首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The genes encoding two vanadium-binding proteins, vanabin1 and vanabin2, from a vanadium-rich ascidian, Ascidia sydneiensis samea, were recently identified and cloned (T. Ueki, T. Adachi, S. Kawano, M. Aoshima, N. Yamaguchi, K. Kanamori, and H. Michibata, Biochim. Biophys. Acta 1626:43-50, 2003). The vanabins were found to bind vanadium(IV), and an excess of copper(II) ions inhibited the binding of vanadium(IV) to the vanabins in vitro. In this study, we constructed Escherichia coli strains that expressed vanabin1 or vanabin2 fused to maltose-binding protein (MBP) in the periplasmic space. We found that both strains accumulated about twenty times more copper(II) ions than the control BL21 strain, while no significant accumulation of vanadium was observed. The strains expressing either MBP-vanabin1 or MBP-vanabin2 absorbed approximately 70% of the copper ions in the medium to which 10 micro M copper (II) ions were initially added. The MBP-vanabin1 and MBP-vanabin2 protein expressed in the periplasm bound to copper ions at a copper:protein molar ratio of 8:1 and 5:1, respectively, but MBP did not bind to copper ions. These data showed that the metal-binding proteins vanabin1 and vanabin2 bound copper ions directly and enhanced the bioaccumulation of copper ions by E. coli.  相似文献   

2.
Since the beginning of the last century, it has been known that ascidians accumulate high levels of a transition metal, vanadium, in their blood cells, although the mechanism for this curious biological function remains unknown. Recently, we identified three vanadium-binding proteins (vanabins), previously denoted as vanadium-associated proteins (VAPs) [Zool. Sci. 14 (1997) 37], from the cytoplasm fraction of vanadium-containing blood cells (vanadocytes) of the vanadium-rich ascidian Ascidia sydneiensis samea. Here, we describe the cloning, expression, and analysis of the metal-binding ability of vanabins. Recombinant proteins of two independent but related vanabins, vanabin1 and vanabin2, bound to 10 and 20 vanadium(IV) ions with dissociation constants of 2.1x10(-5) and 2.3x10(-5) M, respectively. The binding of vanadium(IV) to these vanabins was inhibited by the addition of copper(II) ions, but not by magnesium(II) or molybdate(VI) ions. Vanabins are the first proteins reported to show specific binding to vanadium ions; this should provide a clue to resolving the problem regarding the selective accumulation of vanadium in ascidians.  相似文献   

3.
Some species in the family Ascidiidae accumulate vanadium at concentrations in excess of 350 mM, which corresponds to about 107 times higher than that in seawater. In these species signet ring cells, with a single huge vacuole in which vanadium ion is contained, function as vanadium-accumulating cells, vanadocytes. To investigate the mechanism underlying this phenomenon, we performed an expressed sequence tag (EST) analysis of a complementary DNA library from vanadocytes of a vanadium-rich ascidian, Ascidia sydneiensis samea. We determined the nucleotide sequences of 1000 ESTs and performed a BLAST analysis against the SwissProt database. We found 93 clones of metal-related gene homologues, including the ferritin heavy subunit, hemocyanin, and metallothionein. Two ESTs, in particular, exhibited significant similarity to vanabins that have been extracted from A. sydneiensis samea blood cells as low molecular weight vanadium-binding proteins. We have named the genes encoding these ESTs vanabin3 and vanabin4. Immobilized metal ion affinity chromatography revealed that these novel vanabin homologues bind vanadium(IV) ions.  相似文献   

4.
5.
Ascidians are known to accumulate extremely high levels of vanadium in their blood cells (up to 350 mM). The branchial sac and the intestine are thought to be the first tissues to contact the outer environment and absorb vanadium ions. The concentration of vanadium in the branchial sac and the intestine of the most vanadium-rich ascidian Ascidia gemmata were determined to be 32.4 and 11.9 mM, respectively. Using an expressed sequence tag (EST) analysis of a cDNA library from the intestine of A. gemmata, we determined 960 ESTs and found 55 clones of metal-related gene orthologs, 6 redox-related orthologs, and 18 membrane transporter orthologs. Among them, two genes, which exhibited significant similarity to the vanadium-binding proteins of other vanadium-rich ascidian species, were designated AgVanabin1 and AgVanabin2. Immobilized metal ion affinity chromatography revealed that recombinant AgVanabin1 bound to metal ions with an increasing affinity for Cu(II) > Zn(II) > Co(II) and AgVanabin2 bound to metal ions with an increasing affinity for Cu(II) > Fe(III) > V(IV). To examine the use of AgVanabins for a metal absorption system, we constructed Escherichia coli strains that expressed AgVanabin1 or AgVanabin2 fused to maltose-binding protein and secreted into the periplasmic space. We found that the strain expressing AgVanabin2 accumulated about 13.5 times more Cu(II) ions than the control TB1 strain. Significant accumulation of vanadium was also observed in the AgVanabin2-expressing strain as seen by a 1.5-fold increase.  相似文献   

