首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The detection and identification of pathogens from water samples remain challenging due to variations in recovery rates and the cost of procedures. Ultrafiltration offers the possibility to concentrate viral, bacterial, and protozoan organisms in a single process by using size-exclusion-based filtration. In this study, two hollow-fiber ultrafilters with 50,000-molecular-weight cutoffs were evaluated to concentrate microorganisms from 2- and 10-liter water samples. When known quantities (10(5) to 10(6) CFU/liter) of two species of enteric bacteria were introduced and concentrated from 2 liters of sterile water, the addition of 0.1% Tween 80 increased Escherichia coli strain K-12 recoveries from 70 to 84% and Salmonella enterica serovar Enteritidis recoveries from 36 to 72%. An E. coli antibiotic-resistant strain, XL1-Blue, was recovered at a level (87%) similar to that for strain K-12 (96%) from 10 liters of sterile water. When E. coli XL1-Blue was introduced into 10 liters of nonsterile Rio Grande water with higher turbidity levels (23 to 29 nephelometric turbidity units) at two inoculum levels (9 x 10(5) and 2.4 x 10(3) per liter), the recovery efficiencies were 89 and 92%, respectively. The simultaneous addition of E. coli XL1-Blue (9 x 10(5) CFU/liter), Cryptosporidium parvum oocysts (10 oocysts/liter), phage T1 (10(5) PFU/liter), and phage PP7 (10(5) PFU/liter) to 10 liters of Rio Grande surface water resulted in mean recoveries of 96, 54, 59, and 46%, respectively. Using a variety of surface waters from around the United States, we obtained recovery efficiencies for bacteria and viruses that were similar to those observed with the Rio Grande samples, but recovery of Cryptosporidium oocysts was decreased, averaging 32% (the site of collection of these samples had previously been identified as problematic for oocyst recovery). Results indicate that the use of ultrafiltration for simultaneous recovery of bacterial, viral, and protozoan pathogens from variable surface waters is ready for field deployment.  相似文献   

2.
U.S. Environmental Protection Agency method 1623 is widely used to monitor source waters and drinking water supplies for Cryptosporidium oocysts. Matrix spikes, used to determine the effect of the environmental matrix on the method's recovery efficiency for the target organism, require the collection and analysis of two environmental samples, one for analysis of endemic oocysts and the other for analysis of recovery efficiency. A new product, ColorSeed, enables the analyst to determine recovery efficiency by using modified seeded oocysts that can be differentiated from endemic organisms in a single sample. Twenty-nine stream water samples and one untreated effluent sample from a cattle feedlot were collected in triplicate to compare modified seeding procedures to conventional seeding procedures that use viable, unmodified oocysts. Significant negative correlations were found between the average oocyst recovery and turbidity or suspended sediment; this was especially apparent in samples with turbidities greater than 100 nephelometric turbidity units and suspended sediment concentrations greater than 100 mg/liter. Cryptosporidium oocysts were found in 16.7% of the unseeded environmental samples, and concentrations, adjusted for recoveries, ranged from 4 to 80 oocysts per 10 liters. Determining recovery efficiency also provided data to calculate detection limits; these ranged from <2 to <215 oocysts per 10 liters. Recoveries of oocysts ranged from 2.0 to 61% for viable oocysts and from 3.0 to 59% for modified oocysts. The recoveries between the two seeding procedures were highly correlated (r = 0.802) and were not significantly different. Recoveries by using modified oocysts, therefore, were comparable to recoveries by using conventional seeding procedures.  相似文献   

