首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ATP plus Mg2+ plus Na+ supported [3H]ouabain binding to canine left ventricular tissue homogenates and microsomal (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) activity from the same tissue were measured. A linear relationship was found between the initial velocity of [3H]ouabain binding to tissue homogenates and microsomal (Na+ + K+)-ATPase activity from the same tissue in the presence and absence of in vivo bound digoxin. In vivo bound digoxin reduced both measurements. With tissue from digoxin-free hearts, a linear relationship was also obtained between the initial velocity and the maximum level of [3H]ouabain binding to tissue homogenate. Binding of [3H]ouabain to whole tissue homogenate is a convenient method for estimating (Na+ + K+)-ATPase activity in small left ventricular biopsy samples.  相似文献   

2.
[3H]Ouabain binding to intact MDCK (cultured monolayers of dog kidney) cells of 60 serial passages is dependent upon ouabain concentration, time and medium K+. By utilising high K+ incubations to estimate non-specific [3H]ouabain-binding, the concentration of ouabain giving half maximal specific binding was estimated to be 1.0 . 10(-7) M and the total maximum binding to be 2.33 . 10(5) sites/cell. Ouabain inhibition of (Na+, K+)-pump function was monitored by the cellular uptake of 86Rb over 5 min. The larger fraction of 86Rb uptake was ouabain sensitive and the ouabain concentration giving half-maximal inhibition was 2 . 10(-7) M. The cellular distribution of the (Na+ + K+)-ATPase was investigated using [3H]ouabain autoradiography of intact freeze-dried epithelial monolayers of MDCK cells grown upon millipore filter supports. Binding of [3H]ouabain is localised over the lateral cellular membranes. Autoradiographic silver grain density is close to background levels over both the apical and basal (attachment) membranes.  相似文献   

3.
The (Na+ + K+)-ATPase from dog kidney and partially purified membranes from HK dog erythrocytes were labeled with [3H]ouabain, solubilized with C12E8 and analyzed by HPLC through a TSK-GEL G3000SW column in the presence of C12E8, Mg2+, HPO4(2-) and glycerol at 20-23 degrees C. The peaks of [3H]ouabain bound to the enzyme from dog kidney and HK dog erythrocyte membranes corresponded to each other with apparent molecular weights of 470 000-490 000. In addition, these bindings of [3H]ouabain to the (Na+ + K+)-ATPase were observed to be stable at 20-23 degrees C for at least 18 h after the solubilization.  相似文献   

4.
The interaction of the cardiac glycoside [3H]ouabain with the Na+, K+ pump of resealed human erythrocyte ghosts was investigated. Binding of [3H]ouabain to high intracellular Na+ ghosts was studied in high extracellular Na+ media, a condition determined to produce maximal ouabain binding rates. Simultaneous examination of both the number of ouabain molecules bound per ghost and the corresponding inhibition of the Na+, K+-ATPase revealed that one molecule of [3H]ouabain inhibited one Na+, K+-ATPase complex. Intracellular magnesium or magnesium plus inorganic phosphate produced the lowest ouabain binding rate. Support of ouabain binding by adenosine diphosphate (ADP) was negligible, provided synthesis of adenosine triphosphate (ATP) through the residual adenylate kinase activity was prevented by the adenylate kinase inhibitor Ap5A. Uridine 5'-triphosphate (UTP) alone did not support ouabain binding after inhibition of the endogenous nucleoside diphosphokinase by trypan blue and depletion of residual ATP by the incorporation of hexokinase and glucose. ATP acting solely at the high- affinity binding site of the Na+, K+ pump (Km approximately 1 microM) promoted maximal [3H]ouabain binding rates. Failure of 5'-adenylyl-beta- gamma-imidophosphate (AMP-PNP) to stimulate significantly the rate of ouabain binding suggests that phosphorylation of the pump was required to expose the ouabain receptor.  相似文献   

5.
1. The specific activity of brain (Na+ + K+)-ATPase and Mg2+ -ATPase of the ground squirrel (Spermophilus richardsonii) is significantly increased after long-term hibernation. 2. The markedly non-linear thermal dependence of (Na+ + K+)-ATPase is unchanged during hibernation whereas the near linear thermal dependence of Mg2+-ATPase undergoes minor alteration after prolonged hibernation. 3. The sensitivity of (Na+ + K+)-ATPase to inhibition by ouabain is significantly decreased after 100 days of hibernation as is both the rate and amount of [3H]-ouabain binding. 4. These changes may be related to alteration in the phospholipid matrix of the membrane rather than alteration in the protein structure of the enzyme.  相似文献   

