首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Goubitz  S.  Nathan  R.  Roitemberg  R.  Shmida  A.  Ne’eman  G. 《Plant Ecology》2004,173(2):191-201
To assess the canopy seed bank structure of Pinus halepensis, we measured the level of serotiny and the seed bank size and density of trees in unburned stands and post-fire regenerated stands in Israel. We analysed the effects of tree size, tree density and fire history on the level of serotiny. The level of serotiny decreased with an increase in tree height. The high level of serotiny in short trees could be explained by selection to increase regeneration chances after burning at pre-mature age. Also, limitation of long-distance seed dispersal opportunities in short trees may favour high serotiny levels. The level of serotiny was higher in post-fire stands than in unburned stands, suggesting a fast selection for serotiny by fire. Unburned stands had a higher total stand seed density than post-fire regenerated stands, but the proportion of seeds in serotinous cones of the total stand seed density was higher in post-fire regenerated stands. The fact that P. halepensis bears simultaneously serotinous and non-serotinous cones reflects its dual strategy as both a post-fire obligate seeder, mainly from serotinous cones and an early coloniser during fire-free periods, mainly from non-serotinous cones. The relative investment in these strategies is dependent on fire history and varies with tree height. Furthermore, mature brown cones can contribute to post-fire regeneration in case of spring fires, and serotinous cones are known to open partially also in dry spell events. Thus, post-fire regeneration and invasion are strategies, which seem to complement each other.  相似文献   

2.
Life histories of Mediterranean pines   总被引:1,自引:0,他引:1  
Tapias  Raul  Climent  José  Pardos  Jose A.  Gil  Luis 《Plant Ecology》2004,171(1-2):53-68
The life history of Spanish pines and their relation to fire as the main disturbance factor in their ecosystems was analysed. The primary ecological attributes studied were the canopy seed bank (onset of cone production, percentage and persistence of serotinous cones), seed and cone morphology, sprouting and bark thickness. Four ecological groups were separated using multivariate cluster analysis and their life-history characteristics are discussed. Serotiny and early flowering in Pinus halepensis and P. pinaster reflect their evader strategy in relation to fire as this character is advantageous to survive frequent crown fires and to attain successful post-fire recruitment. Late flowering and absence of serotinous cones in P. nigra, P. sylvestris and P. uncinata indicate that their natural forest did not evolve under frequent crown fires. P. canariensis and P. pinea appeared in two single groups because of their sprouting capability and their seed size respectively. Intraspecific variation in P. pinaster was also analysed using the same criteria and high variability was found in its life history traits. A group of P. pinaster populations showed high levels of serotiny and thin bark as a possible adaptation to frequent stand-replacing crown fires. In contrast, a group of non- or weakly-serotinous populations seems to have evolved under a low-intensity fire regime where the best fitness corresponds to thick-barked individuals capable of surviving ground fires. Intermediate strategies were also evident in this species and were discussed in relation to the effect of different fire regimes caused by the understorey vegetation.  相似文献   

3.
Understory fires represent an accelerating threat to Amazonian tropical forests and can, during drought, affect larger areas than deforestation itself. These fires kill trees at rates varying from < 10 to c. 90% depending on fire intensity, forest disturbance history and tree functional traits. Here, we examine variation in bark thickness across the Amazon. Bark can protect trees from fires, but it is often assumed to be consistently thin across tropical forests. Here, we show that investment in bark varies, with thicker bark in dry forests and thinner in wetter forests. We also show that thinner bark translated into higher fire‐driven tree mortality in wetter forests, with between 0.67 and 5.86 gigatonnes CO2 lost in Amazon understory fires between 2001 and 2010. Trait‐enabled global vegetation models that explicitly include variation in bark thickness are likely to improve the predictions of fire effects on carbon cycling in tropical forests.  相似文献   

