首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whenever an asexual viral population evolves by adapting to new environmental conditions, beneficial mutations, the ultimate cause of adaptation, are randomly produced and then fixed in the population. The larger the population size and the higher the mutation rate, the more beneficial mutations can be produced per unit time. With the usually high mutation rate of RNA viruses and in a large enough population, several beneficial mutations could arise at the same time but in different genetic backgrounds, and if the virus is asexual, they will never be brought together through recombination. Thus, the best of these genotypes must outcompete each other on their way to fixation. This competition among beneficial mutations has the effect of slowing the overall rate of adaptation. This phenomenon is known as clonal interference. Clonal interference predicts a speed limit for adaptation as the population size increases. In the present report, by varying the size of evolving vesicular stomatitis virus populations, we found evidence clearly demonstrating this speed limit and thus indicating that clonal interference might be an important factor modulating the rate of adaptation to an in vitro cell system. Several evolutionary and epidemiological implications of the clonal interference model applied to RNA viruses are discussed.  相似文献   

2.
BACKGROUND: The rate at which beneficial mutations accumulate determines how fast asexual populations evolve, but this is only partially understood. Some recent clonal-interference models suggest that evolution in large asexual populations is limited because smaller beneficial mutations are outcompeted by larger beneficial mutations that occur in different lineages within the same population. This analysis assumes that the important mutations fix one at a time; it ignores multiple beneficial mutations that occur in the lineage of an earlier beneficial mutation, before the first mutation in the series can fix. We focus on the effects of such multiple mutations. RESULTS: Our analysis predicts that the variation in fitness maintained by a continuously evolving population increases as the logarithm of the population size and logarithm of the mutation rate and thus yields a similar logarithmic increase in the speed of evolution. To test these predictions, we evolved asexual budding yeast in glucose-limited media at a range of population sizes and mutation rates. CONCLUSIONS: We find that their evolution is dominated by the accumulation of multiple mutations of moderate effect. Our results agree with our theoretical predictions and are inconsistent with the one-by-one fixation of mutants assumed by recent clonal-interference analysis.  相似文献   

3.
The rate at which a population adapts to its environment is a cornerstone of evolutionary theory, and recent experimental advances in microbial populations have renewed interest in predicting and testing this rate. Efforts to understand the adaptation rate theoretically are complicated by high mutation rates, to both beneficial and deleterious mutations, and by the fact that beneficial mutations compete with each other in asexual populations (clonal interference). Testable predictions must also include the effects of population bottlenecks, repeated reductions in population size imposed by the experimental protocol. In this contribution, we integrate previous work that addresses each of these issues, developing an overall prediction for the adaptation rate that includes: beneficial mutations with probabilistically distributed effects, deleterious mutations of arbitrary effect, population bottlenecks, and clonal interference.  相似文献   

4.
Fogle CA  Nagle JL  Desai MM 《Genetics》2008,180(4):2163-2173
Two important problems affect the ability of asexual populations to accumulate beneficial mutations and hence to adapt. First, clonal interference causes some beneficial mutations to be outcompeted by more-fit mutations that occur in the same genetic background. Second, multiple mutations occur in some individuals, so even mutations of large effect can be outcompeted unless they occur in a good genetic background that contains other beneficial mutations. In this article, we use a Monte Carlo simulation to study how these two factors influence the adaptation of asexual populations. We find that the results depend qualitatively on the shape of the distribution of the fitness effects of possible beneficial mutations. When this distribution falls off slower than exponentially, clonal interference alone reasonably describes which mutations dominate the adaptation, although it gives a misleading picture of the evolutionary dynamics. When the distribution falls off faster than exponentially, an analysis based on multiple mutations is more appropriate. Using our simulations, we are able to explore the limits of validity of both of these approaches, and we explore the complex dynamics in the regimes where neither one is fully applicable.  相似文献   

