首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Insights into the function of the Golgi complex have been provided by experiments performed with various inhibitors of membrane trafficking, such as the macrocyclic lactone brefeldin A (BFA), a compound that inhibits constitutive secretion, prevents the formation of coatomer-coated transport vesicles, and stimulates the retrograde movement of Golgi resident enzymes back to the ER. We show here that the structurally unrelated compound clofibrate, a peroxisome proliferator (PP) and hypolipidemic agent, also reversibly disrupts the morphological and functional integrity of the Golgi complex in a manner similar to BFA. In the presence of clofibrate, the forward transport of newly synthesized secretory proteins from the ER to the Golgi is dramatically inhibited. Moreover, clofibrate causes Golgi membranes to travel rapidly in a microtubule-dependent manner back to the ER, forming a hybrid ER–Golgi tubulovesicular membrane network. These affects appear to be independent of clofibrate's ability to stimulate the PP-activated receptor (PPAR) alpha pathway because other PPAR stimulators (DEHP, WY-14643) did not alter the Golgi complex or induce retrograde trafficking. These data suggest that PPAR alpha-independent, clofibrate-sensitive proteins participate in regulating Golgi-to-ER retrograde membrane transport, and, equally importantly, that clofibrate may be used as a pharmacological tool for investigating Golgi membrane dynamics.  相似文献   

2.
Recent studies have identified a novel lysophospholipid acyltransferase (LPAT) that is associated with the Golgi complex and that is sensitive to the previously characterized acyl-CoA cholesterol acyltransferase inhibitor, 2,2-methyl-N-(2,4,6-trimethoxyphenyl)dodecanamide (CI-976). Here we show that besides acting on exogenous lysophospholipid (LPL) substrates, the CI-976-sensitive LPAT is also capable of reacylating endogenous Golgi LPL substrates, preferentially lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE). Moreover, using exogenous substrates, we find that the CI-976-sensitive LPAT is capable of using a variety of fatty acyl-CoA donors ranging in chain length from 10 to 20 carbons. Additional characterization demonstrates that the CI-976-sensitive LPAT is ubiquitously expressed in rat tissues, is tightly associated with Golgi membranes, and has a pH optimum between pH 7.0 and 8.0. These studies further define a unique LPC/LPE-specific LPAT from Golgi membranes that likely has a novel function in membrane trafficking.  相似文献   

3.
Lipid-transfer proteins in membrane trafficking at the Golgi complex   总被引:5,自引:0,他引:5  
The Golgi complex (GC) represents the central junction for membrane trafficking. Protein and lipid cargoes continuously move through the GC in both anterograde and retrograde directions, departing to and arriving from diverse destinations within the cell. Nevertheless, the GC is able to maintain its identity and strict compartmentalisation, having a different composition in terms of protein and lipid content compared to other organelles. The discovery of coat protein complexes and the elucidation of their role in sorting cargo proteins into specific transport carriers have provided a partial answer to this phenomenon. However, it is more difficult to understand how relatively small and diffusible molecules like lipids can be concentrated in or excluded from specific subcellular compartments. The discovery of lipid-transfer proteins operating in the secretory pathway and specifically at the GC has shed light on one possible way in which this lipid compartmentalisation can be accomplished. The correct lipid distribution along the secretory pathway is of crucial importance for cargo protein sorting and secretion. This review focuses on what is now known about the putative and effective lipid-transfer proteins at the GC, and on how they affect the function and structure of the GC itself.  相似文献   

4.
The integrated interplay between proteins and lipids drives many key cellular processes, such as signal transduction, cytoskeleton remodelling and membrane trafficking. The last of these, membrane trafficking, has the Golgi complex as its central station. Not only does this organelle orchestrates the biosynthesis, transport and intracellular distribution of many proteins and lipids, but also its own function and structure is dictated by intimate functional and physical relationships between protein-based and lipid-based machineries. These machineries are involved in the control of the fundamental events that govern membrane traffic, such as in the budding, fission and fusion of transport intermediates, in the regulation of the shape and geometry of the Golgi membranes themselves, and, finally, in the generation of "signals" that can have local actions in the secretory system, or that may affect other cellular systems. Lipid-protein interactions rely on the abilities of certain protein domains to recognize specific lipids. These interactions are mediated, in particular, through the headgroups of the phospholipids, although a few of these protein domains are able to specifically interact with the phospholipid acyl chains. Recent evidence also indicates that some proteins and/or protein domains are more sensitive to the physical environment of the membrane bilayer (such as its curvature) than to its chemical composition.  相似文献   

