共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Regulation of ornithine decarboxylase during morphogenesis of Mucor racemosus 总被引:2,自引:5,他引:2 下载免费PDF全文
During the yeast-to-hyphae transition of the dimorphic phycomycete Mucor racemosus, there was a 30- to 50-fold increase in the activity of ornithine decarboxylase. Increased enzyme activity preceded the emergence of germ tubes and reached a maximum before conversion was completed. Subsequently, enzyme levels rapidly declined, despite the continuation of mycelial growth. Both putrescine and spermidine blocked the enzyme activity response. Protein synthesis was required for the increase in enzyme activity during morphogenesis. A combination of actinomycin D and netropsin inhibited ribonucleic acid synthesis but failed to inhibit the increase in ornithine decarboxylase activity. There was a twofold increase in the enzyme half-life during morphogenesis with either trichodermin or verrucarin to inhibit protein synthesis. 相似文献
4.
5.
P P McCann C Tardif P S Mamont 《Biochemical and biophysical research communications》1977,75(4):948-954
Low concentrations of putrescine (10?5M) blocked ornithine decarboxylase (ODC) in rat hepatoma (HTC) cells in culture, but the lower homologue of putrescine, 1, 3 diaminopropane, had no effect on ornithine decarboxylase at 10?5M. Higher concentrations of both putrescine and 1, 3 diaminopropane induced approximately the same amount of soluble ODC antizyme type inhibitor. When concentrated dialyzed supernatants of cells grown in 10?5M putrescine were treated with 250 mM NaCl and chromatographed on a superfine Sephadex G-75 column, both ODC and inhibitor were recovered. Spermidine, spermine and cadaverine also induced the inhibitor suggesting a low specificity of induction by amines. 相似文献
6.
Sanchez Mas J Martijnez-Esparza M Bastida CM Solano F Penafiel R Garcija-Borron JC 《Biochimica et biophysica acta》2002,1542(1-3):57-65
Ornithine decarboxylase (ODC) is the rate-limiting enzyme in the biosynthesis of polyamines, a family of cationic compounds required for optimal cell proliferation and differentiation. Within mammalian melanocytes, the expression of genes regulating cell growth and/or differentiation can be controlled by alpha-melanocyte-stimulating hormone (alphaMSH) and other melanogenesis modulating agents. In the B16 mouse melanoma model, alphaMSH stimulates melanogenesis by upmodulation of tyrosinase (tyr) activity, whereas the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) inhibits melanin synthesis. Therefore, we analyzed the regulation of ODC by these agents, as related to changes in the melanogenic pathway. Treatment of B16 cells with TPA or alphaMSH rapidly stimulated ODC activity. The effect was stronger for TPA and appeared mainly posttranslational. Irreversible inhibition of ODC with the active site-directed inhibitor alpha-difluoromethylornithine (DFMO) did not block TPA-mediated inhibition of tyr. Conversely, prolonged treatment of B16 cells with DFMO stimulated tyr activity by a posttranslational mechanism, probably requiring polyamine depletion. Combination treatment with alphaMSH and DFMO synergistically activated tyr. Therefore, ODC induction is not involved in the melanogenic response of B16 cells to alphaMSH. Rather, increased intracellular concentrations of polyamines following ODC induction might constitute a feedback mechanism to limit melanogenesis activation by alphaMSH. 相似文献
7.
The activity of ornithine decarboxylase is increased 20–500-fold in three situations in tadpole hepatic tissue. Two effects are thyroxine-induced. The first is transient and occurs 3–8 hr after the injection of thyroxine; the second occurs several days after the hormone injection; and the third effect is independent of exogenous thyroxine and occurs 2–10 hr after tadpoles which had been kept in water at 5° are transferred to water at 25°C. The latter effect, which is maximal if tadpoles are kept at 5° for 24 hr, is partially inhibited by cycloheximide. 相似文献
8.