5.
A major goal in evolutionary biology is to understand the origins and fates of adaptive mutations. Natural selection may act to increase the frequency of de novo beneficial mutations, or those already present in the population as standing genetic variation. These beneficial mutations may ultimately reach fixation in a population, or they may stop increasing in frequency once a particular phenotypic state has been achieved. It is not yet well understood how different features of population biology, and/or different environmental circumstances affect these adaptive processes. Experimental evolution is a promising technique for studying the dynamics of beneficial alleles, as populations evolving in the laboratory experience natural selection in a replicated, controlled manner. Whole-genome sequencing, regularly obtained over the course of sustained laboratory selection, could potentially reveal insights into the mutational dynamics that most likely occur in natural populations under similar circumstances. To date, only a few evolution experiments for which whole-genome data are available exist. This review describes results from these resequenced laboratory-selected populations, in systems with and without sexual recombination. In asexual systems, adaptation from new mutations can be studied, and results to date suggest that the complete, unimpeded fixation of these mutations is not always observed. In sexual systems, adaptation from standing genetic variation can be studied, and in the admittedly few examples we have, the complete fixation of standing variants is not always observed. To date, the relative frequency of adaptation from new mutations versus standing variation has not been tested using a single experimental system, but recent studies using Caenorhabditis elegans and Saccharomyces cerevisiae suggest that this a realistic future goal.  相似文献   

6.
The evolution of mutation rates: separating causes from consequences   总被引:21,自引:0,他引:21  
Natural selection can adjust the rate of mutation in a population by acting on allelic variation affecting processes of DNA replication and repair. Because mutation is the ultimate source of the genetic variation required for adaptation, it can be appealing to suppose that the genomic mutation rate is adjusted to a level that best promotes adaptation. Most mutations with phenotypic effects are harmful, however, and thus there is relentless selection within populations for lower genomic mutation rates. Selection on beneficial mutations can counter this effect by favoring alleles that raise the mutation rate, but the effect of beneficial mutations on the genomic mutation rate is extremely sensitive to recombination and is unlikely to be important in sexual populations. In contrast, high genomic mutation rates can evolve in asexual populations under the influence of beneficial mutations, but this phenomenon is probably of limited adaptive significance and represents, at best, a temporary reprieve from the continual selection pressure to reduce mutation. The physiological cost of reducing mutation below the low level observed in most populations may be the most important factor in setting the genomic mutation rate in sexual and asexual systems, regardless of the benefits of mutation in producing new adaptive variation. Maintenance of mutation rates higher than the minimum set by this "cost of fidelity" is likely only under special circumstances.  相似文献   

7.
The rate and effect of available beneficial mutations are key parameters in determining how a population adapts to a new environment. However, these parameters are poorly known, in large part because of the difficulty of designing and interpreting experiments to examine the rare and intrinsically stochastic process of mutation occurrence. We present a new approach to estimate the rate and selective advantage of beneficial mutations that underlie the adaptation of asexual populations. We base our approach on the analysis of experiments that track the effect of newly arising beneficial mutations on the dynamics of a neutral marker in evolving bacterial populations and develop efficient estimators of mutation rate and selective advantage. Using extensive simulations, we evaluate the accuracy of our estimators and conclude that they are quite robust to the use of relatively low experimental replication. To validate the predictions of our model, we compare theoretical and experimentally determined estimates of the selective advantage of the first beneficial mutation to fix in a series of ten replicate populations. We find that our theoretical predictions are not significantly different from experimentally determined selection coefficients. Application of our method to suitably designed experiments will allow estimation of how population evolvability depends on demographic and initial fitness parameters.  相似文献   

8.
Su-Chan Park  Joachim Krug 《Genetics》2013,195(3):941-955
The adaptation of large asexual populations is hampered by the competition between independently arising beneficial mutations in different individuals, which is known as clonal interference. In classic work, Fisher and Muller proposed that recombination provides an evolutionary advantage in large populations by alleviating this competition. Based on recent progress in quantifying the speed of adaptation in asexual populations undergoing clonal interference, we present a detailed analysis of the Fisher–Muller mechanism for a model genome consisting of two loci with an infinite number of beneficial alleles each and multiplicative (nonepistatic) fitness effects. We solve the deterministic, infinite population dynamics exactly and show that, for a particular, natural mutation scheme, the speed of adaptation in sexuals is twice as large as in asexuals. This result is argued to hold for any nonzero value of the rate of recombination. Guided by the infinite population result and by previous work on asexual adaptation, we postulate an expression for the speed of adaptation in finite sexual populations that agrees with numerical simulations over a wide range of population sizes and recombination rates. The ratio of the sexual to asexual adaptation speed is a function of population size that increases in the clonal interference regime and approaches 2 for extremely large populations. The simulations also show that the imbalance between the numbers of accumulated mutations at the two loci is strongly suppressed even by a small amount of recombination. The generalization of the model to an arbitrary number L of loci is briefly discussed. If each offspring samples the alleles at each locus from the gene pool of the whole population rather than from two parents, the ratio of the sexual to asexual adaptation speed is approximately equal to L in large populations. A possible realization of this scenario is the reassortment of genetic material in RNA viruses with L genomic segments.  相似文献   