5.
Previous studies have established a role for cytoplasmic phospholipase A(2) (PLA(2)) activity in tubule-mediated retrograde trafficking between the Golgi complex and the endoplasmic reticulum (ER). However, little else is known about how membrane tubule formation is regulated. This study demonstrates that isotetrandrine (ITD), a biscoclaurine alkaloid known to inhibit PLA(2) enzyme activation by heterotrimeric G-proteins, effectively prevented brefeldin A (BFA)-induced tubule formation from the Golgi complex and retrograde trafficking to the ER. In addition, ITD inhibited BFA-stimulated tubule formation from the trans-Golgi network and endosomes. ITD inhibition of the BFA response was potent (IC(50) approximately 10-20 microM) and rapid (complete inhibition with a 10-15-min preincubation). ITD also inhibited normal retrograde trafficking as revealed by the formation of nocodazole-induced Golgi mini-stacks at ER exit sites. Treatment of cells with ITD alone caused the normally interconnected Golgi ribbons to become fragmented and dilated, but cisternae were still stacked and located in a juxtanuclear position. These results suggest that a G-protein-binding PLA(2) enzyme plays a pivotal role in tubule mediated trafficking between the Golgi and the ER, the maintenance of the interconnected ribbons of Golgi stacks, and tubule formation from endosomes.  相似文献   

6.
Several large cytosolic protein complexes with multiple components have been proposed to play key roles in mediating or controlling membrane trafficking. Among these complexes, TRAPP, COG and GARP/VFT have been implicated in multiple steps of Golgi membrane trafficking. The importance of these complexes for Golgi function has been established using in vitro biochemical assays and yeast and mammalian somatic cell genetics. Furthermore, mutations in the genes encoding subunits of either TRAPP or the COG complex have been shown to be responsible for human genetic disorders. We here review recent studies exploring the structures and functions of these three oligomeric complexes.  相似文献   

7.
Rab GTPases are localized to various intracellular compartments and are known to play important regulatory roles in membrane trafficking. Here, we report the subcellular distribution and function of Rab14. By immunofluorescence and immunoelectron microscopy, both endogenous as well as overexpressed Rab14 were localized to biosynthetic (rough endoplasmic reticulum, Golgi, and trans-Golgi network) and endosomal compartments (early endosomal vacuoles and associated vesicles). Notably overexpression of Rab14Q70L shifted the distribution toward the early endosome associated vesicles, whereas the S25N and N124I mutants induced a shift toward the Golgi region. A similar, although less pronounced, redistribution of the transferrin receptor was also observed in cells overexpressing Rab14 mutants. Impairment of Rab14 function did not however affect transferrin uptake or recycling kinetics. Together, these findings suggest that Rab14 is involved in the biosynthetic/recycling pathway between the Golgi and endosomal compartments.  相似文献   

8.
Phospholipid remodeling involves phospholipase activity to remove acyl chains and acyltransferases to replace acyl chains. We here describe the characterization of a lysophospholipid acyltransferase in the opportunistic fungal pathogen, Candida albicans. Expression of this gene, C.a. LPT1, complemented the lysophospholipid acyltransferase defect in Saccharomyces cerevisiae strains lacking the homologous LPT1 gene. In vitro, lysophospholipid acyltransferase activity in these strains showed acyl-CoA substrate specificity, as measured by apparent Vmax/Km ratios, to be linolenoyl-CoA > oleoyl-CoA > linoleoyl-CoA > stearoyl-CoA. To address the physiological importance of C.a. LPT1, homozygous deletion strains were generated. Lysophospholipid acyltransferase activity with amine containing lysophospholipids was dramatically reduced while lysophosphatidylinositol and lysophosphatidic acid esterification was not significantly lowered. However, C.a. LPT1 over-expression yielded an increased amount of lysophosphatidic acyltransferase activity, suggesting a role in de novo phospholipid synthesis. LPT1 deletion strains showed slightly slowed growth in standard liquid media but no phenotype in media containing three antifungals that target sterols. To assess the role of C.a. Lpt1 in phospholipid remodeling, an in vivo, pulse–chase assay utilizing polysorbitan palmitate and mass spectrometry was developed. Cellular phospholipid composition became atypical with the provision of palmitate and gradually returned to the typical distribution when palmitate was removed. Deletion of C.a. LPT1 showed a modest yet significant effect on remodeling under these conditions.  相似文献   

