首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Landscape-dependent distribution of northern forest birds in winter   总被引:2,自引:0,他引:2  
We evaluated the effects of landscape structure, along a broad gradient of deforestation (forest cover 8–88%, 500-m radius), on the spatial distribution of forest birds exposed to winter climatic conditions, in Quebec, Canada. Concurrently, we conducted an experiment to determine if these effects would persist if an unlimited source of energy, provided by food-supplementation, became available. We analyzed these effects at the population level, using count data of black-capped chickadees Poecile atricapillus , but also at the community level, referring to species richness. In one of the two years of the study, before food-supplementation began (November), "forest integrity" (a composite of forest cover and edge density) was positively associated with chickadee abundance and species richness. Each year, forest integrity was also positively associated with chickadee abundance and species richness in landscapes that were supplemented (December–February). However, in control landscapes, during the food-supplementation period, chickadee abundance and species richness tended to decrease with an increase in forest integrity. We argue that the more forested control landscapes facilitated winter emigration of juveniles and transient birds. Conversely, our results further suggest that, in the highly deforested and fragmented control landscapes, birds became "gap-locked" when rigorous winter climatic conditions exacerbated already existing movement constraints.  相似文献   

2.
Questions: What are the species composition and species and stem densities of liana communities in tropical landscapes of different deforestation levels? Which spatial attributes (forest cover, patch area, shape and isolation) have the strongest influence on liana communities in these landscapes? Location: Forty‐five rainforest patches in Los Tuxtlas Biosphere Reserve, Mexico. Methods: In three landscapes with different deforestation levels (HDL=4%; IDL=11%; and LDL=24% of remaining forest cover) liana communities (DBH ≥2.5 cm) were characterized in 15 randomly selected patches per landscape (10 50 m × 2 m transects per patch=0.1 ha), and evaluated the effects of patch area, shape and isolation on liana species and stem density (number of species and stems per 0.1 ha). Results: A total of 64 taxa and 24 families were sampled. Species composition differed highly among landscapes, with HDL being the most dissimilar landscape. The response of lianas to landscape spatial pattern differed significantly among landscapes. Proximity to villages had a strong positive effect on species and stem densities in LDL and IDL. There was a sharp decrease in liana stem density in HDL, with four patches (27%) found to be unoccupied by lianas. Conclusions: Fragmentation may have a positive effect on lianas, partly because of edge effects. This positive effect seems to be limited by the proportion of remaining forest cover in the landscape, as the liana communities had collapsed in the most deforested landscape.  相似文献   

3.
Deforestation and resulting landscape fragmentation are important concerns in many tropical areas. Deforestation is a complex process with many potential feedback loops, many of which are ignored in models that attempt to interpolate forest loss based on past deforestation rates. In addition, most ecological studies of the impacts of deforestation have focused on landscapes that are already fragmented. These studies ignore the fact that edge effects, such as anthropogenic fire, reach their maximum well before habitat connectivity is lost and may create positive feedbacks that result in further fragmentation. We developed a simple model to explore the potential influence of edge effects on fragmentation rates and used remotely sensed data from the MAP (Madre de Dios, Acre, and Pando) region of the Brazilian Amazon to parameterize the relationships of interest. Under reasonable real-world parameter combinations, edge effects can have a significant impact on deforestation rates, supporting the hypothesis that the true tipping point in a forest to pasture regime shift occurs earlier (i.e., ∼50% forest loss) than analysis of a loss in connectivity would suggest (i.e., ∼60% forest loss). Our results have important implications for understanding deforestation, edge-driven processes, regime shifts, and the management of complex pattern-process relationships.  相似文献   