9.
Gordo I  Campos PR 《Genetica》2006,127(1-3):217-229
We study the process of adaptation in a spatially structured asexual haploid population. The model assumes a local competition for replication, where each organism interacts only with its nearest neighbors. We observe that the substitution rate of beneficial mutations is smaller for a spatially structured population than that seen for populations without structure. The difference between structured and unstructured populations increases as the adaptive mutation rate increases. Furthermore, the substitution rate decreases as the number of neighbors for local competition is reduced. We have also studied the impact of structure on the distribution of adaptive mutations that fix during adaptation.  相似文献   

10.
Selection of mutator alleles, increasing the mutation rate up to 10, 000-fold, has been observed during in vitro experimental evolution. This spread is ascribed to the hitchhiking of mutator alleles with favorable mutations, as demonstrated by a theoretical model using selective parameters corresponding to such experiments. Observations of unexpectedly high frequencies of mutators in natural isolates suggest that the same phenomenon could occur in the wild. But it remains questionable whether realistic in natura parameter values could also result in selection of mutators. In particular, the main parameters of adaptation, the size of the adapting population and the height and steepness of the adaptive peak characterizing adaptation, are very variable in nature. By simulation approach, we studied the effect of these parameters on the selection of mutators in asexual populations, assuming additive fitness. We show that the larger the population size, the more likely the fixation of mutator alleles. At a large population size, at least four adaptive mutations are needed for mutator fixation; moreover, under stronger selection stronger mutators are selected. We propose a model based on multiple mutations to illustrate how second-order selection can optimize population fitness when few favorable mutations are required for adaptation.  相似文献   

11.
Desai MM  Fisher DS 《Genetics》2007,176(3):1759-1798
When beneficial mutations are rare, they accumulate by a series of selective sweeps. But when they are common, many beneficial mutations will occur before any can fix, so there will be many different mutant lineages in the population concurrently. In an asexual population, these different mutant lineages interfere and not all can fix simultaneously. In addition, further beneficial mutations can accumulate in mutant lineages while these are still a minority of the population. In this article, we analyze the dynamics of such multiple mutations and the interplay between multiple mutations and interference between clones. These result in substantial variation in fitness accumulating within a single asexual population. The amount of variation is determined by a balance between selection, which destroys variation, and beneficial mutations, which create more. The behavior depends in a subtle way on the population parameters: the population size, the beneficial mutation rate, and the distribution of the fitness increments of the potential beneficial mutations. The mutation-selection balance leads to a continually evolving population with a steady-state fitness variation. This variation increases logarithmically with both population size and mutation rate and sets the rate at which the population accumulates beneficial mutations, which thus also grows only logarithmically with population size and mutation rate. These results imply that mutator phenotypes are less effective in larger asexual populations. They also have consequences for the advantages (or disadvantages) of sex via the Fisher-Muller effect; these are discussed briefly.  相似文献   

12.
Harmful mutations are ubiquitous and inevitable, and the rate at which these mutations are removed from populations is a critical determinant of evolutionary fate. Closely related sexual and asexual taxa provide a particularly powerful setting to study deleterious mutation elimination because sexual reproduction should facilitate mutational clearance by reducing selective interference between sites and by allowing the production of offspring with different mutational complements than their parents. Here, we compared the rate of removal of conservative (i.e., similar biochemical properties) and radical (i.e., distinct biochemical properties) nonsynonymous mutations from mitochondrial genomes of sexual versus asexual Potamopyrgus antipodarum, a New Zealand freshwater snail characterized by coexisting and ecologically similar sexual and asexual lineages. Our analyses revealed that radical nonsynonymous mutations are cleared at higher rates than conservative changes and that sexual lineages eliminate radical changes more rapidly than asexual counterparts. These results are consistent with reduced efficacy of purifying selection in asexual lineages allowing harmful mutations to remain polymorphic longer than in sexual lineages. Together, these data illuminate some of the population‐level processes contributing to mitochondrial mutation accumulation and suggest that mutation accumulation could influence the outcome of competition between sexual and asexual lineages.  相似文献   