9.
Intestinal brush border enzymes, including aminopeptidase N and sucrase-isomaltase, are associated with "rafts" (membrane microdomains rich in cholesterol and sphingoglycolipids). To assess the functional role of rafts in the present work, we studied the effect of cholesterol depletion on apical membrane trafficking in enterocytes. Cultured mucosal explants of pig small intestine were treated for 2 h with the cholesterol sequestering agent methyl-beta-cyclodextrin and lovastatin, an inhibitor of hydroxymethylglutaryl-coenzyme A reductase. The treatment reduced the cholesterol content >50%. Morphologically, the Golgi complex/trans-Golgi network was partially transformed into numerous 100-200 nm vesicles. By immunogold electron microscopy, aminopeptidase N was localized in these Golgi-derived vesicles as well as at the basolateral cell surface, indicating a partial missorting. Biochemically, the rates of the Golgi-associated complex glycosylation and association with rafts of newly synthesized aminopeptidase N were reduced, and less of the enzyme had reached the brush border membrane after 2 h of labeling. In contrast, the basolateral Na(+)/K(+)-ATPase was neither missorted nor raft-associated. Our results implicate the Golgi complex/trans-Golgi network in raft formation and suggest a close relationship between this event and apical membrane trafficking.  相似文献   

10.
The central organelle within the secretory pathway is the Golgi apparatus, a collection of flattened membranes organized into stacks. The cisternal maturation model of intra-Golgi transport depicts Golgi cisternae that mature from cis to medial to trans by receiving resident proteins, such as glycosylation enzymes via retrograde vesicle-mediated recycling. The conserved oligomeric Golgi (COG) complex, a multi-subunit tethering complex of the complexes associated with tethering containing helical rods family, organizes vesicle targeting during intra-Golgi retrograde transport. The COG complex, both physically and functionally, interacts with all classes of molecules maintaining intra-Golgi trafficking, namely SNAREs, SNARE-interacting proteins, Rabs, coiled-coil tethers, vesicular coats, and molecular motors. In this report, we will review the current state of the COG interactome and analyze possible scenarios for the molecular mechanism of the COG orchestrated vesicle targeting, which plays a central role in maintaining glycosylation homeostasis in all eukaryotic cells.  相似文献   

11.
The incorporation of unsaturated acyl chains into phospholipids during de novo synthesis is primarily mediated by the 1-acyl-sn-glycerol-3-phosphate acyltransferase reaction. In Saccharomyces cerevisiae, Slc1 has been shown to mediate this reaction, but distinct activity remains after its removal from the genome. To identify the enzyme that mediates the remaining activity, we performed synthetic genetic array analysis using a slc1Delta strain. One of the genes identified by the screen, LPT1, was found to encode for an acyltransferase that uses a variety of lysophospholipid species, including 1-acyl-sn-glycerol-3-phosphate. Deletion of LPT1 had a minimal effect on 1-acyl-sn-glycerol-3-phosphate acyltransferase activity, but overexpression increased activity 7-fold. Deletion of LPT1 abrogated the esterification of other lysophospholipids, and overexpression increased lysophosphatidylcholine acyltransferase activity 7-fold. The majority of this activity co-purified with microsomes. To test the putative role for this enzyme in selectively incorporating unsaturated acyl chains into phospholipids in vitro, substrate concentration series experiments were performed with the four acyl-CoA species commonly found in yeast. Although the saturated palmitoyl-CoA and stearoyl-CoA showed a lower apparent Km, the monounsaturated palmitoleoyl-CoA and oleoyl-CoA showed a higher apparent Vmax. Arachidonyl-CoA, although not abundant in yeast, also had a high apparent Vmax. Pulse-labeling of lpt1Delta strains showed a 30% reduction in [3H]oleate incorporation into phosphatidylcholine only. Therefore, Lpt1p, a member of the membrane-bound o-acyltransferase gene family, seems to work in conjunction with Slc1 to mediate the incorporation of unsaturated acyl chains into the sn-2 position of phospholipids.  相似文献   

12.
Recent studies have suggested that the functional organization of the Golgi complex is dependent on phospholipid remodeling enzymes. Here, we report the identification of an integral membrane lysophosphatidic acid–specific acyltransferase, LPAAT3, which regulates Golgi membrane tubule formation, trafficking, and structure by altering phospholipids and lysophospholipids. Overexpression of LPAAT3 significantly inhibited the formation of Golgi membrane tubules in vivo and in vitro. Anterograde and retrograde protein trafficking was slower in cells overexpressing LPAAT3 and accelerated in cells with reduced expression (by siRNA). Golgi morphology was also dependent on LPAAT3 because its knockdown caused the Golgi to become fragmented. These data are the first to show a direct role for a specific phospholipid acyltransferase in regulating membrane trafficking and organelle structure.  相似文献   