4.
The traditional shade cacao plantations (cabrucas) of southern Bahia, Brazil, are biologically rich habitats, encompassing many forest-dwelling species. However, a critical question for the conservation management of this specific region, and the highly fragmented Atlantic forest in general, is to what extent the conservation value of cabrucas relies on the presence of primary forest habitat in the landscape. We investigated the relative importance of cabrucas and forests for the conservation of five diverse biological groups (ferns, frogs, lizards, birds and bats) in two contrasting landscapes in southern Bahia, one dominated by forest with some interspersed cabrucas, and one dominated by cabrucas with interspersed forest fragments. The community structure (richness, abundance and diversity) of all biological groups differed between cabrucas and forests, although these differences varied among groups. A high number of forest species was found in the cabrucas. However, there were pronounced differences between the two landscapes with regard to the ability of cabrucas to maintain species richness. Irrespective of the biological group considered, cabrucas located in the landscape with few and small forest fragments supported impoverished assemblages compared to cabrucas located in the landscape with high forest cover. This suggests that a greater extent of native forest in the landscape positively influences the species richness of cabrucas. In the landscape with few small forest fragments interspersed into extensive areas of shade cacao plantations, the beta diversity of birds was higher than in the more forested landscape, suggesting that forest specialist species that rarely ventured into cabrucas were randomly lost from the fragments. These results stress both the importance and the vulnerability of the small forest patches remaining in landscapes dominated by shade plantations. They also point to the need to preserve sufficient areas of primary habitat even in landscapes where land use practices are generally favorable to the conservation of biodiversity.  相似文献   

5.
A major conservation challenge in mosaic landscapes is to understand how trait‐specific responses to habitat edges affect bird communities, including potential cascading effects on bird functions providing ecosystem services to forests, such as pest control. Here, we examined how bird species richness, abundance and community composition varied from interior forest habitats and their edges into adjacent open habitats, within a multi‐regional sampling scheme. We further analyzed variations in Conservation Value Index (CVI), Community Specialization Index (CSI) and functional traits across the forest‐edge‐open habitat gradient. Bird species richness, total abundance and CVI were significantly higher at forest edges while CSI peaked at interior open habitats, i.e., furthest from forest edge. In addition, there were important variations in trait‐ and species‐specific responses to forest edges among bird communities. Positive responses to forest edges were found for several forest bird species with unfavorable conservation status. These species were in general insectivores, understorey gleaners, cavity nesters and long‐distance migrants, all traits that displayed higher abundance at forest edges than in forest interiors or adjacent open habitats. Furthermore, consistently with predictions, negative edge effects were recorded in some forest specialist birds and in most open‐habitat birds, showing increasing densities from edges to interior habitats. We thus suggest that increasing landscape‐scale habitat complexity would be beneficial to declining species living in mosaic landscapes combining small woodlands and open habitats. Edge effects between forests and adjacent open habitats may also favor bird functional guilds providing valuable ecosystem services to forests in longstanding fragmented landscapes.  相似文献   

6.
We studied the effects of forest patch size and forest edge structure on nest predation in a boreal coniferous forest landscape. The following predictions were tested. Nest predation should be higher in small than in large stands, in edges than in interior areas of forest stands, and in barren forest/clear–cut edges created by forestry than in natural forest/open marsh edges. Four types of artificial above ground nests (total of 261) were used; open cup nests with reindeer Rangifer t. tarandus hair, open cup nests with domestic hen Gallus domesticus feathers, and unlined open cup and nest–box nests. Nests were baited with one Japanese quail Coturnix coturnix japonica egg. Nest–boxes were depredated significantly less than open cup nests of all types. No edge- or stand size–related nest predation was found. The predation rate, regardless of the nest type, did not differ relative to the edge type and vegetation characteristics. However, better horizontal visibility of open cup nests due to more open vegetation structure increased predation risk in man–made edges compared to inherent edges. The results suggest that edge–related nest predation is absent or weak in forest dominated landscapes. This may be due to predator types present in the landscape and/or predators habitat use in forest dominated areas. Therefore, it might be that findings documented in other areas, such as in agricultural dominated landscapes, cannot be directly applied to managed forest landscapes.  相似文献   