13.
R Bürger 《Genetics》1999,153(2):1055-1069
The role of recombination and sexual reproduction in enhancing adaptation and population persistence in temporally varying environments is investigated on the basis of a quantitative-genetic multilocus model. Populations are finite, subject to density-dependent regulation with a finite growth rate, diploid, and either asexual or randomly mating and sexual with or without recombination. A quantitative trait is determined by a finite number of loci at which mutation generates genetic variability. The trait is under stabilizing selection with an optimum that either changes at a constant rate in one direction, exhibits periodic cycling, or fluctuates randomly. It is shown by Monte Carlo simulations that if the directional-selection component prevails, then freely recombining populations gain a substantial evolutionary advantage over nonrecombining and asexual populations that goes far beyond that recognized in previous studies. The reason is that in such populations, the genetic variance can increase substantially and thus enhance the rate of adaptation. In nonrecombining and asexual populations, no or much less increase of variance occurs. It is explored by simulation and mathematical analysis when, why, and by how much genetic variance increases in response to environmental change. In particular, it is elucidated how this change in genetic variance depends on the reproductive system, the population size, and the selective regime, and what the consequences for population persistence are.  相似文献   

14.
Despite a great deal of theoretical attention, we have limited empirical data about how ploidy influences the rate of adaptation. We evolved isogenic haploid and diploid populations of Saccharomyces cerevisiae for 200 generations in seven different environments. We measured the competitive fitness of all ancestral and evolved lines against a common competitor and find that in all seven environments, haploid lines adapted faster than diploids, significantly so in three environments. We apply theory that relates the rates of adaptation and measured effective population sizes to the properties of beneficial mutations. We obtained rough estimates of the average selection coefficients in haploids between 2% and 10% for these first selected mutations. Results were consistent with semi-dominant to dominant mutations in four environments and recessive to additive mutations in two other environments. These results are consistent with theory that predicts haploids should evolve faster than diploids at large population sizes.  相似文献   

15.
A species' range can be limited when there is no genetic variation for a trait that allows for adaptation to more extreme environments. We study how range expansion occurs by the establishment of a new mutation that affects a quantitative trait in a spatially continuous population. The optimal phenotype for the trait varies linearly in space. The survival probabilities of new mutations affecting the trait are found by simulation. Shallow environmental gradients favour mutations that arise nearer to the range margin and that have smaller phenotypic effects than do steep gradients. Mutations that become established in shallow environmental gradients typically result in proportionally larger range expansions than those that establish in steep gradients. Mutations that become established in populations with high maximum growth rates tend to originate nearer to the range edge and to cause relatively smaller range expansion than mutations that establish in populations with low maximum growth rates. Under plausible parameter values, mutations that allow for range expansion tend to have large phenotypic effects (more than one phenotypic standard deviation) and cause substantial range expansions (15% or more). Sexual reproduction allows for larger range expansions and adaptation to more extreme environments than asexual reproduction.  相似文献   

16.
Populations may genetically adapt to severe stress that would otherwise cause their extirpation. Recent theoretical work, combining stochastic demography with Fisher's geometric model of adaptation, has shown how evolutionary rescue becomes unlikely beyond some critical intensity of stress. Increasing mutation rates may however allow adaptation to more intense stress, raising concerns about the effectiveness of treatments against pathogens. This previous work assumes that populations are rescued by the rise of a single resistance mutation. However, even in asexual organisms, rescue can also stem from the accumulation of multiple mutations in a single genome. Here, we extend previous work to study the rescue process in an asexual population where the mutation rate is sufficiently high so that such events may be common. We predict both the ultimate extinction probability of the population and the distribution of extinction times. We compare the accuracy of different approximations covering a large range of mutation rates. Moderate increase in mutation rates favors evolutionary rescue. However, larger increase leads to extinction by the accumulation of a large mutation load, a process called lethal mutagenesis. We discuss how these results could help design “evolution‐proof” antipathogen treatments that even highly mutable strains could not overcome.  相似文献   