6.
Ouabain uptake was studied on isolated rat hepatocytes. Hepatocellular uptake of the glycoside is saturable (Km = 348 mumol/l, Vmax = 1.4 nmol/mg cell protein per min), energy dependent and accumulative. Concentrative ouabain uptake is not present on permeable hepatocytes, Ehrlich ascites tumor cells and AS-30D ascites hepatoma cells. There is no correlation between ouabain binding to rat liver (Na+ + K+)ATPase and ouabain uptake into isolated rat hepatocytes. While ouabain uptake is competitively inhibited by cevadine, binding to (Na+ + K+)-ATPase is not affected by the alkaloid. Although the affinities of digitoxin and ouabain to (Na+ + K+)-ATPase are similar, digitoxin is 10000-times more potent in inhibiting [3H]ouabain uptake as compared to ouabain. That binding to (Na+ + K+)-ATPase appears to be no precondition for ouabain uptake was also found in experiments with plasmamembranes derived from Ehrlich ascites tumor cells and AS-30D hepatoma cells. While tumor cell (Na+ + K+)-ATPase is ouabain sensitive, the intact cells are transport deficient. Hepatic ouabain uptake might be related to bile acid transport. Several inhibitors of the bile acid uptake system also inhibit ouabain uptake.  相似文献   

7.
1. Addition of 3.5 mM ATP to mouse neuroblastoma Neuro-2A cells results in a selective enhancement of the plasma membrane permeability for Na+ relative to K+, as measured by cation flux measurements and electro-physiological techniques. 2. Addition of 3.5 mM ATP to Neuro-2A cells results in a 70% stimulation of the rate of active K+ -uptake by these cells, partly because of the enhanced plasma membrane permeability for Na+. Under these conditions the pumping activity of the Neuro-2A (Na+ +K+)-ATPase is optimally stimulated with respect to its various substrate ions. 3. External ATP significantly enhances the affinity of the Neuro-2A (Na+ +K+)-ATPase for ouabain, as measured by direct [3H]ouabain-binding studies and by inhibition studies of active K+ uptake. In the presence of 3.5 mM ATP and the absence of external K+ both techniques indicate an apparent dissociation constant for ouabain of 2 X 10(-6)M. Neuro-2A cells contain (3.5 +/- 0.7) X 10(5) ouabain-binding sites per cell, giving rise to an optimal pumping activity of (1.7 +/- 0.4) X 10(-20) mol K+/min per copy of (Na+ +K+)-ATPase at room temperature.  相似文献   

8.
Localization of Na+-pump sites in frog skin   总被引:12,自引:6,他引:6       下载免费PDF全文
The localization of Na+-pump sites (Na+-K+-ATPase) in the frog skin epithelium was determined by a freeze-dry radioautographic method for identifying [3H]ouabain-binding sites. Ventral pelvic skins of Rana catesbeiana were mounted in Ussing chambers and exposed to 10(-6) M [3H]ouabain for 120 min, washed in ouabain-free Ringer's solution for 60 min, and then processed for radioautography. Ouabain-binding sites were localized on the inward facing (serosal) membranes of all the living cells. Quantitative analysis of grain distribution showed that the overwhelming majority of Na+-pump sites were localized deep to the outer living cell layer, i.e., in the stratum spinosum and stratum germinativum. Binding of ouabain was correlated with inhibition of Na+ transport. Specificity of ouabain binding to Na+-K+-ATPase was verified by demonstrating its sensitivity to the concentration of ligands (K+, ATP) that affect binding of ouabain to the enzyme. Additional studies supported the conclusion that the distribution of bound ouabain reflects the distribution of those pumps involved in the active transepithelial transport of Na+. After a 30-min exposure to [3H]ouabain, Na+ transport declined to a level that was significantly less than that in untreated paired controls, and analysis of grain distribution showed that over 90% of the ouabain-binding sites were localized to the inner cell layers. Furthermore, in skins where Na+ transport had been completely inhibited by exposure to 10(-5) M ouabain, the grain distribution was identical to that in skins exposed to 10(-6) M. The results support a model which depicts all the living cell layers functioning as a syncytium with regard to the active transepithelial transport of Na+.  相似文献   