3.
U.S. Environmental Protection Agency method 1623 is widely used to monitor source waters and drinking water supplies for Cryptosporidium oocysts. Matrix spikes, used to determine the effect of the environmental matrix on the method's recovery efficiency for the target organism, require the collection and analysis of two environmental samples, one for analysis of endemic oocysts and the other for analysis of recovery efficiency. A new product, ColorSeed, enables the analyst to determine recovery efficiency by using modified seeded oocysts that can be differentiated from endemic organisms in a single sample. Twenty-nine stream water samples and one untreated effluent sample from a cattle feedlot were collected in triplicate to compare modified seeding procedures to conventional seeding procedures that use viable, unmodified oocysts. Significant negative correlations were found between the average oocyst recovery and turbidity or suspended sediment; this was especially apparent in samples with turbidities greater than 100 nephelometric turbidity units and suspended sediment concentrations greater than 100 mg/liter. Cryptosporidium oocysts were found in 16.7% of the unseeded environmental samples, and concentrations, adjusted for recoveries, ranged from 4 to 80 oocysts per 10 liters. Determining recovery efficiency also provided data to calculate detection limits; these ranged from <2 to <215 oocysts per 10 liters. Recoveries of oocysts ranged from 2.0 to 61% for viable oocysts and from 3.0 to 59% for modified oocysts. The recoveries between the two seeding procedures were highly correlated (r = 0.802) and were not significantly different. Recoveries by using modified oocysts, therefore, were comparable to recoveries by using conventional seeding procedures.  相似文献   

4.
The vaoA gene from Penicillium simplicissimum CBS 170.90, encoding vanillyl alcohol oxidase, which also catalyzes the conversion of eugenol to coniferyl alcohol, was expressed in Escherichia coli XL1-Blue under the control of the lac promoter, together with the genes calA and calB, encoding coniferyl alcohol dehydrogenase and coniferyl aldehyde dehydrogenase of Pseudomonas sp. strain HR199, respectively. Resting cells of the corresponding recombinant strain E. coli XL1-Blue(pSKvaomPcalAmcalB) converted eugenol to ferulic acid with a molar yield of 91% within 15 h on a 50-ml scale, reaching a ferulic acid concentration of 8.6 g liter−1. This biotransformation was scaled up to a 30-liter fermentation volume. The maximum production rate for ferulic acid at that scale was 14.4 mmol per h per liter of culture. The maximum concentration of ferulic acid obtained was 14.7 g liter−1 after a total fermentation time of 30 h, which corresponded to a molar yield of 93.3% with respect to the added amount of eugenol. In a two-step biotransformation, E. coli XL1-Blue(pSKvaomPcalAmcalB) was used to produce ferulic acid from eugenol and, subsequently, E. coli(pSKechE/Hfcs) was used to convert ferulic acid to vanillin (J. Overhage, H. Priefert, and A. Steinbüchel, Appl. Environ. Microbiol. 65:4837-4847, 1999). This process led to 0.3 g of vanillin liter−1, besides 0.1 g of vanillyl alcohol and 4.6 g of ferulic acid liter−1. The genes ehyAB, encoding eugenol hydroxylase of Pseudomonas sp. strain HR199, and azu, encoding the potential physiological electron acceptor of this enzyme, were shown to be unsuitable for establishing eugenol bioconversion in E. coli XL1-Blue.  相似文献   

5.
In this study, we developed recombinant Escherichia coli strains expressing Lactococcus lactis subsp. lactis Il1403 glutamate decarboxylase (GadB) for the production of GABA from glutamate monosodium salt (MSG). Syntheses of GABA from MSG were examined by employing recombinant E. coli XL1-Blue as a whole cell biocatalyst in buffer solution. By increasing the concentration of E. coli XL1-Blue expressing GadB from the OD600 of 2–10, the concentration and conversion yield of GABA produced from 10 g/L of MSG could be increased from 4.3 to 4.8 g/L and from 70 to 78 %, respectively. Furthermore, E. coli XL1-Blue expressing GadB highly concentrated to the OD600 of 100 produced 76.2 g/L of GABA from 200 g/L of MSG with 62.4 % of GABA yield. Finally, nylon 4 could be synthesized by the bulk polymerization using 2-pyrrolidone that was prepared from microbially synthesized GABA by the reaction with Al2O3 as catalyst in toluene with the yield of 96 %.  相似文献   