4.
Question: Can the direct regeneration hypothesis (DRH) be used to predict post‐disturbance regeneration after fire, wind disturbance, and clearcutting in northern forests? Do life‐history traits such as regeneration strategy and shade tolerance influence post‐disturbance regeneration success of tree species? Location: Northern forests in North America. Methods: A meta‐analysis was conducted by collecting published data on pre‐ and post‐disturbance stand compositional characteristics in the northern forests. For each tree species, compositional difference (CD) was calculated as the difference between basal area proportions of the post‐ and pre‐disturbance stands, but for post‐disturbance stands <25 years of age, post‐disturbance proportions were calculated based on relative stem density. Results: Species response to disturbances was best explained by regeneration strategy, while disturbance type had no effect on CD. The proportion of broadleaf trees with either strong or weak vegetative reproduction ability increased after all disturbances. Serotinous species had CD values not significantly different from zero after fire, while CD for semi‐serotinous species was negative. The post‐disturbance proportions of non‐serotinous conifers decreased after all forms of disturbance. Conclusions: All disturbances promote broadleaf trees, regardless of regeneration strategy (suckering, sprouting, or seeding). The DRH is supported for conifers with serotinous cones after fire. Fire causes local extinction of non‐serotinous conifers, while wind and clearcutting only decrease the proportion of non‐serotinous conifers because of partial survival of seed sources and advanced regeneration. This study suggests that increasing stand‐replacing disturbances associated with global climate change will promote broadleaf trees in northern forests.  相似文献   

5.
North American fire‐adapted forests are experiencing changes in fire frequency and climate. These novel conditions may alter postwildfire responses of fire‐adapted trees that survive fires, a topic that has received little attention. Historical, frequent, low‐intensity wildfire in many fire‐adapted forests is generally thought to have a positive effect on the growth and vigor of trees that survive fires. Whether such positive effects can persist under current and future climate conditions is not known. Here, we evaluate long‐term responses to recurrent 20th‐century fires in ponderosa pine, a fire‐adapted tree species, in unlogged forests in north central Idaho. We also examine short‐term responses to individual 20th‐century fires and evaluate whether these responses have changed over time and whether potential variability relates to climate variables and time since last fire. Growth responses were assessed by comparing tree‐ring measurements from trees in stands burned repeatedly during the 20th century at roughly the historical fire frequency with trees in paired control stands that had not burned for at least 70 years. Contrary to expectations, only one site showed significant increases in long‐term growth responses in burned stands compared with control stands. Short‐term responses showed a trend of increasing negative effects of wildfire (reduced diameter growth in the burned stand compared with the control stand) in recent years that had drier winters and springs. There was no effect of time since the previous fire on growth responses to fire. The possible relationships of novel climate conditions with negative tree growth responses in trees that survive fire are discussed. A trend of negative growth responses to wildfire in old‐growth forests could have important ramifications for forest productivity and carbon balance under future climate scenarios.  相似文献   

6.
Ne'eman  Gidi  Goubitz  Shirrinka  Nathan  Ran 《Plant Ecology》2004,171(1-2):69-79

Fire is known to be a major factor in shaping plants and vegetation worldwide. Many plant traits have been described as adaptations for surviving fire, or regenerating after it. However, many of the traits are also advantageous for overcoming other disturbances. The fact that fire in the Mediterranean Basin has been almost exclusively of anthropogenic origin, and thus is of short duration in an evolutionary time scale, cast doubt on the possibility that fire can act as a selective force in the Mediterranean Basin. Our aim here is to review the ecological advantages of Pinus halepensis traits and their possibility to be selected by fire. The non-self pruning of cones and branches, and the high resin content increase the probability of canopy fires and consequent death of P. halepensis trees. Post-fire regeneration of P. halepensis depends totally upon its canopy-stored seed bank. The seedlings grow quickly and they first reproduce at an early age. Young reproductive trees function first as females with a high percentage of serotinous cones. Thus, young P. halepensistrees allocate many resources to seed production, reducing their `immaturity risk' in a case of an early successive fire. The proportion of serotinous cones is higher in post-fire naturally regenerating stands than in unburned stands, and seeds from serotinous cones germinate better under simulated post-fire conditions. The extremely high pH of the ash-bed under the burned canopies creates the post-fire regeneration niche of P. halepensis exactly under their parent trees. All these traits are advantageous for post-fire regeneration, but could they also be selected during the time scale of anthropogenic fires in the Mediterranean Basin? Pinus halepensis is a relatively short living tree with almost no recruitment under forest canopy. The longest estimated fire-return interval and generation length are about 125 years. The earliest solid evidence for the first hominid-controlled fire in the Mediterranean basin is 780,000 years ago, and thus the estimated number of post-fire generations is 6240. We suggest that such a number of generations is sufficient for the selection and radiation of fire adaptive traits in P. halepensis.