7.
Amphibians and reptiles are sensitive to changes in the thermal environment, which varies considerably in human-modified landscapes. Although it is known that thermal traits of species influence their distribution in modified landscapes, how herpetofauna respond specifically to shifts in ambient temperature along forest edges remains unclear. This may be because most studies focus on local-scale metrics of edge exposure, which only account for a single edge or habitat patch. We predicted that accounting for the combined effect of multiple habitat edges in a landscape would best explain herpetofaunal response to thermally mediated edge effects. We (1) surveyed herpetofauna at two lowland, fragmented forest sites in central Colombia, (2) measured the critical thermal maximum (CTmax) of the species sampled, (3) measured their edge exposure at both local and landscape scales, and (4) created a thermal profile of the landscape itself. We found that species with low CTmax occurred both further from forest edges and in areas of denser vegetation, but were unaffected by the landscape-scale configuration of habitat edges. Variation in the thermal landscape was driven primarily by changes in vegetation density. Our results suggest that amphibians and reptiles with low CTmax are limited by both canopy gaps and proximity to edge, making them especially vulnerable to human modification of tropical forest. Abstract in Spanish is available with online material.  相似文献   

8.
In open landscapes, grass leaves provide an abundant resource for ruminants, with potentially high nutritional value. However, their extensive digestion requires a long fermentation time, achieved through large rumen and the stratification of the rumen content. Due to anatomical and physiological differences, ruminants differ in their ability to process grass leaves. Particularly, the small roe deer, with its viscous saliva and unstratified rumen content, is generally classified as a strict browser. We hypothesised that roe deer may be able to use grass leaves in some circumstances, notably when the availability of other resources declines and when the quality of grass leaves is high. We expected that (1) grass leave consumption should be higher in open landscapes than in forest habitat because grasses are more widely available and more nutritious in open landscapes and (2) grass leave consumption should increase in winter when the availability of other resources declines. We assessed grass consumption by microscopic analysis of roe deer faecal pellets collected monthly both in forest habitat and in the surrounding open landscape. We found that both the occurrence and the proportion of grass leaves in the faeces were higher in the open landscape (predicted mean proportion 0.31) than in the forest (predicted mean proportion 0.05). In addition, the proportion of grass leaves in the faeces was higher in winter and lower in spring in both forest and open landscape. We suggest that roe deer are able to use grass leaves with unusually high nutritional quality in winter in this mild climate area. This involves a certain level of digestive plasticity to efficiently digest high quality grasses and may confer nutritional benefit to individuals feeding in an open landscape.  相似文献   

9.
Hummingbirds are important pollinators of many native Neotropical plants but their abundance and diversity in landscapes dominated by intensive human uses such as agriculture have rarely been examined, despite such land‐uses prevailing in the tropics. We examined how tropical deforestation affects hummingbird community structure in premontane forest patches embedded in a tropical countryside of Coto Brus Canton, Costa Rica. We captured hummingbirds in fourteen landscapes representing a gradient in patch size and forest amount, and tested for the effects of these variables on (1) hummingbird captures at flowers (pollinator availability); (2) species richness; and (3) filtering of functional traits. After accounting for sampling effects, both hummingbird availability and species richness declined by 40% and 50%, respectively, across the gradient in deforestation that we observed (9–66% forest within 1000 m). Focal patch size was the strongest predictor, even after statistically accounting for the amount of forest and matrix composition of landscapes. These reductions in availability and richness were well predicted by functional traits; morphologically specialized species with the capacity to transport long‐distance outcrossed pollen and low functional redundancy within the pollinator network showed the greatest sensitivity to landscape change. We hypothesize that declines in hummingbird availability, diversity, and functional traits are important mechanisms driving the observed pollen limitation of ornithophilous flowers in fragmented tropical landscapes. Efforts to conserve large forest patches and enhance matrix permeability are critical for maintaining forest hummingbird communities and pollination services under current and predicted deforestation regimes.  相似文献   