6.
Several recent outbreaks of toxoplasmosis were related to drinking water. We propose a strategy for Toxoplasma oocyst detection as part of an approach to detecting multiple waterborne parasites, including Giardia and Cryptosporidium spp., by the U.S. Environmental Protection Agency method with the same sample. Water samples are filtered to recover Toxoplasma oocysts and purified on a sucrose density gradient. Detection is based on PCR and mouse inoculation (bioassay) to determine the presence and infectivity of recovered oocysts. In an experimental seeding assay with 100 liters of deionized water, a parasite density of 1 oocyst/liter was successfully detected by PCR in 60% of cases and a density of 10 oocysts/liter was detected in 100% of cases. The sensitivity of the PCR assay varied from less than 10 to more than 1000 oocysts/liter, depending on the sample source. PCR was always more sensitive than mouse inoculation. This detection strategy was then applied to 139 environmental water samples collected over a 20-month period. Fifty-three samples contained PCR inhibitors, which were overcome in 39 cases by bovine serum albumin addition. Among 125 interpretable samples, we detected Toxoplasma DNA in 10 cases (8%). None of the samples were positive by mouse inoculation. This strategy efficiently detects Toxoplasma oocysts in water and may be suitable as a public health sentinel method.  相似文献   

7.
We evaluated the efficiency of five membrane filters for recovery of Cryptosporidium parvum oocysts and Giardia lamblia cysts. These filters included the Pall Life Sciences Envirochek (EC) standard filtration and Envirochek high-volume (EC-HV) membrane filters, the Millipore flatbed membrane filter, the Sartorius flatbed membrane filter (SMF), and the Filta-Max (FM) depth filter. Distilled and surface water samples were spiked with 10 oocysts and 10 cysts/liter. We also evaluated the recovery efficiency of the EC and EC-HV filters after a 5-s backwash postfiltration. The backwashing was not applied to the other filtration methods because of the design of the filters. Oocysts and cysts were visualized by using a fluorescent monoclonal antibody staining technique. For distilled water, the highest percent recovery for both the oocysts and cysts was obtained with the FM depth filter. However, when a 5-s backwash was applied, the EC-HV membrane filter (EC-HV-R) was superior to other filters for recovery of both oocysts (n = 53 ± 15.4 per 10 liters) and cysts (n = 59 ± 11.5 per 10 liters). This was followed by results of the FM depth filter (oocysts, 28.2 ± 8, P = 0.015; cysts, 49.8 ± 12.2, P = 0.4260), and SMF (oocysts, 16.2 ± 2.8, P = 0.0079; cysts, 35.2 ± 3, P = 0.0079). Similar results were obtained with surface water samples. Giardia cysts were recovered at higher rates than were Cryptosporidium oocysts with all five filters, regardless of backwashing. Although the time differences for completion of filtration process were not significantly different among the procedures, the EC-HV filtration with 5-s backwash was less labor demanding.  相似文献   

8.
Asian freshwater clams, Corbicula fluminea, exposed for 24 h to 38 liters of water contaminated with infectious Cryptosporidium parvum oocysts (1.00 × 106 oocysts/liter; approximately 1.9 × 105 oocysts/clam) were examined (hemolymph, gills, gastrointestinal [GI] tract, and feces) on days 1, 2, 3, 7, and 14 postexposure (PE). No oocysts were detected in the water 24 h after the contamination event. The percentage of oocyst-containing clams varied from 20 to 100%, depending on the type of tissue examined and the technique used—acid-fast stain (AFS) or immunofluorescent antibody (IFA). The oocysts were found in clam tissues and feces on days 1 through 14 PE; the oocysts extracted from the tissues on day 7 PE were infectious for neonatal BALB/c mice. Overall, the highest number of positive samples was obtained when gills and GI tracts were processed with IFA (prevalence, 97.5%). A comparison of the relative oocyst numbers indicated that overall, 58.3% of the oocysts were found in clam tissues and 41.7% were found in feces when IFA was used; when AFS was used, the values were 51.9 and 48.1%, respectively. Clam-released oocysts were always surrounded by feces; no free oocysts or oocysts disassociated from fecal matter were observed. The results indicate that these benthic freshwater clams are capable of recovery and sedimentation of waterborne C. parvum oocysts. To optimize the detection of C. parvum oocysts in C. fluminea tissue, it is recommended that gill and GI tract samples be screened with IFA (such as that in the commercially available MERIFLUOR test kit).  相似文献   