《Experimental mycology》1987,11(4):270-277
Ornithine decarboxylase (ODC) from Mucor bacilliformis and Mucor rouxii was studied. Enzymatic activity was maximal at pH 7.2–7.4 and at 30°C. The Km was 0.17 mM for the M. bacilliformis enzyme. Putrescine was a competitive inhibitor of ODC with a Ki of 2–3 mM. Enzymatic activity was undetectable in sporangiospores but increased rapidly during the first stages of spore swelling, reaching the highest levels during germ tube or bud emergence, and then decreased. Incubation at 30°C inhibited spore germination in M. bacilliformis and prevented development of ODC activity. More ODC activity was present in mycelial than in yeast cells. Morphological transition of yeast cells into hyphae by an anaerobic-aerobic shift induced a rapid and transient increase in ODC activity. Similar results were obtained when the morphogenetic transformation of M. rouxii was induced by CO2 elimination in an anaerobic environment. Transfer of mycelial cells to anaerobiosis resulted in a rapid decrease in enzyme activity. Changes in ODC activity were accompanied by a change in the pool of polyamines. The possible role of ODC in growth and cell differentiation in Mucor is discussed. 相似文献
9.
Regulation of Saccharomyces cerevisiae ornithine decarboxylase expression in response to polyamine 总被引:4,自引:0,他引:4
W A Fonzi 《The Journal of biological chemistry》1989,264(30):18110-18118
10.
11.
12.
When spermidine, putrescine or 1,3-diaminopropane was injected (12.5 mumol/100 g body weight) into rats 1 h before thyrotropin, ornithine decarboxylase activity was increased by 75--150% over control levels. However, when greater than or equal to 75 mumol polyamine/100 g body weight was injected, thyrotropin-activated activity was inhibited by 70--95%. Multiple polyamine injections inhibited goitrogen-induced activity and gland weight increase by approx 35%. The polyamines also inhibited thyrotropin-activated rat thyroid ornithine decarboxylase in vitro in a dose-related fashion, with 50% inhibition occurring at 2--5 . 10(-4)M. The inhibition was not due to a direct effect on the enzyme. No stimulation was seen with low concentrations of polyamine. The polyamines had no effect on in vitro thyroid protein/RNA synthesis or glucose oxidation but had a biphasic effect on plasma membrane adenylate cyclase activity. A protein inhibitor to thyroid ornithine decarboxylase was generated in vivo by multiple injections of the polyamines into rats and in vitro by incubating bovine thyroid slices with 2--10 mM polyamine. The inhibitor was non-dialyzable, destroyed by boiling, and its formation was blocked in a dose-related fashion by cycloheximide. We conclude that: (1) thyroid ornithine decarboxylase is subject not only to positive control, but is also negatively regulated by its end-products, the polyamines, which induce a protein inhibitor to ornithine decarboxylase; (2) since gland growth is also inhibited under these conditions, the polyamine effect on thyroid ornithine decarboxylase may be biologically significant. 相似文献
13.
14.
Regulation of rat ornithine decarboxylase mRNA translation by its 5'-untranslated region 总被引:15,自引:0,他引:15
Ornithine decarboxylase (ODC), a key enzyme in polyamine biosynthesis, is a highly inducible protein whose expression involves a complex and variable array of regulatory mechanisms. We investigated the influence of the 5'-untranslated region (5'UTR) of the rat ODC mRNA on translation of the mRNA in a cell-free system and in cultured mammalian cells. ODC mRNA containing the full-length 5'UTR was translated in reticulocyte lysates at approximately 5% of the rate of mRNA containing no ODC 5' leader sequences. The complete 5'UTR inhibited expression of a heterologous gene product, human growth hormone, to the same extent in cultured mammalian cells. Furthermore, the 5'-most 130 bases of the rat ODC 5'UTR, a conserved G/C-rich region predicted to form a stable stem-loop structure (delta G = -68 kcal/mol), repressed translation to the same extent as the entire 5'UTR, both in the lysates and in intact cells. The 3'-most 160 bases of the 5'UTR, containing a small upstream open reading frame, decreased expression by 50-65% both in vitro and in intact cells, compared with controls lacking any ODC 5'UTR sequences. Mutation of the initiation codon AUG beginning this upstream open reading frame to GCG restored expression to rates equivalent to those seen in constructions containing no ODC 5'UTR sequences. We conclude that the rat ODC mRNA 5'UTR can inhibit translation of ODC mRNA both in vitro and in vivo, and that the predicted stem-loop structure at the 5' end of the 5'UTR is both necessary and sufficient for this inhibition. 相似文献
15.