6.
Myelin basic protein (MBP) dissociated from brain myelin membranes when they were incubated (37 degrees C; pH 7.4) at physiological ionic strength. Zinc ions inhibited, and calcium promoted, this process. Protease activity in the membrane preparations cleaved the dissociated MBP into both small (less than 4 kilodaltons) and large (greater than 8 kilodaltons) fragments. The latter were detected, together with intact MBP, by gel electrophoresis of incubation media. Zinc ions appeared to act in two distinct processes. In the presence or absence of added CaCl2, zinc ions in the range 0.1-1 mM inhibited MBP-membrane dissociation. This process was relatively insensitive to heat and Zn2+ could be substituted by either copper (II) or cobalt (II) ions. A second effect was evident only in the presence of added calcium ions, when lower concentrations of Zn2+ (less than 0.1 mM) inhibited MBP-membrane dissociation and the accumulation of intact MBP in incubation media. This process was heat sensitive and only copper (II), but not cobalt (II), ions could replace Zn2+. To determine whether endogenous zinc in myelin membranes is bound to MBP, preparations were solubilised in buffers containing Triton X-100/2 mM CaCl2 and subjected to gel filtration. Endogenous zinc, as indicated by a dithizone-binding method, eluted with fractions containing both MBP and proteolipid protein (PLP). Thus, one means whereby zinc stabilises association of MBP with brain myelin membranes may be by promoting its binding to PLP.  相似文献   

7.
The 42 amino acid Alzheimer's Abeta peptide has been produced in E. coli as a soluble fusion to maltose binding protein (MBP). Affinity purification on amylose columns of MBP-Abeta and MBP led to the recovery of proteins at purities that were suited for physicochemical analyses. MBP-Abeta was able to bind approximately 2 mole equivalents of copper or 4 mole equivalents of zinc, while MBP alone bound negligible amounts of zinc or copper. We conclude that Abeta can bind 2 copper or 4 zinc ions in its fusion format. Because MBP-Abeta is a convenient protein to work with, this system is well suited for further studies on the structure of Abeta and its interactions with metals.  相似文献   

8.
HC-Pro is a helper component-proteinase which acts as a multifunctional protein in the potyviral life cycle. Apart from its proteolytic activity, HC-Pro has the capacity to bind duplex small RNAs (sRNAs). To investigate HC-Pro-mediated sRNA binding in vitro, high amounts of purified protein are required. For this purpose, the Zucchini yellow mosaic virus (ZYMV) HC-Pro was expressed as a fusion with hexa-histidine (6xHis) or maltose-binding protein (MBP) in Escherichia coli. The expressed fusion proteins were purified by affinity chromatography. 6xHis:HC-Pro and MBP:HC-Pro were partially soluble. Electrophoretic mobility-shift assays demonstrated that only MBP:HC-Pro exhibits the sRNA binding activity. The recombinant HC-Pro bound 21 bp siRNAs as well as 19 bp and 24 bp siRNAs. A point mutation in the highly conserved FRNK box produced the HC-ProFINK protein, previously shown to be associated with reduced viral symptoms and weak sRNA binding. In this study, sRNA binding of the MBP:HA-HC-ProFINK was not detectable. The high yield of purified HC-Pro offers the possibility to study the biochemistry of the protein in detail.  相似文献   