9.
The response of tomato (Solanum lycopersicum L.) to abiotic stress has been widely investigated. Recent physiological studies focus on the use of osmoprotectants to ameliorate stress damage, but experiments at a field level are scarce. Two tomato cultivars were used for an experiment with saline water (6.57 dS m?1) and subsurface drip irrigation (SDI) in a silty clay soil. Rio Grande is a salinity-tolerant cultivar, while Heinz-2274 is the salt-sensitive cultivar. Exogenous application of proline was done by foliar spray at two concentrations (10 and 20 mg L?1) during the flowering stage. Control plants were treated with saline water without proline. Proline at the lower concentration (10 mg L?1) increased dry mass of different plant organs (leaves, stems, and roots) and it improved various chlorophyll a fluorescence parameters compared with controls. Regarding mineral nutrition, K+ and P were higher in different organs, while low accumulation of Na+ occurred. However, Mg2+ was very high in all tissues of Rio Grande at the higher concentration of proline applied. Thus, the foliar spray of proline at 10 mg L?1 increased the tolerance of both cultivars. The growth of aboveground biomass of Heinz-2274 was enhanced by 63.5%, while Rio Grande improved only by 38.9%.  相似文献   

10.
An efficient and user-friendly bacterial transformation method by simple spreading cells with aminoclays was demonstrated. Compared to the reported transformation approaches using DNA adsorption or wrapping onto (in)organic fibers, the spontaneously generated clay-coated DNA suprastructures by mixing DNA with aminoclay resulted in transformants in both Gram-negative (Escherichia coli) and Gram-positive cells (Streptococcus mutans). Notably, the wild type S. mutans showed comparable transformation efficiency to that of the E. coli host for recombinant DNA cloning. This is a potentially promising result because other trials such as heat-shock, electroporation, and treatment with sepiolite for introducing DNA into the wild type S. mutans failed. Under defined conditions, the transformation efficiency of E. coli XL1-Blue and S. mutans exhibited ~ 2 × 105 and ~ 6 × 103 CFU/μg of plasmid DNA using magnesium-aminoclay. In contrast, transformation efficiency was higher in S. mutans than that in E. coli XL1-Blue for calcium-aminoclay. It was also confirmed that each plasmid transformed into E. coli and S. mutans was stably maintained and that they expressed the inserted gene encoding the green fluorescent protein during prolonged growth of up to 80 generations.  相似文献   

11.
We have previously analyzed the proteome of recombinant Escherichia coli producing poly(3-hydroxybutyrate) [P(3HB)] and revealed that the expression level of several enzymes in central metabolism are proportional to the amount of P(3HB) accumulated in the cells. Based on these results, the amplification effects of triosephosphate isomerase (TpiA) and fructose-bisphosphate aldolase (FbaA) on P(3HB) synthesis were examined in recombinant E. coli W3110, XL1-Blue, and W lacI mutant strains using glucose, sucrose and xylose as carbon sources. Amplification of TpiA and FbaA significantly increased the P(3HB) contents and concentrations in the three E. coli strains. TpiA amplification in E. coli XL1-Blue lacI increased P(3HB) from 0.4 to 1.6 to g/l from glucose. Thus amplification of glycolytic pathway enzymes is a good strategy for efficient production of P(3HB) by allowing increased glycolytic pathway flux to make more acetyl-CoA available for P(3HB) biosynthesis.  相似文献   