10.
Fragmentation of Continental United States Forests   总被引:11,自引:1,他引:10  
We report a multiple-scale analysis of forest fragmentation based on 30-m (0.09 ha pixel−1) land-cover maps for the conterminous United States. Each 0.09-ha unit of forest was classified according to fragmentation indexes measured within the surrounding landscape, for five landscape sizes including 2.25, 7.29, 65.61, 590.49, and 5314.41 ha. Most forest is found in fragmented landscapes. With 65.61-ha landscapes, for example, only 9.9% of all forest was contained in a fully forested landscape, and only 46.9% was in a landscape that was more than 90% forested. Overall, 43.5% of forest was located within 90 m of forest edge and 61.8% of forest was located within 150 m of forest edge. Nevertheless, where forest existed, it was usually dominant—at least 72.9% of all forest was in landscapes that were at least 60% forested for all landscape sizes. Small (less than 7.29 ha) perforations in otherwise continuous forest cover accounted for about half of the fragmentation. These results suggest that forests are connected over large regions, but fragmentation is so pervasive that edge effects potentially influence ecological processes on most forested lands. Received 22 October 2001; accepted 30 April 2002.  相似文献   

11.
Conversion of tropical forests is among the primary causes of global environmental change. The loss of their important environmental services has prompted calls to integrate ecosystem services (ES) in addition to socio‐economic objectives in decision‐making. To test the effect of accounting for both ES and socio‐economic objectives in land‐use decisions, we develop a new dynamic approach to model deforestation scenarios for tropical mountain forests. We integrate multi‐objective optimization of land allocation with an innovative approach to consider uncertainty spaces for each objective. These uncertainty spaces account for potential variability among decision‐makers, who may have different expectations about the future. When optimizing only socio‐economic objectives, the model continues the past trend in deforestation (1975–2015) in the projected land‐use allocation (2015–2070). Based on indicators for biomass production, carbon storage, climate and water regulation, and soil quality, we show that considering multiple ES in addition to the socio‐economic objectives has heterogeneous effects on land‐use allocation. It saves some natural forest if the natural forest share is below 38%, and can stop deforestation once the natural forest share drops below 10%. For landscapes with high shares of forest (38%–80% in our study), accounting for multiple ES under high uncertainty of their indicators may, however, accelerate deforestation. For such multifunctional landscapes, two main effects prevail: (a) accelerated expansion of diversified non‐natural areas to elevate the levels of the indicators and (b) increased landscape diversification to maintain multiple ES, reducing the proportion of natural forest. Only when accounting for vascular plant species richness as an explicit objective in the optimization, deforestation was consistently reduced. Aiming for multifunctional landscapes may therefore conflict with the aim of reducing deforestation, which we can quantify here for the first time. Our findings are relevant for identifying types of landscapes where this conflict may arise and to better align respective policies.  相似文献   

12.
In fragmented landscapes, ecological processes may be significantly influenced by edge effects, but few data are available for edge effects across forest–farmland edges. We investigated patterns of species richness, abundance, and species composition in ground beetles across forest–farm edges in two different agro-forest landscapes in Korea. Nine and five sites were selected from Hwaseong, a fragmented landscape, in 2011 and 2012, respectively, while eight sites were selected from Hoengseong, a relatively well-protected landscape, in 2012. Ground beetles were collected by pitfall trapping. Species richness was higher in the surrounding habitat than in the forest interior or edge in both Hwaseong and Hoengseong. However, in Hwaseong, species richness of the forest edge was similar to that of the forest interior, while in Hoengseong forest edge species richness was intermediate between that of the forest interior and surrounding areas. In addition, non-metric multidimensional scaling based on the combined data of both locations showed that the species composition of ground beetles in the forest edge was more similar to that of the forest interior than the surrounding areas, although some open-habitat species occurred at the forest edges. Three characteristic groups (forest specialists, edge-associated species, and open-habitat species) of ground beetle species were detected by indicator value analysis. In our study, ground beetle assemblages differed in the forest edges of two agro-forest landscapes, suggesting that the edge effect on biota can be influenced by landscape structure.  相似文献   

