首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The guanylyl cyclase receptor family   总被引:1,自引:0,他引:1  
Cyclic GMP (cGMP) signals through protein kinases, ion channels, and possibly other effector systems as a second messenger. Its synthesis is regulated by guanylyl cyclase, whose activity is found in various cellular compartments including the plasma membrane and cytosol. A soluble form of guanylyl cyclase, which occurs as a heterodimer, appears to serve as a receptor for nitric oxide or nitrosothiols, or both. Recent research suggests the presence of multiple subtypes of the soluble form of guanylyl cyclase and tissue-specific expression of the different forms. At least two different forms of the plasma membrane guanylyl cyclase are known to occur in various mammalian tissues. One form, GC-A, is a receptor for atrial natriuretic peptide, and the binding of ligand causes marked increases in cGMP production. The other form, GC-B, is stimulated more effectively by a brain natriuretic peptide than by atrial natriuretic peptide, but its natural ligand remains in question. Both plasma membrane forms of the enzyme contain a single, putative transmembrane domain. The intracellular region of both forms contains a protein kinase-like domain just within the transmembrane domain. The protein kinase-like domain is followed by a cyclase catalytic region near the carboxyl terminus that is homologous to two internally homologous domains found in a bovine brain adenylyl cyclase. The possibility that other guanylyl cyclase receptor subtypes exist is now being explored. If they do, we may subsequently find that a diversity of specific ligands signals through cGMP.  相似文献   

2.
C-type natriuretic peptide and guanylyl cyclase B receptor   总被引:8,自引:0,他引:8  
Schulz S 《Peptides》2005,26(6):1024-1034
Guanylyl cyclases (GC) are widely distributed enzymes that signal via the production of the second messenger cGMP. The particulate guanylyl cyclases share a similar topology: an extracellular ligand binding domain and intracellular regulatory kinase-homology and cyclase catalytic domains. The natriuretic peptide receptors GC-A and -B mediate the effects of a family of peptides, atrial, B- and C-type natriuretic peptide (ANP, BNP and CNP, respectively), with natriuretic, diuretic and vasorelaxant properties. ANP and BNP, through the activation of GC-A, act as endocrine hormones to regulate blood pressure and volume, and inhibit cardiac hypertrophy. CNP, on the other hand, acts in an autocrine/paracrine fashion to induce vasorelaxation and vascular remodeling, and to regulate bone growth through its cognate receptor GC-B. GC-B, like GC-A, is phosphorylated in the basal state, and undergoes both homologous and heterologous desensitization, reflected by dephosphorylation of specific sites in the kinase-homology domain. This review will examine the structure and function of GC-B, and summarize the physiological processes in which this receptor is thought to participate.  相似文献   

3.
Tyrosine phosphorylation events are key components of several cellular signal transduction pathways. This study describes a novel method for identification of substrates for tyrosine kinases. Co-expression of the tyrosine kinase EphB1 with the intracellular domain of guanylyl cyclase C (GCC) inEscherichia coli cells resulted in tyrosine phosphorylation of GCC, indicating that GCC is a potential substrate for tyrosine kinases. Indeed, GCC expressed in mammalian cells is tyrosine phosphorylated, suggesting that tyrosine phosphorylation may play a role in regulation of GCC signalling. This is the first demonstration of tyrosine phosphorylation of any member of the family of membrane-associated guanylyl cyclases.  相似文献   

4.
Soluble guanylyl cyclase (sGC) is an alpha/beta-heterodimeric hemoprotein that, upon interaction with the intercellular messenger molecule NO, generates cGMP. Although the related family of particulate guanylyl cyclases (pGCs) forms active homodimeric complexes, it is not known whether homodimerization of sGC subunits occurs. We report here the expression in Sf9 cells of glutathione S-transferase-tagged recombinant human sGCalpha1 and beta1 subunits, applying a novel and rapid purification method based on GSH-Sepharose affinity chromatography. Surprisingly, in intact Sf9 cells, both homodimeric GSTalpha/alpha and GSTbeta/beta complexes were formed that were catalytically inactive. Upon coexpression of the respective complementary subunits, GSTalpha/beta or GSTbeta/alpha heterodimers were preferentially formed, whereas homodimers were still detectable. When subunits were mixed after expression, e.g. GSTbeta and beta or GSTalpha and beta, no dimerization was observed. In conclusion, our data suggest the previously unrecognized possibility of a physiological equilibrium between homo- and heterodimeric sGC complexes.  相似文献   