12.
Rio Grande water is intensively managed and regulated by international and interstate compacts, Native American treaties, local water rights, and federal, state, and local agencies. Legislation and engineering projects in the early twentieth century brought about water impoundment projects and channelization of the Rio Grande which led to the eventual loss of floodplain habitats. In particular, current water management practices in the Middle Rio Grande (MRG) have altered the natural flood regime altering the riparian community and floodplain dynamics which may be causing the demise of many fish species by altering food web processes. The Rio Grande silvery minnow (Hybognathus amarus), a federally endangered species, has been classified as an herbivore, detritivore, or carnivore. During low flow conditions H. amarus is primarily an algivore; however, during flood conditions, hydrodynamic scouring reduces or eliminates benthic algal food sources. The objective of this study was to identify and characterize food resources and trophic interactions for H. amarus on a restored floodplain during an extended flood-pulse release from reservoirs using stable isotope analyses (δ13C and δ15N) and paleolimnology techniques. Results from stable isotope ratios indicate that H. amarus obtained carbon primarily from chironomids while aquatic invertebrates (including chironomids) obtained their carbon from macrophytes. Results from the GLIMMIX procedure indicate that the range of isotopic signatures for prey items was much broader at parallel habitats (i.e. floodplain flow parallel to main stem flow) than perpendicular (i.e. floodplain flow perpendicular to main stem flow) or leeward habitats (i.e. leeward sides of island where flow was near zero) indicating a wider selection of food resources. This study suggests that increased duration of floodplain inundation in the MRG provides vital habitats for spawning, nursery, and recruitment of threatened and endangered fish species. A combination of allochthonous and autochthonous resources best describes the nutrient and energy transfers for the Los Lunas, NM restored floodplain.  相似文献   

13.
We have previously reported in vivo biosynthesis of polyhydroxyalkanoates containing 2-hydroxyacid monomers such as lactate and 2-hydroxybutyrate in recombinant Escherichia coli strains by the expression of evolved Clostridium propionicum propionyl-CoA transferase (PctCp) and Pseudomonas sp. MBEL 6-19 polyhydroxyalkanoate (PHA) synthase 1 (PhaC1 Ps6-19). Here, we report the biosynthesis of poly(2-hydroxybutyrate-co-lactate)[P(2HB-co-LA)] by direct fermentation of metabolically engineered E. coli strain. Among E. coli strains WL3110, XL1-Blue, and BL21(DE3), recombinant E. coli XL1-Blue strain expressing PhaC1437 and Pct540 produced P(76.4mol%2HB-co-23.6mol%LA) to the highest content of 88 wt% when it was cultured in a chemically defined medium containing 20 g/L of glucose and 2 g/L of sodium 2-hydroxybutyrate. When recombinant E. coli XL1-Blue strain expressing PhaC1437 and Pct540 was cultured in a chemically defined medium containing 20 g/L of glucose and varying concentration of sodium 2-hydroxybutyrate, 2HB monomer fraction in P(2HB-co-LA) increased proportional to the concentration of sodium 2-hydroxybutyrate added to the culture medium. P(2HB-co-LA)] could also be produced from glucose as a sole carbon source without sodium 2-hydroxybutyrate into the culture medium. Recombinant E. coli XL1-Blue strain expressing the phaC1437, pct540, cimA3.7, and leuBCD genes together with the L. lactis Il1403 panE gene, successfully produced P(23.5mol%2HB-co-76.5mol%LA)] to the polymer content of 19.4 wt% when it cultured in a chemically defined medium containing 20 g/L of glucose. The metabolic engineering strategy reported here should be useful for the production of novel copolymer P(2HB-co-LA)].  相似文献   