13.
ABSTRACT Large‐scale transformation of forested landscapes is a major factor in loss of biological diversity in the American tropics. Investigators examining the responses of species to deforestation rarely control for variation in the amount of forest relative to other habitats at the landscape‐level. Bellavista Reserve on the western slope of the Andes in Ecuador is located between similar‐sized areas of pristine, protected forest, and deforested landscapes. We used strip‐transect counts and mist netting to evaluate habitat use by passerine birds in a habitat mosaic consisting of abandoned pastures, forest edges, forest fragments, and large blocks of interior tropical montane cloud forest (TMCF). During 3600 net hours, we had 1476 captures, including 346 recaptures. Of 78 species captured in mist nets, 30 had sufficient counts for Poison Rate Regression (PRR) modeling (a statistical method for comparing counts). Twelve species (40%) had capture patterns indicative of an affinity for mature TMCF, and 6 species (20%) had significantly higher counts in degraded areas (forest edge, forest fragment, and regenerating pastures) than in interior TMCF. The remaining 40% showed no significant bias in detection among habitats. Combined with strip‐count data, our results suggest that about 38% of the 119 species sampled at the Bellavista Reserve occur primarily in mature TMCF, avoiding edges and early second‐growth forest. Populations of these species may be vulnerable to further loss, fragmentation, and degradation of TMCF and, as such, deserve additional study and a place on lists of species of conservation concern.  相似文献   

14.
Rapid deforestation has fragmented habitat across the landscape of Madagascar. To determine the effect of fragmentation on seed banks and the potential for forest regeneration, we sampled seed viability, density and diversity in 40 plots of 1 m2 in three habitat types: forest fragments, the near edge of continuous forest, and deforested savanna in a highly fragmented dry deciduous forest landscape in northwestern Madagascar. While seed species diversity was not different between forest fragments and continuous forest edge, the number of animal‐dispersed seeds was significantly higher in forest fragments than in continuous forest edge, and this pattern was driven by a single, small‐seeded species. In the savanna, seeds were absent from all but three of the 40 plots, indicating that regeneration potential is low in these areas. Several pre‐ and post‐dispersal biotic and abiotic factors, including variation in the seed predator communities and edge effects could explain these findings. Understanding the extent to which seed dispersal and seed banks influence the regeneration potential of fragmented landscapes is critical as these fragments are the potential sources of forest expansion and re‐connectivity.  相似文献   

15.
1. We investigated the effects of forest fragmentation on American martens ( Martes americana Rhoads) by evaluating differences in marten capture rates (excluding recaptures) in 18 study sites with different levels of fragmentation resulting from timber harvest clearcuts and natural openings. We focused on low levels of fragmentation, where forest connectivity was maintained and non-forest cover ranged from 2% to 42%.
2. Martens appeared to respond negatively to low levels of habitat fragmentation, based on the significant decrease in capture rates within the series of increasingly fragmented landscapes. Martens were nearly absent from landscapes having > 25% non-forest cover, even though forest connectivity was still present.
3. Marten capture rates were negatively correlated with increasing proximity of open areas and increasing extent of high-contrast edges. Forested landscapes appeared unsuitable for martens when the average nearest-neighbour distance between open (non-forested) patches was <100 m. In these landscapes, the proximity of open areas created strips of forest edge and eliminated nearly all forest interior.
4. Small mammal densities were significantly higher in clearcuts than in forests, but marten captures were not correlated with prey abundance or biomass associated with clearcuts.
5. Conservation efforts for the marten must consider not only the structural aspects of mature forests, but the landscape pattern in which the forest occurs. We recommend that the combination of timber harvests and natural openings comprise <25% of landscapes ≥9 km2 in size.
6. The spatial pattern of open areas is important as well, because small, dispersed openings result in less forest interior habitat than one large opening at the same percentage of fragmentation. Progressive cutting from a single patch would retain the largest amount of interior forest habitat.  相似文献   

