首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We examined the alterations in 20S proteasome homeostasis, protein oxidation, and cell viability that occur during the stationary phase or chronological model of yeast aging. Data in this report demonstrate that proteasome subunit expression is increased, proteasome composition is altered, and levels of individual proteasome proteolytic activities are elevated during stationary phase-induced aging in Saccharomyces cerevisiae. Despite such alterations, a progressive loss of proteasome-mediated protein degradation and a significant increase in protein oxidation were observed in cells maintained under stationary phase conditions. Deletion of UMP1, a gene necessary for 20S proteasome biogenesis, had no effect on cellular viability under normal growth conditions, but impaired the ability of cells to survive under stationary phase conditions. During stationary phase, the levels of oxidized protein increased more rapidly and to higher levels in the mutant lacking UMP1 than in the wild-type cells. Taken together, these data implicate a role for proteasome synthesis and altered 20S proteasome composition in maintaining viability during stationary phase, and demonstrate that even with these modifications a gradual loss of proteasome-mediated protein degradation occurs during stationary phase-induced aging. These data also suggest a role for impaired proteasome-mediated protein degradation in increased protein oxidation and cell death observed during the aging of eukaryotic cells.  相似文献   

2.
Geobacter sulfurreducens exists in the subsurface and has been identified in sites contaminated with radioactive metals, consistent with its ability to reduce metals under anaerobic conditions. The natural state of organisms in the environment is one that lacks access to high concentrations of nutrients, namely electron donors and terminal electron acceptors (TEAs). Most studies have investigated G. sulfurreducens under high-nutrient conditions or have enriched for it in environmental systems via acetate amendments. We replicated the starvation state through long-term batch culture of G. sulfurreducens, where both electron donor and TEA were scarce. The growth curve revealed lag, log, stationary, death, and survival phases using acetate as electron donor and either fumarate or iron(III) citrate as TEA. In survival phase, G. sulfurreducens persisted at a constant cell count for as long as 23 months without replenishment of growth medium. Geobacter sulfurreducens demonstrated an ability to acquire a growth advantage in stationary-phase phenotype (GASP), with strains derived from subpopulations from death- or survival phase being able to out-compete mid-log-phase populations when co-cultured. The molecular basis for GASP was not because of any detectable mutation in the rpoS gene (GSU1525) nor because of a mutation in a putative homolog to Escherichia coli lrp, GSU3370.  相似文献   

3.
The appearance of growth advantage in stationary phase or GASP was originally detected in Escherichia coli. The presence of this phenotype in other enterobacteria such as Enterobacter cloacae, Salmonella typhimurium, Providencia stuartii and Shigella dysenteriae is described in this work. E. cloacae GASP strains presented lower levels of RpoS than the parental strain, although no mutation in the gene or its promoter was detected. This work offers evidence of GASP rpoS-independent pathways as GASP was also acquired in knock-out rpoS E. cloacae and E. coli strains.  相似文献   

4.
Yeast lacking mitochondrial superoxide dismutase (MnSOD) display shortened stationary-phase survival and provide a good model system for studying mitochondrial oxidative damage. We observed a marked decrease in respiratory function preceding stationary-phase death of yeast lacking MnSOD (sod2Delta). Agents (mitochondrial inhibitors) that are known to increase or decrease superoxide production in submitochondrial particles affected stationary-phase survival in a manner inversely correlated with their effects on superoxide production, implicating superoxide in this mitochondrial disfunction. Similar but less-dramatic effects were observed in wild-type yeast. The activities of certain mitochondrial enzymes were particularly affected. In sod2Delta yeast the activity of aconitase, a 4Fe-4S-cluster-containing enzyme located in the matrix, was greatly and progressively decreased as the cells established stationary phase. Succinate dehydrogenase activity also decreased in MnSOD mutants; cytochrome oxidase and ATPase activities did not. Aconitase could be reactivated by addition of materials required for cluster assembly (Fe3+ and a sulfur source), both in extracts and in vivo, indicating that inactivation of the enzyme was by disassembly of the cluster. Our results support the conclusion that superoxide is generated in the mitochondria in vivo and under physiological conditions and that MnSOD is the primary defense against this toxicity. When the balance between superoxide generation and MnSOD activity is disrupted, superoxide mediates iron release from mitochondrial iron-sulfur clusters, leading first to loss of mitochondrial function and then to death, independently of mtDNA damage. These results raise the possibility that similar processes may occur in higher eukaryotes.  相似文献   