5.
Guanylyl cyclase C (GCC) is the receptor for the gastrointestinal hormones, guanylin, and uroguanylin, in addition to the bacterial heat-stable enterotoxins, which are one of the major causes of watery diarrhea the world over. GCC is expressed in intestinal cells, colorectal tumor tissue and tumors originating from metastasis of the colorectal carcinoma. We have earlier generated a monoclonal antibody to human GCC, GCC:B10, which was useful for the immunohistochemical localization of the receptor in the rat intestine (Nandi A et al., 1997, J Cell Biochem 66:500-511), and identified its epitope to a 63-amino acid stretch in the intracellular domain of GCC. In view of the potential that this antibody has for the identification of colorectal tumors, we have characterized the epitope for GCC:B10 in this study. Overlapping peptide synthesis indicated that the epitope was contained in the sequence HIPPENIFPLE. This sequence was unique to GCC, and despite a short stretch of homology with serum amyloid protein and pertussis toxin, no cross reactivity was detected. The core epitope was delineated using a random hexameric phage display library, and two categories of sequences were identified, containing either a single, or two adjacent proline residues. No sequence identified by phage display was identical to the epitope present in GCC, indicating that phage sequences represented mimotopes of the native epitope. Alignment of these sequences with HIPPENIFPLE suggested duplication of the recognition motif, which was confirmed by peptide synthesis. These studies allowed us not only to define the requirements of epitope recognition by GCC:B10 monoclonal antibody, but also to describe a novel means of epitope recognition involving topological mimicry and probable duplication of the cognate epitope in the native guanylyl cyclase C receptor sequence.  相似文献   

6.
7.
Using a bacterial expression system, large amounts of the catalytic core of an atrial natriuretic peptide receptor guanylyl cyclase were produced and purified. After refolding the protein from a buffer containing urea, the enzyme had positively cooperative kinetics with a Hill coefficient, nH = 1.42 +/- 0.08. Size exclusion chromatography and denaturing polyacrylamide gel electrophoresis demonstrated that the enzyme is composed of homodimers with interacting catalytic sites.  相似文献   

8.
Cyclic GMP (cGMP) and Ca(2+) regulate opposing mechanisms in (patho)physiological processes reflected in the reciprocal regulation of their intracellular concentrations. Although mechanisms by which cGMP regulates [Ca(2+)](i) have been described, those by which Ca(2+) regulates [cGMP](i) are less well understood. In the present study, Ca(2+) inhibited purified sGC activated by sodium nitroprusside (SNP), a precursor of nitric oxide (NO), employing Mg-GTP as substrate in a concentration-dependent fashion, but was without effect on basal enzyme activity. Ca(2+) inhibited sGC stimulated by protoporphyrin IX or YC-1 suggesting that inhibition was not NO-dependent. In contrast, Ca(2+) was without effect on sGC activated by SNP employing Mn-GTP as substrate, demonstrating that inhibition did not reflect displacement of heme from sGC. Ligand activation of sGC unmasked negative allosteric sites of high (K(i) similar 10(-7) M) and low (K(i) approximately 10(-5) M) affinity for Ca(2+) that mediated noncompetitive and uncompetitive inhibition, respectively. Free Mg(2+) in excess of substrate did not alter the concentration-response relationship of Ca(2+) inhibition at high affinity sites, but produced a rightward shift in that relationship at low affinity sites. Similarly, Ca(2+) inhibition at high affinity sites was noncompetitive, whereas inhibition at low affinity sites was competitive, with respect to free Mg(2+). Purified sGC specifically bound (45)Ca(2+) in the presence of a 1000-fold excess of Mg(2+) and in the absence of activating ligands. These data suggest that sGC is a constitutive Ca(2+) binding protein whose allosteric function is conditionally dependent upon ligand activation.  相似文献   

9.
10.
11.
Russwurm M  Koesling D 《The EMBO journal》2004,23(22):4443-4450
Nitric oxide (NO)-sensitive guanylyl-cyclase (GC) is the most important receptor for the signaling molecule NO. Activation of the enzyme is brought about by binding of NO to the prosthetic heme group. By monitoring NO-binding and catalytic activity simultaneously, we show that NO activates GC only if the reaction products of the enzyme are present. NO-binding in the absence of the products did not activate the enzyme, but yielded a nonactivated species with the spectral characteristics of the active form. Conversion of the nonactivated into the activated conformation of the enzyme required the simultaneous presence of NO and the reaction products. Furthermore, the products magnesium/cGMP/pyrophosphate promoted the release of the histidine-iron bond during NO-binding, indicating reciprocal communication of the catalytic and ligand-binding domains. Based on these observations, we present a model that proposes two NO-bound states of the enzyme: an active state formed in the presence of the products and a nonactivated state. The model not only covers the data reported here but also consolidates results from previous studies on NO-binding and dissociation/deactivation of GC.  相似文献   