16.
Aim We studied the temporal and spatial patterns in deforestation and community structure of mammals in a fragmented old‐growth, temperate rain forest to test the hypothesis that anthropogenic habitat conversion advances in a nonrandom manner across native landscapes, and that its effects on ecological communities are both persistent and predictable. Location The location is the Hood Canal district of Olympic National Forest, Washington, USA. Results Deforestation followed the apparently general pattern observed for deforestation of tropical rain forests and other native landscapes, advancing first along low and relatively level valleys, then to areas at higher elevations and along steeper slopes, and eventually to sites more distant from those of initial land conversion and transportation centres. Mammal surveys within this area indicated that this nonrandom advance of deforestation has created relatively steep geographical and topographic gradients in both local and landscape‐level factors and, ultimately, in the structure of mammalian communities. Conclusion The close and likely causal relationship between anthropogenic habitat loss and the ecological dynamics of mammalian communities and dependent species (e.g. spotted owls) indicates that our abilities to understand and eventually reduce the current extinction crisis may rely heavily on our understanding of, and abilities to modify, the manner in which we expand across and transform native landscapes.  相似文献   

17.
Seed dispersal constitutes a pivotal process in an increasingly fragmented world, promoting population connectivity, colonization and range shifts in plants. Unveiling how multiple frugivore species disperse seeds through fragmented landscapes, operating as mobile links, has remained elusive owing to methodological constraints for monitoring seed dispersal events. We combine for the first time DNA barcoding and DNA microsatellites to identify, respectively, the frugivore species and the source trees of animal‐dispersed seeds in forest and matrix of a fragmented landscape. We found a high functional complementarity among frugivores in terms of seed deposition at different habitats (forest vs. matrix), perches (isolated trees vs. electricity pylons) and matrix sectors (close vs. far from the forest edge), cross‐habitat seed fluxes, dispersal distances and canopy‐cover dependency. Seed rain at the landscape‐scale, from forest to distant matrix sectors, was characterized by turnovers in the contribution of frugivores and source‐tree habitats: open‐habitat frugivores replaced forest‐dependent frugivores, whereas matrix trees replaced forest trees. As a result of such turnovers, the magnitude of seed rain was evenly distributed between habitats and landscape sectors. We thus uncover key mechanisms behind “biodiversity–ecosystem function” relationships, in this case, the relationship between frugivore diversity and landscape‐scale seed dispersal. Our results reveal the importance of open‐habitat frugivores, isolated fruiting trees and anthropogenic perching sites (infrastructures) in generating seed dispersal events far from the remnant forest, highlighting their potential to drive regeneration dynamics through the matrix. This study helps to broaden the “mobile‐link” concept in seed dispersal studies by providing a comprehensive and integrative view of the way in which multiple frugivore species disseminate seeds through real‐world landscapes.  相似文献   

18.
Estimates of tropical deforestation and forest degradation are misleading, partly because different studies make use of different forest definitions. This paper investigates the influence of this confusion on the assessment of forest extent and its spatial distribution, by means of fine-scaled land cover maps and landscape metrics. The state of Rondônia, Brazil, located in the southwestern part of the Amazon basin and known for its fishbone-like pattern of deforestation, is used as a study area. A 1:250 000 vector data product from the Brazilian Geography and Statistics Institute (IBGE), describing the land cover type in a three-step hierarchy specifying canopy density, topography, and dominant life forms, was rasterized and analyzed. Forest subcategories were aggregated into a seven level gradient, ranging from a level that is very specific and only includes dense multi-layered rain forest, to less strict levels containing open forest systems, secondary vegetation, and tree savannas. We show that there is a consistent difference between the initial class aggregation level, and all other levels, which gradually broaden the forest definition and are characterized by very distinct ecological parameters, such as a higher mean patch size, increased levels of landscape connectivity and slightly more irregularly shaped patches. We recommend a harmonization of the major forest definitions in use today, while taking care not to lose the relevant ecological information that can be extracted from its most detailed classification level.  相似文献   

