation region was obtained. Therefore, there is an interaction between vimentin and TPO receptor. The results suggest that cytoskeletal protein may play an important role in TPO signal transduction pathway.  相似文献   

20.
Envoplakin is a membrane-associated precursor of the epidermal cornified envelope. Envoplakin is homologous to desmoplakin I and desmoplakin II (DPI/II), bullous pemphigoid antigen 1 (BPAG1), and plectin and is proposed to link desmosomes and keratin filaments to the cornified envelope. We describe the isolation of cosmids and yeast artificial chromosomes containing the complete human envoplakin gene (EVPL) and show, by analysis of somatic cell hybrids and chromosomalin situhybridisation, that the envoplakin gene, unlike the genes encoding BPAG1 and DPI/II, maps to 17q25 and is physically linked to D17S1603. This sequence-tagged site segregates with the autosomal dominant human disease focal nonepidermolytic palmoplantar keratosis (NEPKK; “tylosis”), which is associated with an increased risk of oesophageal cancer. The chromosomal localisation of the envoplakin gene, the homology of the encoded protein to keratin-binding proteins, and its expression in epidermal and oesophageal keratinocytes all raise the possibility that loss of envoplakin function could be responsible for this form of palmoplantar keratoderma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号