9.
Vanadium-binding proteins, or Vanabins, have recently been isolated from the vanadium-rich ascidian, Ascidia sydneiensis samea. Recent reports indicate that Vanabin2 binds twenty V(IV) ions at pH 7.5, and that it has a novel bow-shaped conformation. However, the role of Vanabin2 in vanadium accumulation by the ascidian has not yet been determined. In the present study, the effects of acidic pH on selective metal binding to Vanabin2 and on the secondary structure of Vanabin2 were examined. Vanabin2 selectively bound to V(IV), Fe(III), and Cu(II) ions under acidic conditions. In contrast, Co(II), Ni(II), and Zn(II) ions were bound at pH 6.5 but not at pH 4.5. Changes in pH had no detectable effect on the secondary structure of Vanabin2 under acidic conditions, as determined by circular dichroism spectroscopy, and little variation in the dissociation constant for V(IV) ions was observed in the pH range 4.5–7.5, suggesting that the binding state of the ligands is not affected by acidification. Taken together, these results suggest that the reason for metal ion dissociation upon acidification is attributable not to a change in secondary structure but, rather, that it is caused by protonation of the amino acid ligands that complex with V(IV) ions.  相似文献   

10.
Potentiometric and spectroscopic (UV-Vis, CD and EPR) studies were carried out on copper(II) complexes with chicken prion protein N-terminal fragments, Ac-(PHNPGY)4-NH2, and the mutated residue, Ac-(PHNPGF)4-NH2, to assess the role of tyrosine in the copper coordination. Both thermodynamic and spectroscopic results indicate that chicken prion fragments are not able to bind more than two copper ions and only with the involvement of side chain tyrosine groups. The prevailing complex shows one copper ion bound to four imidazole nitrogen atoms in the 1:1 metal to ligand ratio systems. The superoxide dismutase (SOD)-like activity of copper(II) complexes with the avian peptides and mammal analogue, Ac-(PHGGGWGQ)4-NH2, was also investigated by means of Pulse radiolysis. The copper(II) complexes with avian peptides do not display SOD-like activity, while very low activity has been detected for the copper(II) complexes with mammalian tetraoctarepeat.  相似文献   

11.
Although the physiological function of the prion protein remains unknown, in vitro experiments suggest that the protein may bind copper (II) ions and play a role in copper transport or homoeostasis in vivo. The unstructured N-terminal region of the prion protein has been shown to bind up to six copper (II) ions, with each of these ions co-ordinated by a single histidine imidazole and nearby backbone amide nitrogen atoms. Individually, these sites have micromolar affinities, which is weaker than would be expected of a true cuproprotein. In the present study, we show that with subsaturating levels of copper, different forms of co-ordination will occur, which have higher affinity. We have investigated the copper-binding properties of two peptides representing the known copper-binding regions of the prion protein: residues 57-91, which contains four tandem repeats of the octapeptide GGGWGQPH, and residues 91-115. Using equilibrium dialysis and spectroscopic methods, we unambiguously demonstrate that the mode of copper co-ordination in both of these peptides depends on the number of copper ions bound and that, at low copper occupancy, copper ions are co-ordinated with sub-micromolar affinity by multiple histidine imidazole groups. At pH 7.4, three different modes of copper co-ordination are accessible within the octapeptide repeats and two within the peptide comprising residues 91-115. The highest affinity copper (II)-binding modes cause self-association of both peptides, suggesting a role for copper (II) in controlling prion protein self-association in vivo.  相似文献   

12.
Maltose binding protein (MBP) is used in recombinant protein expression as an affinity and solubility tag. The monoclonal antibody B48 binds MBP tightly and has no cross‐reactivity to other proteins in an Escherichia coli lysate. This high level of specificity suggested that MBP contains an epitope that could prove useful as a purification and visualization tag for proteins expressed in E. coli. To discover the MBP epitope, a co‐crystal structure was determined for MBP bound to its antibody and four amino acids of MBP were identified as critical for the binding interaction. Fusions of various fragments of MBP to the glutathione S‐transferase protein were engineered in order to identify the smallest fragment still recognized by the α‐MBP antibody. Stabilization of the epitope via mutational engineering resulted in a minimized 14 amino‐acid tag.  相似文献   