  相似文献   

7.
Exotic species storing seeds in the canopy (serotinous species) can experience a clear advantage in fire-prone communities that lack native taxa with such fire-resistant traits. In addition, selection in the new environment can potentially increase the frequency of fire-adapted characteristics such as serotiny. We studied the potential role of fire favoring the serotinous, non-native conifer Pinus radiata in NW Patagonia. We characterized the degree of serotiny (percentage of serotinous cones) and the size of the canopy seed bank in the unburned plantation and in stands of trees recruited after a fire 30 years ago as a proxy for invasion potential. Fire had a positive effect, increasing serotiny in post-fire P. radiata stands. Post-fire recruited cohorts showed higher serotiny levels and a larger canopy seed bank compared with plantations. Our study suggests that fire-linked traits like serotiny may be subjected to a rapid, fire-driven selection process in fire-adapted species such as P. radiata invading fire-prone ecosystems. Thus, increased serotiny can lead to higher postfire invasion densities, which in turn create a positive feedback loop in invaded areas under recurrent fires.  相似文献   

8.
Question: This study evaluates how fire regimes influence stand structure and dynamics in old‐growth mixed conifer forests across a range of environmental settings. Location: A 2000‐ha area of mixed conifer forest on the west shore of Lake Tahoe in the northern Sierra Nevada, California. Methods: We quantified the age, size, and spatial structure of trees in 12 mixed conifer stands distributed across major topographic gradients. Fire history was reconstructed in each stand using fire scar dendrochronology. The influence of fire on stand structure was assessed by comparing the fire history with the age, size, and spatial structure of trees in a stand. Results: There was significant variation in species composition among stands, but not in the size, age and spatial patterning of trees. Stands had multiple size and age classes with clusters of similar aged trees occurring at scales of 113 ‐ 254 m2. The frequency and severity of fires was also similar, and stands burned with low to moderate severity in the dormant season on average every 9–17 years. Most fires were not synchronized among stands except in very dry years. No fires have burned since ca. 1880. Conclusions: Fire and forest structure interact to perpetuate similar stand characteristics across a range of environmental settings. Fire occurrence is controlled primarily by spatial variation in fuel mosaics (e.g. patterns of abundance, fuel moisture, forest structure), but regional drought synchronizes fire in some years. Fire exclusion over the last 120 years has caused compositional and structural shifts in these mixed conifer forests.  相似文献   

9.
Aim The spruce–moss forest is the main forest ecosystem of the North American boreal forest. We used stand structure and fire data to examine the long‐term development and growth of the spruce–moss ecosystem. We evaluate the stability of the forest with time and the conditions needed for the continuing regeneration, growth and re‐establishment of black spruce (Picea mariana) trees. Location The study area occurs in Québec, Canada, and extends from 70°00′ to 72°00′ W and 47°30′ to 56°00′ N. Methods A spatial inventory of spruce–moss forest stands was performed along 34 transects. Nineteen spruce–moss forests were selected. A 500 m2 quadrat at each site was used for radiocarbon and tree‐ring dating of time since last fire (TSLF). Size structure and tree regeneration in each stand were described based on diameter distribution of the dominant and co‐dominant tree species [black spruce and balsam fir (Abies balsamea)]. Results The TSLF of the studied forests ranges from 118 to 4870 cal. yr bp . Forests < 325 cal. yr bp are dominated by trees of the first post‐fire cohort and are not yet at equilibrium, whereas older forests show a reverse‐J diameter distribution typical of mature, old‐growth stands. The younger forests display faster height and radial growth‐rate patterns than the older forests, due to factors associated with long‐term forest development. Each of the stands examined established after severe fires that consumed all the soil organic material. Main conclusions Spruce–moss forests are able to self‐regenerate after fires that consume the organic layer, thus allowing seed regeneration at the soil surface. In the absence of fire the forests can remain in an equilibrium state. Once the forests mature, tree productivity eventually levels off and becomes stable. Further proof of the enduring stability of these forests, in between fire periods, lies in the ages of the stands. Stands with a TSLF of 325–4870 cal. yr bp all exhibited the same stand structure, tree growth rates and species characteristics. In the absence of fire, the spruce–moss forests are able to maintain themselves for thousands of years with no apparent degradation or change in forest type.  相似文献   