14.
Cryptosporidium parvum can be found in both source and drinking water and has been reported to cause serious waterborne outbreaks which threaten public health safety. The U.S. Environmental Protection Agency has developed method 1622 for detection of Cryptosporidium oocysts present in water. Method 1622 involves four key processing steps: filtration, immunomagnetic separation (IMS), fluorescent-antibody (FA) staining, and microscopic evaluation. The individual performance of each of these four steps was evaluated in this study. We found that the levels of recovery of C. parvum oocysts at the IMS-FA and FA staining stages were high, averaging more than 95%. In contrast, the level of recovery declined significantly, to 14.4%, when the filtration step was incorporated with tap water as a spiking medium. This observation suggested that a significant fraction of C. parvum oocysts was lost during the filtration step. When C. parvum oocysts were spiked into reclaimed water, tap water, microfiltration filtrate, and reservoir water, the highest mean level of recovery of (85.0% ± 5.2% [mean ± standard deviation]) was obtained for the relatively turbid reservoir water. Further studies indicated that it was the suspended particles present in the reservoir water that contributed to the enhanced C. parvum oocyst recovery. The levels of C. parvum oocyst recovery from spiked reservoir water with different turbidities indicated that particle size and concentration could affect oocyst recovery. Similar observations were also made when silica particles of different sizes and masses were added to seeded tap water. The optimal particle size was determined to be in the range from 5 to 40 μm, and the corresponding optimal concentration of suspended particles was 1.42 g for 10 liters of tap water.  相似文献   

15.
16.
Immunomagnetic separation (IMS) procedures which specifically capture Cryptosporidium oocysts and have the potential to isolate oocysts from debris have become commercially available. We compared two IMS kits (kit DB [Dynabeads anti-Cryptosporidium; product no. 730.01; Dynal A.S., Oslo, Norway] and kit IC1 [Crypto Scan IMS; product no. R10; Clearwater Diagnostics Company, LLC, Portland, Maine]) and a modification of kit IC1 (kit IC2 [Crypto Scan IMS; product no. R10; Clearwater Diagnostics Company, LLC]) at three turbidity levels (50, 500, and 5,000 nephelometric turbidity units [ntu]) by using water matrices obtained from different geographical locations. In deionized water, kit DB yielded recoveries between 68 and 83%, whereas the recoveries obtained with kits IC1 and IC2 were more variable and ranged from 0.2 to 74.5%. In water matrices with turbidity levels up to 500 ntu, the oocyst recoveries were more variable with kit DB; however, the recoveries were similar to those obtained in deionized water. In contrast, there were notable reductions in oocyst recoveries in the turbid matrices with kits IC1 and IC2, and the highest recovery (8.3%) was obtained with a 50-ntu sample. An examination of the effects of age on oocyst recovery with kit DB revealed that oocysts up to 16 weeks old yielded recoveries similar to the recoveries observed with fresh oocysts. These data indicate that all IMS kits do not perform equally well, and it is important to conduct in-house quality assurance work before a commercially available IMS kit is selected to replace flotation procedures for recovery of Cryptosporidium oocysts.  相似文献   

17.
As part of our studies on the ecology of human enteric viruses, an improved method for detection of rotaviruses in water was developed, and their presence in Galveston Bay was monitored. Samples (378 liters) of estuarine water adjusted to pH 3.5 and a final AlCl3 molarity of 0.001 were filtered through 25-cm pleated cartridge-type filters (Filterite Corp., Timonium, Md.) of 3.0- and 0.45-micron porosity. Adsorbed virus was eluted with 1 liter of 10% tryptose phosphate broth, pH 9.5. Primary eluates were reconcentrated to a final volume of 10 to 20 ml by a simple and rapid magnetic iron oxide adsorption and elution procedure. Two percent casein at pH 8.5 effectively eluted rotavirus from iron oxide. A total of 21 of 72 samples of water, suspended solids, fluffy sediments, and compact sediments collected in different seasons in Galveston Bay yielded rotaviruses. Recovery of rotaviruses varied from 119 to 1,000 PFU/378 liters of water, 1,200 PFU/1,000 g of compact sediment, 800 to 3,800 PFU/378 liters of fluffy sediment, and 1,800 to 4,980 PFU from suspended solids derived from 378 liters of water based on immunofluorescent foci counts on cover slip cultures of fetal monkey kidney cells.  相似文献   