9.
(Ca2+ + Mg2+)-ATPase in enriched sarcolemma from dog heart   总被引:1,自引:0,他引:1  
An enriched fraction of plasma membranes was prepared from canine ventricle by a process which involved thorough disruption of membranes by vigorous homogenization in dilute suspension, sedimentation of contractile proteins and mitochondria at 3000 X g followed by sedimentation of a microsomal fraction at 200 000 X g. The microsomal suspension was then fractionated on a discontinuous sucrose gradient. Particles migrating in the density range 1.0591--1.1083 were characterized by (Na+ + K+)-ATPase activity and [3H]ouabain binding as being enriched in sarcolemma and were comprised of nonaggregated vesicles of diameter approx. 0.1 micron. These fractions contained (Ca2+ + Mg2+)-ATPase which appreared endogenous to the sarcolemma. The enzyme was solubilized using Triton X-100 and 1 M KCl and partially purified. Optimal Ca2+ concentration for enzyme activity was 5--10 microM. Both Na+ and K+ stimulated enzyme activity. It is suggested that the enzyme may be involved in the outward pumping of Ca2+ from the cardiac cell.  相似文献   

10.
The effects of short- and long-chain fatty acids on the cerebromicrovascular (Na+ + K+)-ATPase were investigated using specific [3H]ouabain binding to the enzyme. Specific binding increased linearly with total microvessel protein (37-110 micrograms) and was time-dependent with maximum binding obtained by 10 min. Arachidonic acid, but not palmitic acid, stimulated [3H]ouabain binding in a dose-dependent manner, with a 105% increase over basal levels at 100 microM arachidonic acid. Preincubation of the microvessels with arachidonic acid did not alter the stimulation observed. 4-Pentenoic acid stimulated [3H]ouabain binding only at high concentrations (10 mM). Scatchard analysis of [3H]ouabain binding to untreated microvessels yielded a single class of "high-affinity" binding sites with an apparent binding affinity (KD) of 64.7 +/- 2.0 nM and a binding capacity (Bmax) of 10.1 +/- 1.5 pmol/mg protein. In the presence of 100 microM arachidonic acid, a monophasic Scatchard plot also was obtained, but the KD significantly decreased to 51.9 +/- 2.7 nM (p less than 0.01), whereas the Bmax remained virtually unchanged (12.5 +/- 1.2 pmol/mg protein). The stimulation of [3H]ouabain binding in the presence of arachidonic acid was potentiated by 4-pentenoic acid, but not by indomethacin or eicosatetraynoic acid. These data suggest that long-chain polyunsaturated fatty acids may be involved in the regulation of blood-brain barrier (Na+ + K+)-ATPase and may play a role in the cerebral dysfunction associated with diseases in which plasma levels of nonesterified fatty acids are elevated.  相似文献   

11.
Antibodies (abys) raised to (Na+,K+)-ATPase were purified by elution methods and shown to be cross-reactive with anti-gamma-globulin and the original antigen. Abys were isolated from two different antisera and the effects on (Na+,K+)-ATPase hydrolytic activity and [3H]ouabain binding were measured. The antisera fractions differed as to their maximum level of inhibition of hydrolytic activity and maximal [3H]ouabain binding, but both fractions caused inhibition of maximal [3H]ouabain binding to the same quantitative extent as inhibition of hydrolytic activity. Variable effects on the rate of [3H]ouabain binding were noted which were highly dependent on ligand conditions. During the "turnover state conditions" of the enzyme, the abys stimulated the rate of [3H]ouabain binding to the (Na+,K+)-ATPase. We conclude that effects of aby-(Na+,K+)-ATPase interaction depend upon degree of purity of aby, specificity, aby/enzyme ratios, and ligand conditions.  相似文献   

12.
Palytoxin (PTX), at extremely low concentrations (0.01-1 nM), caused K+ release from rabbit erythrocytes. Among the various chemical compounds tested, cardiac glycosides potently inhibited the PTX-induced K+ release. The order of inhibitory potency (IC50) was cymarin (0.42 microM) greater than convallatoxin (0.9 microM) greater than ouabain (2.3 microM) greater than digitoxin (88 microM) greater than digoxin (90 microM). Their corresponding aglycones, even at 10 microM, did not inhibit the K+ release, but competitively antagonized the inhibitory effect of the glycosides. All these cardiotonic steroids inhibited the activity of (Na+ + K+)-ATPase prepared from hog cerebral cortex in narrow concentration ranges (IC50 = 0.15-2.4 microM), suggesting that the inhibition of K+ release is not related to their inhibitory potency on the (Na+ + K+)-ATPase activity, and the sugar moiety of cardiac glycosides is involved in the inhibition. On the other hand PTX, at higher concentrations (greater than 0.1 microM), inhibited the (Na+ + K+)-ATPase activity. However, this inhibitory effect of PTX was not antagonized by ouabain. It is suggested that, compared with ouabain, PTX has additional binding site(s) on the (Na+ + K+)-ATPase.  相似文献   