10.
Serotiny, the retention of seeds in a canopy seed bank until high temperatures cause seeds to be released, is an important life history trait for many woody plants in fire‐prone habitats. Serotiny provides a competitive advantage after fire but increases vulnerability to predispersal seed predation, due to the seeds being retained in clusters in predictable locations for extended periods. This creates opposing selection pressures. Serotiny is favored in areas of high fire frequency, but is selected against by predispersal seed predators. However, predation also selects for cone traits associated with seed defense that could reduce predation on serotinous cones and thereby relax selection against serotiny. This helps explain the elevated defenses in highly serotinous species. However, whether such interactions drive variation in seed defenses within variably serotinous populations has been studied rarely. We investigated the effects of phenotypic selection exerted by red squirrel (Tamiasciurus hudsonicus) predation on Rocky Mountain lodgepole pine (Pinus contorta latifolia) seeds. Squirrels preferentially harvested cones with more and larger seeds, indicating a preference for a higher food reward. We found evidence for stronger selection on trees with serotinous cones, which presumably accounts for the elevated defenses of and lower predation on serotinous compared to non‐serotinous cones. Lower levels of predation on serotinous cones in turn lessen selection against serotiny by squirrels. This has important implications because the frequency of serotiny in lodgepole pine has profound consequences for post‐fire communities and ecosystems widespread in the Rocky Mountains.  相似文献   

11.
Fire regimes in savannas and forests are changing over much of the world. Anticipating the impact of these changes requires understanding how plants are adapted to fire. In this study, we test whether fire imposes a broad selective force on a key fire‐tolerance trait, bark thickness, across 572 tree species distributed worldwide. We show that investment in thick bark is a pervasive adaptation in frequently burned areas across savannas and forests in both temperate and tropical regions where surface fires occur. Geographic variability in bark thickness is largely explained by annual burned area and precipitation seasonality. Combining environmental and species distribution data allowed us to assess vulnerability to future climate and fire conditions: tropical rainforests are especially vulnerable, whereas seasonal forests and savannas are more robust. The strong link between fire and bark thickness provides an avenue for assessing the vulnerability of tree communities to fire and demands inclusion in global models.  相似文献   

12.
Aim As climate change is increasing the frequency, severity and extent of wildfire and bark beetle outbreaks, it is important to understand how these disturbances interact to affect ecological patterns and processes, including susceptibility to subsequent disturbances. Stand‐replacing fires and outbreaks of mountain pine beetle (MPB), Dendroctonus ponderosae, are both important disturbances in the lodgepole pine, Pinus contorta, forests of the Rocky Mountains. In the current study we investigated how time since the last stand‐replacing fire affects the susceptibility of the stand to MPB outbreaks in these forests. We hypothesized that at a stand‐scale, young post‐fire stands (< c. 100–150 years old) are less susceptible to past and current MPB outbreaks than are older stands. Location Colorado, USA. Methods We used dendroecological methods to reconstruct stand‐origin dates and the history of outbreaks in 23 lodgepole pine stands. Results The relatively narrow range of establishment dates among the oldest trees in most sampled stands suggested that these stands originated after stand‐replacing or partially stand‐replacing fires over the past three centuries. Stands were affected by MPB outbreaks in the 1940s/1950s, 1980s and 2000s/2010s. Susceptibility to outbreaks generally increased with stand age (i.e. time since the last stand‐replacing fire). However, this reduced susceptibility of younger post‐fire stands was most pronounced for the 1940s/1950s outbreak, less so for the 1980s outbreak, and did not hold true for the 2000s/2010s outbreak. Main conclusions Younger stands may not have been less susceptible to the most recent outbreak because: (1) after stands reach a threshold age of > 100–150 years, stand age does not affect susceptibility to outbreaks, or (2) the high intensity of the most recent outbreak reduces the importance of pre‐disturbance conditions for susceptibility to disturbance. If the warm and dry conditions that contribute to MPB outbreaks concurrently increase the frequency and/or extent of severe fires, they may thereby mitigate the otherwise increased landscape‐scale susceptibility to outbreaks. Potential increases in severe fires driven by warm and dry climatic trends may lead to a negative feedback by making lodgepole pine stands less susceptible to future MPB outbreaks.  相似文献   