12.
Guanylyl cyclases (GCs), which synthesize the messenger cyclic guanosine 3′,5′-monophosphate, control several sensory functions, such as phototransduction, chemosensation, and thermosensation, in many species from worms to mammals. The GC chemoreceptor in sea urchin sperm can decode chemoattractant concentrations with single-molecule sensitivity. The molecular and cellular underpinnings of such ultrasensitivity are not known for any eukaryotic chemoreceptor. In this paper, we show that an exquisitely high density of 3 × 105 GC chemoreceptors and subnanomolar ligand affinity provide a high ligand-capture efficacy and render sperm perfect absorbers. The GC activity is terminated within 150 ms by dephosphorylation steps of the receptor, which provides a means for precise control of the GC lifetime and which reduces “molecule noise.” Compared with other ultrasensitive sensory systems, the 10-fold signal amplification by the GC receptor is surprisingly low. The hallmarks of this signaling mechanism provide a blueprint for chemical sensing in small compartments, such as olfactory cilia, insect antennae, or even synaptic boutons.  相似文献   

13.
Most of the physiological actions of atrial natriuretic peptide (ANP) may be attributed to activation of the natriuretic peptide receptor-A (NPR-A) guanylyl cyclase. We report here that truncation of the NPR-A cytoplasmic domain results in increased expression of cell surface ANP binding sites. The truncated receptor exhibited a hyperbolic time course for ANP binding and had a high affinity for [125I]hANP, Kd = 8 pM. Cells expressing truncated NPR-A were used as an immunogen to obtain monoclonal antibodies against the native conformation of the extracellular domain. These antibodies were used to select for high levels of stable NPR-A expression in 293 cells, by fluorescence-activated cell sorting. Disuccinimidyl suberate cross-linked [125I]ANP to 135-kDa NPR-A on intact cells. Monoclonal antibody immunoprecipitation of 35S-labeled proteins revealed NPR-A size heterogeneity, with 135- and 125-kDa species. A synthetic peptide antibody directed against the extracellular domain immunoprecipitated 125-kDa NPR-A, but recognized both sizes of receptor by Western blotting. The 125-kDa NPR-A did not bind to or cross-link ANP. NPR-A size variants were expressed on the cell surface, and heterogeneity was removed by deglycosylation with protein:N-glycosidase F. Our results suggest that the degree of N-linked glycosylation of the NPR-A extracellular domain influences the ability to bind ANP.  相似文献   

14.
Ca(2+)-binding guanylyl cyclase-activating proteins (GCAPs) stimulate photoreceptor membrane guanylyl cyclase (retGC) in the light when the free Ca(2+) concentrations in photoreceptors decrease from 600 to 50 nM. RetGC activated by GCAPs exhibits tight dimerization revealed by chemical cross-linking (Yu, H., Olshevskaya, E., Duda, T., Seno, K., Hayashi, F., Sharma, R. K., Dizhoor, A. M., and Yamazaki, A. (1999) J. Biol. Chem. 274, 15547-15555). We have found that the Ca(2+)-loaded GCAP-2 monomer undergoes reversible dimerization upon dissociation of Ca(2+). The ability of GCAP-2 and its several mutants to activate retGC in vitro correlates with their ability to dimerize at low free Ca(2+) concentrations. A constitutively active GCAP-2 mutant E80Q/E116Q/D158N that stimulates retGC regardless of the free Ca(2+) concentrations forms dimers both in the absence and in the presence of Ca(2+). Several GCAP-2/neurocalcin chimera proteins that cannot efficiently activate retGC in low Ca(2+) concentrations are also unable to dimerize in the absence of Ca(2+). Additional mutation that restores normal activity of the GCAP-2 chimera mutant also restores its ability to dimerize in the absence of Ca(2+). These results suggest that dimerization of GCAP-2 can be a part of the mechanism by which GCAP-2 regulates the photoreceptor guanylyl cyclase. The Ca(2+)-free GCAP-1 is also capable of dimerization in the absence of Ca(2+), but unlike GCAP-2, dimerization of GCAP-1 is resistant to the presence of Ca(2+).  相似文献   