5.
The cold shock response in bacteria involves the expression of low-molecular weight cold shock proteins (CSPs) containing a nucleic acid-binding cold shock domain (CSD), which are known to destabilize secondary structures on mRNAs, facilitating translation at low temperatures. Caulobacter crescentus cspA and cspB are induced upon cold shock, while cspC and cspD are induced during stationary phase. In this work, we determined a new coding sequence for the cspC gene, revealing that it encodes a protein containing two CSDs. The phenotypes of C. crescentus csp mutants were analyzed, and we found that cspC is important for cells to maintain viability during extended periods in stationary phase. Also, cspC and cspCD strains presented altered morphology, with frequent non-viable filamentous cells, and cspCD also showed a pronounced cell death at late stationary phase. In contrast, the cspAB mutant presented increased viability in this phase, which is accompanied by an altered expression of both cspC and cspD, but the triple cspABD mutant loses this characteristic. Taken together, our results suggest that there is a hierarchy of importance among the csp genes regarding stationary phase viability, which is probably achieved by a fine tune balance of the levels of these proteins.  相似文献   

6.
Crl stimulates RpoS activity during stationary phase   总被引:9,自引:2,他引:7  
  相似文献   

7.
The stationary phase survival protein SurE is a metal ion-dependent phosphatase distributed among eubacteria, archaea, and eukaryotes. In Escherichia coli, SurE has activities as nucleotidase and exopolyphosphatase, and is thought to be involved in stress response. However, its physiological role and reaction mechanism are unclear. We report here the crystal structures of the tetramer of SurE from Thermus thermophilus HB8 (TtSurE) both alone and crystallized with Mn(2+) and substrate AMP. In the presence of Mn(2+) and AMP, differences between the protomers were observed in the active site and in the loop located near the active site; AMP-bound active sites with the loops in a novel open conformation were found in the two protomers, and AMP-free active sites with the loops in a conventional closed conformation were found in the other two protomers. The two loops in the open conformation are entwined with each other, and this entwining is suggested to be required for enzymatic activity by site-directed mutagenesis. TtSurE exists as an equilibrium mixture of dimer and tetramer in solution. The loop-entwined structure indicates that SurE acts as a tetramer. The structural features and the absence of negative cooperativity imply the half-of-the-sites reactivity mechanism resulting from a pre-existing tendency toward structural asymmetry.  相似文献   

8.
In addition to the previously characterized pyruvate oxidase PoxB, the Lactobacillus plantarum genome encodes four predicted pyruvate oxidases (PoxC, PoxD, PoxE, and PoxF). Each pyruvate oxidase gene was individually inactivated, and only the knockout of poxF resulted in a decrease in pyruvate oxidase activity under the tested conditions. We show here that L. plantarum has two major pyruvate oxidases: PoxB and PoxF. Both are involved in lactate-to-acetate conversion in the early stationary phase of aerobic growth and are regulated by carbon catabolite repression. A strain devoid of pyruvate oxidase activity was constructed by knocking out the poxB and poxF genes. In this mutant, acetate production was strongly affected, with lactate remaining the major end product of either glucose or maltose fermentation. Notably, survival during the stationary phase appeared to be dramatically improved in the poxB poxF double mutant.  相似文献   

9.
The luminescence signal of luxAB-encoded bacterial luciferase strongly depends on the metabolic state of the host cell, which restricts the use of this reporter system to metabolically active bacteria. Here we show that in stationary-phase cells of Lactococcus lactis, detection of luciferase is significantly improved by the addition of riboflavin or flavin mononucleotide to whole-cell assay systems.  相似文献   

10.
The aim of this work was the functional and proteomic analysis of a mutant, W3110 Bgl+/10, isolated from a batch culture of an Escherichia coli K‐12 strain maintained at room temperature without addition of nutrients for 10 years. When the mutant was evaluated in competition experiments in co‐culture with the wild‐type, it exhibited the growth advantage in stationary phase (GASP) phenotype. Proteomes of the GASP mutant and its parental strain were compared by using a 2DE coupled with MS approach. Several differentially expressed proteins were detected and many of them were successful identified by mass spectrometry. Identified expression‐changing proteins were grouped into three functional categories: metabolism, protein synthesis, chaperone and stress responsive proteins. Among them, the prevalence was ascribable to the “metabolism” group (72%) for the GASP mutant, and to “chaperones and stress responsive proteins” group for the parental strain (48%).  相似文献   