19.
ABSTRACT Red-shouldered hawks (Buteo lineatus) are a species of special conservation concern in much of the Great Lakes region, and apparent population declines are thought to be primarily due to habitat loss and alteration. To evaluate red-shouldered hawk-habitat associations during the nesting season and at the landscape scale, we conducted repeated call-broadcast surveys in central Minnesota, USA, across 3 landscapes that represented a range of landscape conditions as a result of differing management practices. In 2004, we conducted repeated call-broadcast surveys at 131 locations in 2 study areas, and in 2005, we surveyed 238 locations in 3 study areas. We developed models relating habitat characteristics at 2 spatial scales to red-shouldered hawk occupancy and assessed support for these models in an information-theoretic framework. Overall, a small proportion of nonforest (grass, clear-cut area, forest <5 yr old), and a large proportion of mature deciduous forest (>40 yr old), had the strongest association with red-shouldered hawk occupancy (proportion of sites occupied) at both spatial scales. The landscape conditions we examined appeared to contain a habitat transition important to red-shouldered hawks. We found, in predominately forest landscapes, the amount of open habitat was most strongly associated with red-shouldered hawk occupancy, but in landscapes that included slightly less mature forest and more extensive open habitats, the extent of mature deciduous forest was most strongly associated with red-shouldered hawk occupancy. Our results suggested that relatively small (<5 ha) patches of open habitat (clear-cuts) in otherwise forested landscapes did not appear to influence red-shouldered hawk occupancy. Whereas, in an otherwise similar landscape, with smaller amounts of mature deciduous forest and larger (>15 ha) patches of open habitat, red-shouldered hawk occupancy decreased, suggesting a threshold in landscape composition, based on both the amount of mature forest and open area, is important in managing forest landscapes for red-shouldered hawks. Our results show that during the nesting season, red-shouldered hawks in central Minnesota occupy at similar rates landscapes with different habitat compositions resulting from different management strategies and that management strategies that create small openings may not negatively affect red-shouldered hawk occupancy.  相似文献   

20.
上海环城林带景观美学评价及优化策略   总被引:3,自引:0,他引:3  
张凯旋  凌焕然  达良俊 《生态学报》2012,32(17):5521-5531
选取上海环城林带7种植物群落,采用美景度评判法,从林内景观和林外景观2个空间层次和春、夏、秋、冬4个季节,应用数量化理论Ⅰ建立了美景度和各景观因子类目之间的景观评价与预测的多元回归模型,分析了群落的结构特征和季相特征对林内景观以及外貌特征对林外景观的影响,并提出相应的优化对策。结果表明:(1)群落结构特征对林内景观的影响主要因子为胸径(平均胸径和胸径变异系数)、郁闭度和疏透度。在春季,林内美景度随着树木胸径增大而增加;在夏季,郁闭度增大会提升林内美景度;在秋季,胸径变异小的群落具有更高的林内观赏性;在冬季,疏透度对林内景观美景度影响最大。(2)群落季相特征对林内景观的影响,在各季节表现亦不同。在春季,黄色、紫色等明度较高的色相和开花量适中的群落美景度最佳;在夏季,生长势好、林冠层变化小以及树干清晰度高的群落具较高的美景度,且观花可显著提高夏季林内美景度;在秋季,色彩越纯美景度越高;而在冬季,树皮颜色深的群落美景度高。(3)群落外貌特征对林外景观有显著影响,其中林冠线对林外景观美景度影响最大,其次为林缘线。具有起伏不大林冠线和自然流畅林缘线的植物群落美景度高。旨在通过对典型植被群落不同季相的美景度评价,对上海环城林带的群落景观进行定量的评价,进而为不同情景下的群落结构优化提出相应的对策,为城市森林的群落建构与管理提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号