15.
16.
Guanylyl cyclases catalyze the formation of cGMP from GTP, but display extensive identity at the catalytic domain primary amino acid level with the adenylyl cyclases. The recent solving of the crystal structures of soluble forms of adenylyl cyclase has resulted in predictions of those amino acids important for substrate specificity. Modeling of a membrane-bound homodimeric guanylyl cyclase predicted the comparable amino acids that would interact with the guanine ring. Based on these structural data, the replacement of three key residues in the heterodimeric form of soluble guanylyl cyclase has led to a complete conversion in substrate specificity. Furthermore, the mutant enzyme remained fully sensitive to sodium nitroprusside, a nitric oxide donor.  相似文献   

17.
The particulate form of guanylyl cyclase from bovine rod outer segments has been solubilized and purified to near homogeneity by a combination of liquid chromatography and native gel electrophoresis. The procedure enriches enzyme activity 6700-fold from rod outer segment extracts to a final specific activity of 17.5 mumol/min per mg (when assayed with Mn-GTP as substrate). Purified preparations of guanylyl cyclase contain a single glycoprotein with an apparent molecular mass of 60,000 Da and a native isoelectric point of 7.6. Although crude or partially purified enzyme activity is modulated by sub-micromolar concentrations of Ca2+, the fully purified enzyme is insensitive to this cation. However, the purified enzyme remains sensitive to nitrovasodilators, being stimulated over 10-fold by sodium nitroprusside. These data suggest that retinal rods contain a unique isoform of guanylyl cyclase.  相似文献   

18.
Nitric oxide (NO) mediates intercellular signaling through activation of its receptor, soluble guanylyl cyclase (sGC), leading to elevation of intracellular guanosine 3′,5′-cyclic monophosphate (cGMP) levels. Through this signal transduction pathway, NO regulates a diverse range of physiological effects, from vasodilatation and platelet disaggregation to synaptic plasticity. Measurement of sGC activity has traditionally been carried out using end-point assays of cGMP accumulation or by transfection of cells with “detector” proteins such as fluorescent proteins coupled to cGMP binding domains or cyclic nucleotide gated channels. Here we report a simpler approach: the use of a fluorescently labeled substrate analog, mant-GTP (2′-O-(N-methylanthraniloyl) guanosine 5′-triphosphate), which gives an increase in emission intensity after enzymatic cyclization to mant-cGMP. Activation of purified recombinant sGC by NO led to a rapid rise in fluorescence intensity within seconds, reaching a maximal 1.6- to 1.8-fold increase above basal levels. The sGC inhibitor, ODQ (1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one), eliminated the fluorescence increase due to NO, and the synergistic activator of sGC, BAY 41-2272 (3-(4-amino-5-cyclopropylpyrimidin-2-yl)-1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine), increased the rate at which the maximal fluorescence increase was attained. High-performance liquid chromatography (HPLC) confirmed the formation of mant-cGMP product. This real-time assay allows the progress of purified sGC activation to be quantified precisely and, with refinement, could be optimized for use in a cellular environment.  相似文献   

19.
Guanylyl cyclase (GC) plays a central role in the responses of vertebrate rod and cone photoreceptors to light. cGMP is an internal messenger molecule of vertebrate phototransduction. Light stimulates hydrolysis of cGMP, causing the closure of cGMP-dependent cation channels in the plasma membranes of photoreceptor outer segments. Light also lowers the concentration of intracellular free Ca(2+) and by doing so it stimulates resynthesis of cGMP by guanylyl cyclase. The guanylyl cyclases that couple Ca(2+) to cGMP synthesis in photoreceptors are members of a family of transmembrane guanylyl cyclases that includes atrial natriuretic peptide receptors and the heat-stable enterotoxin receptor. The photoreceptor membrane guanylyl cyclases, RetGC-1 and RetGC-2 (also referred to as GC-E and GC-F), are regulated intracellularly by two Ca(2+)-binding proteins, GCAP-1 and GCAP-2. GCAPs bind Ca(2+) at three functional EF-hand structures. Several lines of biochemical evidence suggest that guanylyl cyclase activator proteins (GCAPs) bind constitutively to an intracellular domain of RetGCs. In the absence of Ca(2+) GCAP stimulates and in the presence of Ca(2+) it inhibits cyclase activity. Proper functioning of RetGC and GCAP is necessary not only for normal photoresponses but also for photoreceptor viability since mutations in RetGC and in GCAP cause photoreceptor degeneration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号