11.
The expression of some Saccharomyces cerevisiae genes is induced as cells enter stationary phase. Their mRNAs are translated during a period in the growth cycle when the translational apparatus is relatively inert, thereby raising the possibility that these mRNAs compete effectively for a limiting pool of translation factors. To test this idea, the translation of mRNAs carrying different 5′-leaders was compared during exponential growth and after entry into stationary phase upon glucose starvation. Closely related sets of lacZ mRNAs, carrying 5′-leaders from the PYK1, PGK1, RpL3, Rp29, HSP12, HSP26 or THI4 mRNAs, were studied. These mRNAs displayed differing translational efficiencies during exponential growth, but their relative translatabilities were not significantly affected by entry into stationary phase, indicating that they compete just as effectively under these conditions. Polysome analysis revealed that the wild-type PYK1, ACT1 and HSP26 mRNAs are all translated efficiently during stationary phase, when the translational apparatus is relatively inert. Also, significant levels of the translation initiation factors eIF-2α, eIF-4E and eIF-4A were maintained during the growth cycle. These data are consistent with the idea that, while translational activity decreases dramatically during entry into stationary phase, yeast cells maintain excess translational capacity under these conditions. Received: 31 March 1998 / Accepted: 4 May 1998  相似文献   

12.
Dps, the nonspecific DNA-binding protein from starved cells, is the most abundant protein in stationary-phase Escherichia coli. Dps homologs are found throughout the bacteria and in at least one archaeal species. Dps has been shown to protect cells from oxidative stress during exponential-phase growth. During stationary phase, Dps organizes the chromosome into a highly ordered, stable nucleoprotein complex called the biocrystal. We show here that Dps is required for long-term stationary-phase viability under competitive conditions and that dps mutants have altered lag phases compared to wild-type cells. We also show that during stationary phase Dps protects the cell not only from oxidative stress but also from UV and gamma irradiation, iron and copper toxicity, thermal stress, and acid and base shock. The protective roles of Dps are most likely achieved through a combination of functions associated with the protein-DNA binding and chromosome compaction, metal chelation, ferroxidase activity, and regulation of gene expression.  相似文献   

13.
BACKGROUND: The rpoS, nlpD, pcm, and surE genes are among many whose expression is induced during the stationary phase of bacterial growth. rpoS codes for the stationary-phase RNA polymerase sigma subunit, and nlpD codes for a lipoprotein. The pcm gene product repairs damaged proteins by converting the atypical isoaspartyl residues back to L-aspartyls. The physiological and biochemical functions of surE are unknown, but its importance in stress is supported by the duplication of the surE gene in E. coli subjected to high-temperature growth. The pcm and surE genes are highly conserved in bacteria, archaea, and plants. RESULTS: The structure of SurE from Thermotoga maritima was determined at 2.0 A. The SurE monomer is composed of two domains; a conserved N-terminal domain, a Rossman fold, and a C-terminal oligomerization domain, a new fold. Monomers form a dimer that assembles into a tetramer. Biochemical analysis suggests that SurE is an acid phosphatase, with an optimum pH of 5.5-6.2. The active site was identified in the N-terminal domain through analysis of conserved residues. Structure-based site-directed point mutations abolished phosphatase activity. T. maritima SurE intra- and intersubunit salt bridges were identified that may explain the SurE thermostability. CONCLUSIONS: The structure of SurE provided information about the protein's fold, oligomeric state, and active site. The protein possessed magnesium-dependent acid phosphatase activity, but the physiologically relevant substrate(s) remains to be identified. The importance of three of the assigned active site residues in catalysis was confirmed by site-directed mutagenesis.  相似文献   

14.
15.
16.
During prolonged starvation, yeast cells enter a stationary phase (SP) during which the synthesis of many proteins is dramatically decreased. We show that a parallel decrease in proteasome-dependent proteolysis also occurs. The reduction in proteolysis is correlated with disassembly of 26S proteasome holoenzymes into their 20S core particle (CP) and 19S regulatory particle (RP) components. Proteasomes are reassembled, and proteolysis resumes prior to cell cycle reentry. Free 20S CPs are found in an autoinhibited state in which the N-terminal tails from neighboring alpha subunits are anchored by an intricate lattice of interactions blocking the channel that leads into the 20S CPs. By deleting channel gating residues of CP alpha subunits, we generated an "open channel" proteasome that exhibits faster rates of protein degradation both in vivo and in vitro, indicating that gating contributes to regulation of proteasome activity. This open channel mutant is delayed in outgrowth from SP and cannot survive following prolonged starvation. In summary, we have found that the ubiquitin-proteasome pathway can be subjected to global downregulation, that the proteasome is a target of this regulation, and that proteasome downregulation is linked to survival of SP cells. Maintaining high viability during SP is essential for evolutionary fitness, which may explain the extreme conservation of channel gating residues in eukaryotic proteasomes.  相似文献   