13.
Photoaffinity labeling of (Na+ + K+)-ATPase in erythrocyte membranes with cardiotonic steroid derivatives, followed by gel electrophoresis, requires a radiolabel of very high specific activity, since the enzyme represents less than 0.05% of the total membrane protein. We report the synthesis of a radioiodinated, photosensitive derivative of the cardiac glycoside, 3-beta-O-(4-amino-4,6-dideoxy-beta-D-galactosyl)digitoxigenin, with very high specific activity. The product, [125I]iodoazidogalactosyl digitoxigenin ([125I]IAGD), is carrier-free with a specific activity of 2200 Ci/mmol. Incubation of [125I]IAGD (1.8 nM) with human erythrocyte membranes (300 micrograms protein), followed by photolysis and analysis by SDS-PAGE, showed specific radiolabeling of a polypeptide that had the same molecular weight as catalytic alpha subunit (100,000 Mr) of (Na+ + K+)-ATPase in eel electroplax microsomes. Photoaffinity labeling of erythrocyte and electroplax membranes by [125I]IAGD was specific for the cardiac glycoside binding site of (Na+ + K+)-ATPase since radiolabeling of the alpha subunit was inhibited when ouabain was included in the pre-photolysis incubation. [125I]IAGD can, therefore, be used as a probe in structural studies of human erythrocyte membrane (Na+ + K+)-ATPase.  相似文献   

14.
Lignans are natural products, some of which were recently discovered in animal urines, semen and blood plasma. We investigated the actions of animal lignans obtained by total synthesis or extracted from urines of pregnant women on Na+, K+-ATPase in human red cells and human and guinea-pig heart cell membranes. Some of the tested lignans (enterolactone, prestegane B and 3-O-methyl enterolactone) inhibited Na+, K+-pump activity in human red cells with IC50 ranging from 5 to 9 X 10(-4) M. The IC50 for ouabain (7 X 10(-7) M) was not modified by addition of lignans. Enterolactone inhibited Na+, K+-ATPase activity in human and guinea pig heart membranes. It also displaced [3H]-ouabain binding from human heart with IC50 = 1.5 X 10(-4) M. The apparent dissociation rate constants (kd) of [3H]-ouabain were not different in presence of digoxin or enterolactone. Enterolactone exhibited a poor cross reactivity against antidigoxin antibodies. The aglycones of the lignans studied here were slight inhibitors of the Na+, K+-ATPase. However, we cannot exclude that a glycosyl- (and/or butenolide-) derivative of enterolactone could be one "endogenous ouabain-like" factor.  相似文献   

15.
An endogenous Na+, K+-ATPase inhibitor termed endobain E has been isolated from rat brain which shares several biological properties with ouabain. This cardiac glycoside possesses neurotoxic properties attributable to Na+, K+-ATPase inhibition, which leads to NMDA receptor activation, thus supporting the concept that Na+/K+ gradient impairment has a critical impact on such receptor function. To evaluate potential direct effects of endobain E and ouabain on NMDA receptors, we assayed [3H]dizocilpine binding employing a system which excludes ionic gradient participation. Brain membranes thoroughly washed and stored as pellets ('non-resuspended' membranes) or after resuspension in sucrose ('resuspended' membranes) were employed. Membrane samples were incubated with 4 or 10 nM ligand with or without added endobain E or ouabain, in the presence of different glutamate plus glycine combinations, with or without spermidine. [3H]dizocilpine basal binding and Na+, K+- and Mg2+-ATPase activities proved very similar in 'non-resuspended' or 'resuspended' membranes. Endobain E decreased [3H]dizocilpine binding to 'resuspended' membranes in a concentration-dependent manner, attaining roughly 50% binding inhibition with the highest endobain E concentration assayed. Among tested conditions, only in 'resuspended' membranes, with 4 nM ligand and with 1x10(-8) M glutamate plus 1x10(-5) M glycine, was [3H]dizocilpine binding enhanced roughly +24% by ouabain (1 mM). After Triton X-100 membrane treatment, which drastically reduces Na+, K+-ATPase activity, the effect of ouabain on binding was lost whereas that of endobain E remained unaltered. Results indicate that not only membrane preparation but also treatment and storage are crucial to observe direct endobain E and ouabain effects on NMDA receptor, which are not attributable to changes in Na+, K+-ATPase activity or to Na+/K+ equilibrium alteration.  相似文献   