13.
The C-terminal region of Escherichia coli SlyD is unstructured and extremely rich in potential metal-binding amino acids, especially in histidine residues. SlyD is able to bind two to seven nickel ions per molecule, in a variety of coordination geometries and coordination numbers. This protein contributes to the insertion of nickel into the hydrogenase precursor protein and it has a peptidyl-prolyl cis/trans-isomerase activity which can be regulated through nickel ions. This inspired us to undertake systematic studies on the coordination ability of two histidine-rich peptides from the C-terminus of the SlyD protein with nickel. Also, it is known that histidine-rich regions are part of a Cu2 + binding domain involved in copper uptake under conditions of metal starvation in vivo in other bacteria. For this reason we decided to examine the complex formation of Ac-AHGHVHGAHDHHHD-NH2 and Ac-GHGHDHGHEHG-NH2 fragments with copper ions, which are also reference metal ions in this study. Experiments were performed in a DMSO/water 30:70 solvent. The Ac-AHGHVHGAHDHHHD-NH2 and Ac-GHGHDHGHEHG-NH2 fragments were synthesized and their interactions with Ni2 + and Cu2 + ions were studied by potentiometric, mass spectrometric, UV-vis, CD, EPR, and NMR spectroscopic techniques in solution. The results show that the Ac-GHGHDHGHEHG-NH2 fragment forms equimolar complexes with both nickel and copper ions. At physiological pH, the metal ion is bound only through nitrogens from imidazole sidechain of histidine residues. On the contrary, Ac-AHGHVHGAHDHHHD-NH2 binds 2 metal ions per molecule, at pH range 5 to 7, even if the 1:2 metal:peptide ratios were used. NMR studies indicate the involvement of all His residues in this pH-range in metal binding of the latter peptide. At higher pH, the stoichiometry changes to 1:1 and the His residues are displaced by amide nitrogens.  相似文献   

14.
Enteroaggregative strains of Escherichia coli, belonging to serotypes O44:H18 and O126:H27, were used to show that magnesium ions were essential for the adhesion of these enteroaggregative strains to HEp-2 cells. The removal of Mg2+ ions from culture media was correlated with the inability of strains to produce an outer membrane-associated protein of 18 kDa and a pellicle. It was concluded that magnesium ions were directly involved with the expression of an 18 kDa outer membrane-associated protein by strains of E. coli O126:H27 and O44:H18, and that the outer membrane-associated protein was involved in both HEp-2 adhesion and pellicle formation.  相似文献   

15.
C L Wang  P C Leavis  J Gergely 《Biochemistry》1984,23(26):6410-6415
The stepwise addition of Tb3+ to calmodulin yields a large tyrosine-sensitized Tb3+ luminescence enhancement as the third and fourth ions bind to the protein [Wang, C.-L. A., Aquaron, R. R., Leavis, P. C., & Gergely, J. (1982) Eur. J. Biochem. 124, 7-12]. Since the only tyrosine residues in calmodulin are located within binding sites III and IV, these results suggest that Tb3+ binds first to sites I and II. Recent NMR studies have provided evidence that Ca2+, on the other hand, binds preferentially to sites III and IV. Kinetic studies using a stopped-flow apparatus also show that the preferential binding of Ca2+ and lanthanide ions is different. Upon rapid mixing of 2Ca-calmodulin with two Tb3+ ions, there was a small and rapid tyrosine fluorescence change, but no Tb3+ luminescence was observed, indicating that Tb3+ binds to sites I and II but not sites III and IV. When two Tb3+ ions are mixed with 2Dy-calmodulin, Tb3+ luminescence rises rapidly as Tb3+ binds to the empty sites III and IV, followed by a more gradual decrease (k = 0.4 s-1 as the ions redistribute themselves over the four sites. These results indicate that (i) both Tb3+ and Dy3+ prefer binding to sites I and II of calmodulin and (ii) the binding of Tb3+ to calmodulin is not impeded by the presence of two Ca2+ ions initially bound to the protein. Thus, the Ca2+ and lanthanide ions must exhibit opposite preferences for the four sites of calmodulin: sites III and IV are the high-affinity sites for Ca2+, whereas Tb3+ and Dy3+ prefer sites I and II.  相似文献   