13.
The lipid metabolite diacylglycerol (DAG) is required for transport carrier biogenesis at the Golgi, although how cells regulate its levels is not well understood. Phospholipid synthesis involves highly regulated pathways that consume DAG and can contribute to its regulation. Here we altered phosphatidylcholine (PC) and phosphatidylinositol synthesis for a short period of time in CHO cells to evaluate the changes in DAG and its effects in membrane trafficking at the Golgi. We found that cellular DAG rapidly increased when PC synthesis was inhibited at the non-permissive temperature for the rate-limiting step of PC synthesis in CHO-MT58 cells. DAG also increased when choline and inositol were not supplied. The major phospholipid classes and triacylglycerol remained unaltered for both experimental approaches. The analysis of Golgi ultrastructure and membrane trafficking showed that 1) the accumulation of the budding vesicular profiles induced by propanolol was prevented by inhibition of PC synthesis, 2) the density of KDEL receptor-containing punctated structures at the endoplasmic reticulum-Golgi interface correlated with the amount of DAG, and 3) the post-Golgi transport of the yellow fluorescent temperature-sensitive G protein of stomatitis virus and the secretion of a secretory form of HRP were both reduced when DAG was lowered. We confirmed that DAG-consuming reactions of lipid synthesis were present in Golgi-enriched fractions. We conclude that phospholipid synthesis pathways play a significant role to regulate the DAG required in Golgi-dependent membrane trafficking.  相似文献   

14.
pH-independent retrograde targeting of glycolipids to the Golgi complex   总被引:2,自引:0,他引:2  
A small fractionof the molecules internalized by endocytosis reaches the Golgi complexthrough a retrograde pathway that is poorly understood. In the presentwork, we used bacterial toxins to study the retrograde pathway in Verocells. The recombinant B subunit of verotoxin 1B (VT1B)was labeled with fluorescein to monitor its progresswithin the cell by confocal microscopy. This toxin, which bindsspecifically to the glycolipid globotriaosyl ceramide, enteredendosomes by both clathrin-dependent and -independent pathways,reaching the Golgi complex. Once internalized, the toxin-receptor complex did not recycle back to the plasma membrane. The kinetics ofinternalization and the subcellular distribution of VT1B were virtuallyidentical to those of another glycolipid-binding toxin, the B subunitof cholera toxin (CTB). Retrograde transport of VT1B and CTB wasunaffected by addition of weak bases in combination with concanamycin,a vacuolar-type ATPase inhibitor. Ratio imaging confirmed that theseagents neutralized the luminal pH of the compartments where the toxinwas located. Therefore, the retrograde transport of glycolipids differsfrom that of proteins like furin and TGN38, which require an acidicluminal pH. Additional experiments indicated that the glycolipidreceptors of VT1B and CTB are internalized independently and not aspart of lipid "rafts" and that internalization is cytochalasininsensitive. We conclude that glycolipids utilize a unique,pH-independent retrograde pathway to reach compartments of thesecretory system and that assembly of F-actin is not required for thisprocess.

  相似文献   

15.
Copper is essential for a variety of important biological processes as a cofactor and regulator of many enzymes. Incorporation of copper into the secreted and plasma membrane-targeted cuproenzymes takes place in Golgi, a compartment central for normal copper homeostasis. The Golgi complex harbors copper-transporting ATPases, ATP7A and ATP7B that transfer copper from the cytosol into Golgi lumen for incorporation into copper-dependent enzymes. The Golgi complex also sends these ATPases to appropriate post-Golgi destinations to ensure correct Cu fluxes in the body and to avoid potentially toxic copper accumulation. Mutations in ATP7A or ATP7B or in the proteins that regulate their trafficking affect their exit from Golgi or subsequent retrieval to this organelle. This, in turn, disrupts the homeostatic Cu balance, resulting in copper deficiency (Menkes disease) or copper overload (Wilson disease). Research over the last decade has yielded significant insights into the enzymatic properties and cell biology of the copper ATPases. However, the mechanisms through which the Golgi regulates trafficking of ATP7A/7B and, therefore, maintains Cu homeostasis remain unclear. This review summarizes current data on the role of the Golgi in Cu metabolism and outlines questions and challenges that should be addressed to understand ATP7A and ATP7B trafficking mechanisms in health and disease.  相似文献   