Regulation of ornithine decarboxylase activity by putrescine and spermidine in rat liver 总被引:9,自引:0,他引:9
The marked enhancement of the activity of ornithine decarboxylase (EC 4.1.1.17) in rat liver at 4 h following partial hepatectomy or the treatment with growth hormone could be almost completely prevented by intraperitoneal administration of putrescine. A single injection of putrescine to partially hepatectomized rats caused a remarkably rapid decline in the activity of liver ornithine decarboxylase with an apparent half-life of only 30 min, which is almost as rapid as the decay of the enzyme activity after the administration of inhibitors of protein synthesis. Under similar conditions putrescine did not have any inhibitory effect on the activity of adenosylmethionine decarboxylase (EC 4.1.1.50) or tyrosine aminotransferase (EC 2.6.1.5). Spermidine given at the time of partial hepatectomy or 2 h later also markedly inhibited ornithine decarboxylase activity at 4 h after the operation and, in addition, also caused a slight inhibition of the activity of adenosylmethionine decarboxylase. 相似文献
16.
17.
Incubation of rat ovarian cell suspension with human choriogonadotropin (hCG) caused a marked enhancement of ornithine decarboxylase (EC 4.1.1.17) activity after a lag period of several hours. Even though ovarian ornithine decarboxylase could be induced in minimum essential medium by the hormone alone, supplementation of the medium with various sera greatly enhanced the stimulation of the enzyme activity. All the sera tested (human, fetal calf and horse) were able to stimulate ornithine decarboxylase activity even in the absence of hCG. Maximum stimulation of the enzyme activity by hCG and/or serum occurred in ovarian cell suspensions prepared from 30 to 33-day-old rats. There was a close correlation between the stimulation of ornithine decarboxylase activity and the accumulation fo cyclic AMP in response to the administration of the hormone (in the presence or absence of serum). However, while various sera alone markedly enhanced ovarian ornithine decarboxylase activity in vitro they, if anything, only marginally stimulated the accumulation of cyclic AMP and the secretion of progesterone in ovarian cells in the absence of gonadotropin. A similar dissociation of the stimulation of ornithine decarboxylase activity from the production of cyclic AMP and progesterone was likewise found when the ovarian cells were incubated in an enriched medium (M199) supplemented with albumin and lactalbumin hydrolysate in the absence of the hormone. Under these culture conditions ornithine decarboxylase activity was strikingly enhanced, greatly exceeding the stimulation obtained with various sera, while the accumulation of cyclic AMP and the secretion of progesterone remained virtually unchanged. Specific inhibition (up to 90%) of gonadotropin-induced ornithine decarboxylase activity by difluoromethyl ornithine or 1,3-diamino-2-propanol had little effect on the ability of the ovarian cells to respond to the hormone with increasing production of cyclic AMP and progesterone. While showing that rat ovarian ornithine decarboxylase can be induced in vitro by choriogonadotropin or various sera, our results indicate that the activation of the enzyme involves at least two different mechanisms: (i) One (in response to gonadotropin) involving a prior stimulation of cyclic AMP production, and (ii) another (in response to serum) that is not associated with increases in the accumulation of the cyclic nucleotide. 相似文献
18.
19.
20.
The translational control of ornithine decarboxylase (ODCase) by polyamines has been studied using a cellular as well as a cell-free system. A mutant L1210 cell line, in which ODCase represents 4-5% of all soluble protein synthesized, was isolated by stepwise selection for resistance to the ODCase inhibitor 2-difluoromethylornithine (DFMO). The exceptionally high expression of ODCase in these cells was due to amplification of the ODCase gene. When the cells were grown in the absence of DFMO, dramatic increases in cellular putrescine and spermidine levels occurred. These increases were accompanied by a rapid decrease in ODCase synthesis. The change in ODCase synthesis was not associated with an alteration in the amount of ODCase mRNA, demonstrating a translational control in these cells. The effects of polyamines on ODCase mRNA translation were also studied in rabbit reticulocyte lysates using mRNA isolated from the DFMO-resistant cells. Low concentrations of spermidine stimulated synthesis of ODCase and that of total protein, when added to gel-filtered lysates. Notably, optimal stimulation of ODCase synthesis was achieved at a spermidine concentration lower than that required for an optimal rate of total protein synthesis. Higher concentrations of spermidine were inhibitory, and their effects of ODCase synthesis were stronger than on protein synthesis in general, resulting in a decrease in the fraction of protein synthesis accounted for by ODCase. The present results demonstrate that at least part of the feedback regulation of ODCase exerted by the polyamines is due to direct inhibition of ODCase mRNA translation. 相似文献