16.
Metallothioneins (MTs) are metal binding proteins that are rich in cysteine residues constituting 10–30 % of the total protein, and in which the thiol groups bind to the metal ions. The increasing amount of metal ions in the medium have shown increased production of MTs by different organisms such as bacteria, protozoa and mammals like humans. PMCd1 is the first gene ever discovered in Paramecium, a ciliated protozoan, that could produce this MT in response to cadmium. In this study the PMCd1syn gene has been cloned in pET41a expression vector and expressed in an Escherichia coli BL21-codonplus strain for the first time. Since the gene PMCd1 amplified from Paramecium contained 10 codons, which could act as stop codons during expression in E. coli, this gene of 612 bps was synthesized to substitute these (stop) codons for the Paramecium sp. specific amino acids. For stability of the expressed protein, glutathione-S-transferase gene was fused with PMCd1syn gene and coexpressed. The cells expressing PMCd1syn demonstrated increased accumulation of cadmium. This is the first report of cadmium MT protein expressed from Paramecium species, particularly from synthetic MT gene (PMCd1syn). This fusion protein, the molecular weight of which has been confirmed to be 53.03 kDa with MALDI analysis, is rich in cysteine residues, and has been shown for the first time in this ciliate to bind to and sequester Cd2+-ions.  相似文献   

17.
A family of copolymer hydrogels containing different mass percentages of vinylimidazole, acrylamide and N,N′-methylenebisacrylamide were used to bind copper(II) ions. The resultant copper-loaded gels demonstrated spectroscopic features that indicated copper was bound in a distorted square planar geometry. The hydrolysis activity of these the most active of these systems towards bis(3-nitrophenyl)phosphate at pH 8 was 2.78 × 10−6 s−1, five orders of magnitude greater than the uncatalyzed reaction. While these systems obey Michaelis-Menten kinetics, they also subject both competitive and non-competitive inhibition from excess substrate and excess hydroxide due to constraints based in the coordination geometry of the copper(II) active sites.  相似文献   

18.
Tetrahydrofuran monooxygenase (Thm) catalyzes the NADH-and oxygen-dependent hydroxylation of tetrahydrofuran to 2-hydroxytetrahydrofuran. Thm is composed of a hydroxylase enzyme, a regulatory subunit, and an oxidoreductase named ThmD. ThmD was expressed in Escherichia coli as a fusion to maltose-binding protein (MBP) and isolated to homogeneity after removal of the MBP. Purified ThmD contains covalently bound FAD, [2Fe-2S] center, and was shown to use ferricyanide, cytochrome c, 2,6-dichloroindophenol, and to a lesser extent, oxygen as surrogate electron acceptors. ThmD displays 160-fold preference for NADH over NADPH and functions as a monomer. The flavin-binding domain of ThmD (ThmD-FD) was purified and characterized. ThmD-FD displayed similar activity as the full-length ThmD and showed a unique flavin spectrum with a major peak at 463 nm and a small peak at 396 nm. Computational modeling and mutagenesis analyses suggest a novel three-dimensional fold or covalent flavin attachment in ThmD.  相似文献   

19.
Vanadium-binding proteins, or Vanabins, have recently been isolated from the vanadium-rich ascidian, Ascidia sydneiensis samea. Recent reports indicate that Vanabin2 binds twenty V(IV) ions at pH 7.5, and that it has a novel bow-shaped conformation. However, the role of Vanabin2 in vanadium accumulation by the ascidian has not yet been determined. In the present study, the effects of acidic pH on selective metal binding to Vanabin2 and on the secondary structure of Vanabin2 were examined. Vanabin2 selectively bound to V(IV), Fe(III), and Cu(II) ions under acidic conditions. In contrast, Co(II), Ni(II), and Zn(II) ions were bound at pH 6.5 but not at pH 4.5. Changes in pH had no detectable effect on the secondary structure of Vanabin2 under acidic conditions, as determined by circular dichroism spectroscopy, and little variation in the dissociation constant for V(IV) ions was observed in the pH range 4.5-7.5, suggesting that the binding state of the ligands is not affected by acidification. Taken together, these results suggest that the reason for metal ion dissociation upon acidification is attributable not to a change in secondary structure but, rather, that it is caused by protonation of the amino acid ligands that complex with V(IV) ions.  相似文献   

20.
Full-length cDNA for the pig metallothionein 1A (pMT1A) gene was synthesized based on the pig MT1A gene sequence in Genbank and cloned into the pMD18-T vector. After sequence analysis and structure prediction, the pMT1A gene was cloned into vector pET-32a (+) containing a His-tag. The recombinant pMT1A (rpMT1A) was expressed in a soluble form using Escherichia coli Rosetta? (DE3) plysS cells. Western blotting showed that the purified rpMT1A protein bound an anti-His-tag monoclonal antibody. Further investigation revealed that the rpMT1A protein showed high metal-binding activity with the divalent metal ions copper (Cu2+), zinc (Zn2+), and cadmium (Cd2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号