17.
Martens EA  Hallatschek O 《Genetics》2011,189(3):1045-1060
A fundamental problem of asexual adaptation is that beneficial substitutions are not efficiently accumulated in large populations: Beneficial mutations often go extinct because they compete with one another in going to fixation. It has been argued that such clonal interference may have led to the evolution of sex and recombination in well-mixed populations. Here, we study clonal interference, and mechanisms of its mitigation, in an evolutionary model of spatially structured populations with uniform selection pressure. Clonal interference is much more prevalent with spatial structure than without, due to the slow wave-like spread of beneficial mutations through space. We find that the adaptation speed of asexuals saturates when the linear habitat size exceeds a characteristic interference length, which becomes shorter with smaller migration and larger mutation rate. The limiting speed is proportional to μ(1/2) and μ(1/3) in linear and planar habitats, respectively, where the mutational supply μ is the product of mutation rate and local population density. This scaling and the existence of a speed limit should be amenable to experimental tests as they fall far below predicted adaptation speeds for well-mixed populations (that scale as the logarithm of population size). Finally, we show that not only recombination, but also long-range migration is a highly efficient mechanism of relaxing clonal competition in structured populations. Our conservative estimates of the interference length predict prevalent clonal interference in microbial colonies and biofilms, so clonal competition should be a strong driver of both genetic and spatial mixing in those contexts.  相似文献   

18.
The rarity of beneficial mutations has frustrated efforts to develop a quantitative theory of adaptation. Recent models of adaptive walks, the sequential substitution of beneficial mutations by selection, make two compelling predictions: adaptive walks should be short, and fitness increases should become exponentially smaller as successive mutations fix. We estimated the number and fitness effects of beneficial mutations in each of 118 replicate lineages of Aspergillus nidulans evolving for approximately 800 generations at two population sizes using a novel maximum likelihood framework, the results of which were confirmed experimentally using sexual crosses. We find that adaptive walks do indeed tend to be short, and fitness increases become smaller as successive mutations fix. Moreover, we show that these patterns are associated with a decreasing supply of beneficial mutations as the population adapts. We also provide empirical distributions of fitness effects among mutations fixed at each step. Our results provide a first glimpse into the properties of multiple steps in an adaptive walk in asexual populations and lend empirical support to models of adaptation involving selection towards a single optimum phenotype. In practical terms, our results suggest that the bulk of adaptation is likely to be accomplished within the first few steps.  相似文献   

19.
Adaptation of asexual populations is driven by beneficial mutations and therefore the dynamics of this process, besides other factors, depends on the distribution of beneficial fitness effects. It is known that on uncorrelated fitness landscapes, this distribution can only be of three types: truncated, exponential and power law. We performed extensive stochastic simulations to study the adaptation dynamics on rugged fitness landscapes, and identified two quantities that can be used to distinguish the underlying distribution of beneficial fitness effects. The first quantity studied here is the fitness difference between successive mutations that spread in the population, which is found to decrease in the case of truncated distributions, remains nearly a constant for exponentially decaying distributions and increases when the fitness distribution decays as a power law. The second quantity of interest, namely, the rate of change of fitness with time also shows quantitatively different behaviour for different beneficial fitness distributions. The patterns displayed by the two aforementioned quantities are found to hold good for both low and high mutation rates. We discuss how these patterns can be exploited to determine the distribution of beneficial fitness effects in microbial experiments.  相似文献   

20.

Background  

It is commonly thought that large asexual populations evolve more rapidly than smaller ones, due to their increased rate of beneficial mutations. Less clear is how population size influences the level of fitness an asexual population can attain. Here, we simulate the evolution of bacteria in repeated serial passage experiments to explore how features such as fitness landscape ruggedness, the size of the mutational target under selection, and the mutation supply rate, interact to affect the evolution of microbial populations of different sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号