18.
Molecular filtration for recovery of waterborne viruses of fish.   总被引:1,自引:1,他引:0       下载免费PDF全文
The effectiveness of tangential flow filtration (TFF) for the recovery of infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV) from large volumes of water was evaluated. In laboratory studies, virus recovery from IHNV-seeded water following concentration by TFF was approximately 13%. However, the addition of 0.1 and 1% fetal bovine serum to deionized water stabilized the virus, increasing virus recoveries to 95%. The addition of 0.03 and 0.3% beef extract resulted in IHNV recoveries of 80 and 61%, respectively. Similar results were obtained with IPNV-seeded water. Field studies using the TFF procedure were conducted with water from areas where IHNV is endemic. IHNV was detected in effluent from an adult steelhead trout (Salmo gairdneri) holding pond at an estimated concentration of 1 PFU/5 ml of water. It was also detected at levels of 1 PFU/50 ml in water from a 2-m-diameter circular tank containing IHNV-infected steelhead trout fry. IHNV isolated in samples taken from the Metolius River was detected by TFF at estimated levels of 1 PFU/3 liters.  相似文献   

19.
The vaoA gene from Penicillium simplicissimum CBS 170.90, encoding vanillyl alcohol oxidase, which also catalyzes the conversion of eugenol to coniferyl alcohol, was expressed in Escherichia coli XL1-Blue under the control of the lac promoter, together with the genes calA and calB, encoding coniferyl alcohol dehydrogenase and coniferyl aldehyde dehydrogenase of Pseudomonas sp. strain HR199, respectively. Resting cells of the corresponding recombinant strain E. coli XL1-Blue(pSKvaomPcalAmcalB) converted eugenol to ferulic acid with a molar yield of 91% within 15 h on a 50-ml scale, reaching a ferulic acid concentration of 8.6 g liter(-1). This biotransformation was scaled up to a 30-liter fermentation volume. The maximum production rate for ferulic acid at that scale was 14.4 mmol per h per liter of culture. The maximum concentration of ferulic acid obtained was 14.7 g liter(-1) after a total fermentation time of 30 h, which corresponded to a molar yield of 93.3% with respect to the added amount of eugenol. In a two-step biotransformation, E. coli XL1-Blue(pSKvaomPcalAmcalB) was used to produce ferulic acid from eugenol and, subsequently, E. coli(pSKechE/Hfcs) was used to convert ferulic acid to vanillin (J. Overhage, H. Priefert, and A. Steinbüchel, Appl. Environ. Microbiol. 65:4837-4847, 1999). This process led to 0.3 g of vanillin liter(-1), besides 0.1 g of vanillyl alcohol and 4.6 g of ferulic acid liter(-1). The genes ehyAB, encoding eugenol hydroxylase of Pseudomonas sp. strain HR199, and azu, encoding the potential physiological electron acceptor of this enzyme, were shown to be unsuitable for establishing eugenol bioconversion in E. coli XL1-Blue.  相似文献   

20.
In this study, we examined the effect that magnetic materials and pH have on the recoveries of Cryptosporidium oocysts by immunomagnetic separation (IMS). We determined that particles that were concentrated on a magnet during bead separation have no influence on oocyst recovery; however, removal of these particles did influence pH values. The optimal pH of the IMS was determined to be 7.0. The numbers of oocysts recovered from deionized water at pH 7.0 were 26.3% higher than those recovered from samples that were not at optimal pH. The results indicate that the buffers in the IMS kit did not adequately maintain an optimum pH in some water samples. By adjusting the pH of concentrated environmental water samples to 7.0, recoveries of oocysts increased by 26.4% compared to recoveries from samples where the pH was not adjusted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号