16.
To induce toxicity, cholera toxin (CT) must first bind ganglioside G(M1) at the plasma membrane, enter the cell by endocytosis, and then traffic retrograde into the endoplasmic reticulum. We recently proposed that G(M1) provides the sorting motif necessary for retrograde trafficking into the biosynthetic/secretory pathway of host cells, and that such trafficking depends on association with lipid rafts and lipid raft function. To test this idea, we examined whether CT action in human intestinal T84 cells depends on membrane cholesterol. Chelation of cholesterol with 2-hydroxypropyl beta-cyclodextrin or methyl beta-cyclodextrin reversibly inhibited CT-induced chloride secretion and prolonged the time required for CT to enter the cell and induce toxicity. These effects were specific to CT, as identical conditions did not alter the potency or toxicity of anthrax edema toxin that enters the cell by another mechanism. We found that endocytosis and trafficking of CT into the Golgi apparatus depended on membrane cholesterol. Cholesterol depletion also changed the density and specific protein content of CT-associated lipid raft fractions but did not entirely displace the CT-G(M1) complex from these lipid raft microdomains. Taken together these data imply that cholesterol may function to couple the CT-G(M1) complex with raft domains and with other membrane components of the lipid raft required for CT entry into the cell.  相似文献   

17.
The Golgi apparatus was dramatically disassembled when cells were incubated in a low pH medium. The cis-Golgi disassembled quickly, extended tubules and spread to the periphery of cells within 30 min. In contrast, medial- and trans-Golgi were fragmented in significantly larger structures of smaller numbers at a slower rate and remained largely in structures distinct from the cis-Golgi. Electron microscopy revealed the complete disassembly of the Golgi stack in low pH treated cells. The effect of low pH was reversible; the Golgi apparatus reassembled to form a normal ribbon-like structure within 1–2 h after the addition of a control medium. The anterograde ER to Golgi transport and retrograde Golgi to ER transport were both reduced under low pH. Phospholipase A2 inhibitors (ONO, BEL) effectively suppressed the Golgi disassembly, suggesting that the phospholipase A2 was involved in the Golgi disassembly. Over-expression of Rab1, 2, 30, 33 and 41 also suppressed the Golgi disassembly under low pH, suggesting that they have protective role against Golgi disassembly. Low pH treatment reduced cytoplasmic pH, but not the luminal pH of the Golgi apparatus, strongly suggesting that reduction of the cytoplasmic pH triggered the Golgi disassembly. Because a lower cytoplasmic pH is induced in physiological or pathological conditions, disassembly of the Golgi apparatus and reduction of vesicular transport through the Golgi apparatus may play important roles in cell physiology and pathology. Furthermore, our findings indicated that low pH treatment can serve as an important tool to analyze the molecular mechanisms that support the structure and function of the Golgi apparatus.  相似文献   

18.
Opportunistic viruses are a major problem for immunosuppressed individuals, particularly following organ or stem cell transplantation. Current treatments are non-existent or suffer from problems such as high toxicity or development of resistant strains. We previously published that a trafficking inhibitor that targets a host protein greatly reduces the replication of human cytomegalovirus. This inhibitor was also shown to be moderately effective against polyomaviruses, another family of opportunistic viruses. We have developed a panel of analogues for this inhibitor and have shown that these analogues maintain their high efficacy against HCMV, while substantially lowering the concentration required to inhibit polyomavirus replication. By targeting a host protein these compounds are able to inhibit the replication of two very different viruses. These observations open up the possibility of pan-viral inhibitors for immunosuppressed individuals that are effective against multiple, diverse opportunistic viruses.  相似文献   

19.
20.
Endocytic sorting of signalling receptors between recycling and degradative pathways is a key cellular process controlling the surface complement of receptors and, accordingly, the cell's ability to respond to specific extracellular stimuli. The β2 adrenergic receptor (β2AR) is a prototypical seven-transmembrane signalling receptor that recycles rapidly and efficiently to the plasma membrane after ligand-induced endocytosis. β2AR recycling is dependent on the receptor's carboxy-terminal PDZ ligand and Rab4. This active sorting process is required for functional resensitization of β2AR-mediated signalling. Here we show that sequence-directed sorting occurs at the level of entry into retromer tubules and that retromer tubules are associated with Rab4. Furthermore, we show that sorting nexin 27 (SNX27) serves as an essential adaptor protein linking β2ARs to the retromer tubule. SNX27 does not seem to directly interact with the retromer core complex, but does interact with the retromer-associated Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complex. The present results identify a role for retromer in endocytic trafficking of signalling receptors, in regulating a receptor-linked signalling pathway, and in mediating direct endosome-to-plasma membrane traffic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号