16.
Monoclonal antibodies against horse kidney outer medulla (Na+ + K+)-ATPase were prepared. One of these antibodies (M45-80), was identified as an IgM, recognized the alpha subunit of the enzyme. M45-80 had the following effects on horse kidney (Na+ + K+)-ATPase: (1) it inhibited the enzyme activity by 50% in 140 mM Na+ and by 80% in 8.3 mM Na+; (2) it increased the Na+ concentration necessary for half-maximal activation (K0.5 for Na+) from 12.0 to 57.6 mM, but did not affect K0.5 for K+; (3) it slightly increased the K+-dependent p-nitrophenylphosphatase (K-pNPPase) activity; (4) it inhibited phosphorylation of the enzyme with ATP by 30%, but did not affect the step of dephosphorylation; and (5) it enhanced the ouabain binding rate. These data are compatible with a stabilizing effect on the E2 form of (Na+ + K+)-ATPase. M45-80 was concluded to bind to the extracellular surface of the plasmamembrane, based on the following evidence: (1) M45-80 inhibited by 50% the ouabain-sensitive 86Rb+ uptake in human intact erythrocytes from outside of the cells; (2) the inhibition of (Na+ + K+)-ATPase activity in right-side-out vesicles of human erythrocytes was greater than that in inside-out vesicles; and (3) the fluorescence intensity due to FITC-labeled rabbit anti-mouse IgM that reacted with M45-80 bound to the right-side-out vesicles was much greater than that in the case of the inside-out vesicles.  相似文献   

17.
An increase in endogenous Na+,K+-ATPase inhibitor(s) with digitalis-like properties has been reported in chronic renal insufficiency, in Na+-dependent experimental hypertension and in some essential hypertensive patients. The present study specifies some properties and some biochemical characteristics of a semipurified compound from human urine having digitalis-like properties. The urine-derived inhibitor (endalin) inhibits Na+,K+-ATPase activity and [3H]-ouabain binding, and cross-reacts with anti-digoxin antibodies. The inhibitory effect on ATPases of endalin is higher on Na+,K+-ATPase than on Mg2+-ATPase and Ca2+-ATPase. The mechanism of endalin action on highly purified Na+,K+-ATPase was compared to that of ouabain and was similar in that it reversibly inhibited Na+,K+-ATPase activity; it inhibited Na+,K+-ATPase non-competitively with ATP; its inhibitory effect was facilitated by Na+; K+ decreased its inhibitory effect on Na+,K+-ATPase; it competitively inhibited ouabain binding to the enzyme; its binding was maximal in the presence of Mg2+ and Pi; it decreased the Na+ pump activity in human erythrocytes; it reduced serotonin uptake by human platelets; and it was diuretic and natriuretic in rat bioassay. The endalin differed from ouabain in only three aspects: its inhibitory effect was not really specific for Na+,K+-ATPase; its binding to the enzyme was undetectable in the presence of Mg2+ and ATP; it was not kaliuretic in rat bioassay. Endalin is a reversible and partial specific inhibitor of Na+,K+-ATPase, its Na+,K+-ATPase inhibition closely resembles that of ouabain and it could be considered as one of the natriuretic hormones.  相似文献   

18.
Amiodarone hydrochloride is a diiodinated antiarrhythmic agent widely used in the treatment of cardiac disorders. With the increasing use of amiodarone, several untoward effects have been recognized and neuropathy following amiodarone therapy has recently been reported. The present studies were carried out to study the effect of amiodarone on rat brain synaptosomal ATPases in an effort to understand its mechanism of action. Na+, K+-ATPase and oligomycin sensitive Mg2+ ATPase activities were inhibited by amiodarone in a concentration dependent manner with IC50 values of 50 microM and 10 microM respectively. [3H]ouabain binding was also decreased in a concentration dependent manner with an IC50 value of 12 microM, and 50 microM amiodarone totally inhibited [3H]ouabain binding. Kinetics of [3H]ouabain binding studies revealed that amiodarone inhibition of [3H]ouabain binding is competitive. K+-activated p-nitrophenyl phosphatase activity showed a maximum inhibition of 32 per cent at 200 microM amiodarone. Synaptosomal ATPase activities did not show any change in rats treated with amiodarone (20 mg kg-1 day-1) for 6 weeks, when compared to controls. The treatment period may be short, since the reported neurological abnormalities in patients were observed during 3-5 years of treatment. The present results suggest that amiodarone induced neuropathy may be due to its interference with sodium dependent phosphorylation of Na+, K+-ATPase reaction, thereby affecting active ion transport phenomenon and oxidative phosphorylation resulting in low turnover of ATP in the nervous system.  相似文献   