13.
Questions: Did fire regimes in old‐growth Pinus ponderosa forest change with Euro‐American settlement compared to the pre‐settlement period? Do tree age structures exhibit a pattern of continuous regeneration or is regeneration episodic and related to fire disturbance or fire‐free periods? Are the forests compositionally stable? Do trees have a clumped spatial pattern and are clumps even‐ or mixed‐age? How might information from this old‐growth forest inform current restoration and management practices? Location: A 235‐ha old‐growth forest in the Ishi Wilderness, southern Cascade Mountains, California. Methods: Age, size, and spatial pattern of trees were quantified in seven stands. Fire history was reconstructed using fire scar dendrochronology. The influence of fire on stand structure was assessed by comparing fire history with age, size, and spatial structure of trees and identifying and measuring trees killed by two recent fires. Results: Species composition in plots was similar but density and basal area of tree populations varied. Age structure for P. ponderosa and Quercus kelloggii showed periods of episodic recruitment that varied among plots. Fire disturbance was frequent before 1905, with a median period between fires of 12 years. Fire frequency declined after 1905 but two recent fires (1990, 1994) killed 36% and 41% of mostly smaller diameter P. ponderosa and Q. kelloggii. Clusters of similar age trees occurred at scales of 28‐1018 m2 but patches were not even‐aged. Interactions between tree regeneration and fire promoted development of uneven age groups of trees. Conclusions: Fire disturbance strongly influenced density, basal area, and spatial structure of tree populations. Fire exclusion over the last 100 years has caused compositional and structural changes. Two recent fires, however, thinned stands and created gaps favorable for Q. kelloggii and P. ponderosa regeneration. The effects of infrequent 20th century fire indicate that a low fire frequency can restore and sustain structural characteristics resembling those of the pre‐fire suppression period forest.  相似文献   

14.
Fire is the prevalent disturbance in the Araucaria–Nothofagus forested landscape in south‐central Chile. Although both surface and stand‐replacing fires are known to characterize these ecosystems, the variability of fire severity in shaping forest structure has not previously been investigated in Araucaria–Nothofagus forests. Age structures of 16 stands, in which the ages of approximately 650 trees were determined, indicate that variability in fire severity and frequency is key to explaining the mosaic of forest patches across the Araucaria–Nothofagus landscape. High levels of tree mortality in moderate‐ to high‐severity fires followed by new establishment of Nothofagus pumilio typically result in stands characterized by one or two cohorts of this species. Large Araucaria trees are highly resistant to fire, and this species typically survives moderate‐ to high‐severity fires either as dispersed individuals or as small groups of multi‐aged trees. Small post‐fire cohorts of Araucaria may establish, depending on seed availability and the effects of subsequent fires. Araucaria's great longevity (often >700 years) and resistance to fire allow some individuals to survive fires that kill and then trigger new Nothofagus cohorts. Even in relatively mesic habitats, where fires are less frequent, the oldest Araucaria–Nothofagus pumilio stands originated after high‐severity fires. Overall, stand development patterns of subalpine AraucariaN. pumilio forests are largely controlled by moderate‐ to high‐severity fires, and therefore tree regeneration dynamics is strongly dominated by a catastrophic regeneration mode.  相似文献   