17.
It is common in attempts to extend the theory of evolution to culture to generalize from the causal basis of biological evolution, so that evolutionary theory becomes the theory of copying processes. Generalizing from the formal dynamics of evolution allows greater leeway in what kinds of things cultural entities can be, if they are to evolve. By understanding the phenomenon of cultural transmission in terms of coordinated phenotypic variability, we can have a theory of cultural evolution which allows us to avoid the various difficulties with the elaboration of informational entities such as the cultural replicator, or meme. Such an account is a boon to the project of evolutionary epistemology since it confirms the presumption in favor of the general adaptiveness of culture, illuminating rather than obscuring the inherent intimacy of our relationship to (e.g.) our ideas.  相似文献   

18.
Characterizing the metabolic phenotype: a phenotype phase plane analysis.   总被引:8,自引:0,他引:8  
Genome-scale metabolic maps can be reconstructed from annotated genome sequence data, biochemical literature, bioinformatic analysis, and strain-specific information. Flux-balance analysis has been useful for qualitative and quantitative analysis of metabolic reconstructions. In the past, FBA has typically been performed in one growth condition at a time, thus giving a limited view of the metabolic capabilities of a metabolic network. We have broadened the use of FBA to map the optimal metabolic flux distribution onto a single plane, which is defined by the availability of two key substrates. A finite number of qualitatively distinct patterns of metabolic pathway utilization were identified in this plane, dividing it into discrete phases. The characteristics of these distinct phases are interpreted using ratios of shadow prices in the form of isoclines. The isoclines can be used to classify the state of the metabolic network. This methodology gives rise to a "phase plane" analysis of the metabolic genotype-phenotype relation relevant for a range of growth conditions. Phenotype phase planes (PhPPs) were generated for Escherichia coli growth on two carbon sources (acetate and glucose) at all levels of oxygenation, and the resulting optimal metabolic phenotypes were studied. Supplementary information can be downloaded from our website (http://epicurus.che.udel.edu).  相似文献   

19.
A Tormo  M Almirn    R Kolter 《Journal of bacteriology》1990,172(8):4339-4347
Mutations in genes not required for exponential growth but essential for survival in stationary phase were isolated in an effort to understand the ability of wild-type Escherichia coli cells to remain viable during prolonged periods of nutritional deprivation. The phenotype of these mutations is referred to as Sur- (survival) and the genes are designated sur. The detailed analysis of one of these mutations is presented here. The mutation (surA1) caused by insertion of a mini-Tn10 element defined a new gene located near 1 min on the E. coli chromosome. It was located directly upstream of pdxA and formed part of a complex operon. Evidence is presented supporting the interpretation that cells harboring the surA1 mutation die during stationary phase while similar insertion mutations in other genes of the operon do not lead to a Sur- phenotype. Strains harboring surA1 had a normal doubling time in both rich and minimal medium, but cultures lost viability after several days in stationary phase. Analysis of revertants and suppressors of surA1, which arose after prolonged incubation in stationary phase, indicates that DNA rearrangements (excisions and duplications) occurred in cultures of this strain even when the viable-cell counts were below 10(2) cells per ml. Cells containing suppressing mutations then grew in the same culture to 10(8) cells per ml, taking over the population. The implications of these observations to our understanding of stationary-phase mutagenesis are discussed.  相似文献   

20.
Aims:  Starvation stress is a condition that nonstarter lactic acid bacteria (NSLAB) normally encounter. This study was aimed to investigate starvation-induced proteins in Lactobacillus casei during stationary growth phase.
Methods and Results:  The impact of carbohydrate starvation on L. casei GCRL163 was investigated using two different media (a modified de Man, Rogosa and Sharpe broth and a semi-defined medium). Cells were grown in the presence of excess lactose (1%) or starvation (0%) and differences in the patterns of one-dimensional sodum dodecyl sulfate–polyacrylamide gel electrophoresis and two-dimensional electrophoresis of the cytosolic protein fractions were investigated. Differentially regulated proteins were identified by MALDI-TOF/TOF mass spectrometry. Many differentially regulated proteins were enzymes of various metabolic pathways involved in carbohydrate metabolism to yield energy. Differences in protein expression were also observed in the two culture conditions tested in this experiment.
Conclusion:  Numerous glycolytic enzymes were differentially regulated under lactose starvation. The differential expression of these glycolytic enzymes suggests a potential survival strategy under harsh growth conditions (i.e. lactose starvation).
Significance and Impact of the Study:  This paper reports improved understanding of stress responses and survival mechanism of NSLAB under lactose-depleted cheese-ripening condition. This knowledge of how NSLAB bacteria adapt to lactose starvation could be applied to predict the performances of bacteria in other industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号