19.
Bass gill microsomal preparations contain a Mg2+-dependent Na+-stimulated ATPase activity in the absence of K+, whose characteristics are compared with those of the (Na+ + K+)-ATPase of the same preparations. The activity at 30 degrees C is 11.3 mumol Pi X mg-1 protein X hr-1 under optimal conditions (5 mM MgATP, 75 mM Na+, 75 mM HEPES, pH 6.0) and exhibits a lower pH optimum than the (Na+ + K+)-ATPase. The Na+ stimulation of ATPase is only 17% inhibited by 10-3M ouabain and completely abolished by 2.5 mM ethacrinic acid which on the contrary cause, respectively, 100% and 34% inhibition of the (Na+ + K+)-ATPase. Both Na+-and (Na+ + K+)-stimulated activities can hydrolyze nucleotides other than ATP in the efficiency order ATP greater than CTP greater than UTP greater than GTP and ATP greater than CTP greater than GPT greater than UTP, respectively. In the presence of 10(-3)M ouabain millimolar concentrations of K+ ion lower the Na+ activation (90% inhibition at 40 mM K+). The Na+-ATPase is less sensitive than (Na+ + K+)-ATPase to the Ca2+ induced inhibition as the former is only 57.5% inhibited by a concentration of 1 X 10(-2)M which completely suppresses the latter. The thermosensitivity follows the order Mg2+--greater than (Na+ + K+)--greater than Na+-ATPase. A similar break of the Arrhenius plot of the three enzymes is found. Only some of these characteristics do coincide with those of a Na+-ATPase described elsewhere. A presumptive physiological role of Na+-ATPase activity in seawater adapted teleost gills is suggested.  相似文献   

20.
Na+,K(+)-ATPase concentration in rat cerebral cortex was studied by vanadate-facilitated [3H]ouabain binding to intact samples and by K(+)-dependent 3-O-methylfluorescein phosphatase activity determinations in crude homogenates. Methodological errors of both methods were evaluated. [3H]Ouabain binding to cerebral cortex obtained from 12-week-old rats measured incubating samples in buffer containing [3H]ouabain, and ouabain at a final concentration of 1 x 10(-6) mol/L gave a value of 11,351 +/- 177 (n = 5) pmol/g wet weight (mean +/- SEM) without any significant variation between the lobes. Evaluation of affinity for ouabain was in agreement with a heterogeneous population of [3H]ouabain binding sites. K(+)-dependent 3-O-methylfluorescein phosphatase activity in crude cerebral homogenates of age-matched rats was 7.24 +/- 0.14 (n = 5) mumol/min/g wet weight, corresponding to a Na+,K(+)-ATPase concentration of 12,209 +/- 236 pmol/g wet weight. It was concluded that the present methods were suitable for quantitative studies of cerebral cortex Na+,K(+)-ATPase. The concentration of rat cerebral cortex Na+,K(+)-ATPase showed approximately 10-fold increase within the first 4 weeks of life to reach a plateau of approximately 11,000-12,000 pmol/g wet weight, indicating a larger synthesis of Na+,K+ pumps than tissue mass in rat cerebral cortex during the first 4 weeks of development. K+ depletion induced by K(+)-deficient fodder for 2 weeks resulted in a slight tendency toward a reduction in K+ content (6%, p > 0.5) and Na+,K(+)-ATPase concentration (3%, p > 0.4) in cerebral cortex, whereas soleus muscle K+ content and Na+,K(+)-ATPase concentration were decreased by 30 (p < 0.02) and 32% (p < 0.001), respectively. Hence, during K+ depletion, cerebral cortex can maintain almost normal K+ homeostasis, whereas K+ as well as Na+,K+ pumps are lost from skeletal muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号