15.
Information on bark thickness at various heights is sought to predict damage to trees by forest fires. A procedure which for natural stands of some smooth bark eucalyptus species enables the estimation of bark thickness at different heights from a single girth measurement at one metre height is discussed. The method utilizes the relationships of average girth, average bark thickness, and the regression coefficients of girth and bark thickness at given height positions, with height at one metre. The height positions are determined on a calibrating sample of about thirty trees of different sizes. Furthermore it is shown how the above information can be used to estimate bark volume, and hence bole volume, for Eucalyptus species of some commercial importance such as E. viminalis. Four species are considered: E. viminalis, E. pauciflora, E. mannifera and E. radiata.  相似文献   

16.
Abstract

Detailed knowledge of factors controlling fire regime is a prerequisite for efficient fire management. We analyzed the fire selectivity of given forest vegetation classes both in terms of fire frequency and fire size for the present fire regime (1982–2005) in Canton Ticino (southern Switzerland). To this end, we investigated the dataset in four categories (all fires, anthropogenic winter fires, anthropogenic summer fires, and natural summer fires) and performed 1000 random Monte Carlo simulations on frequency and size. Anthropogenic winter and summer fires have a similar selectivity, occurring mostly at low elevations in chestnut stands, broadleaved forests, and in the first 50 m from the forest edge. In winter half of the fires in chestnut stands are significantly larger than 1.0 ha and the average burnt area in some coniferous forests tends to be high. Lightning fires seem to occur more frequently in spruce stands and less often in the summer‐humid chestnut and beech stands and the 50–100 m buffer area. In beech forests, in mixed forests, and in the spruce stands affected by natural fire in summer, the fires tend to be small in size. The selectivity observed, especially the selectivity of anthropogenic fires in terms of fire frequency, seems to be also related to geographical parameters such as altitude and aspect, and to anthropogenic characteristics such as closeness to roads or buildings.  相似文献   

17.
Naturally regenerating and restored second growth forests account for over 70% of tropical forest cover and provide key ecosystem services. Understanding climate change impacts on successional trajectories of these ecosystems is critical for developing effective large‐scale forest landscape restoration (FLR) programs. Differences in environmental conditions, species composition, dynamics, and landscape context from old growth forests may exacerbate climate impacts on second growth stands. We compile data from 112 studies on the effects of natural climate variability, including warming, droughts, fires, and cyclonic storms, on demography and dynamics of second growth forest trees and identify variation in forest responses across biomes, regions, and landscapes. Across studies, drought decreases tree growth, survival, and recruitment, particularly during early succession, but the effects of temperature remain unexplored. Shifts in the frequency and severity of disturbance alter successional trajectories and increase the extent of second growth forests. Vulnerability to climate extremes is generally inversely related to long‐term exposure, which varies with historical climate and biogeography. The majority of studies, however, have been conducted in the Neotropics hindering generalization. Effects of fire and cyclonic storms often lead to positive feedbacks, increasing vulnerability to climate extremes and subsequent disturbance. Fragmentation increases forests’ vulnerability to fires, wind, and drought, while land use and other human activities influence the frequency and intensity of fire, potentially retarding succession. Comparative studies of climate effects on tropical forest succession across biogeographic regions are required to forecast the response of tropical forest landscapes to future climates and to implement effective FLR policies and programs in these landscapes.  相似文献   

18.
以吉林省通化县三棚红松良种基地16个红松林分为材料,对其土壤理化性质(pH、电导率EC、有机质、速效钾、碱解氮、速效磷、全氮、C/N)、红松生长及结实性状(胸径、树高、每公顷产籽量)和每公顷株数进行测定并分析。结果表明:除速效钾、C/N和树高外,16个林分间各指标均达到极显著差异水平(P<0.01);各指标的表型变异系数变化范围为3.59%~42.04%,属于高变异林分,有利于优良林分的选择;相关分析表明每公顷松籽产量与树高(0.267)和胸径(0.259)呈极显著正相关,与每公顷株数呈极显著负相关(-0.557),与有机质(0.306)、碱解氮(0.909)、速效磷(0.805)和全氮(0.213)呈极显著正相关;以每公顷红松产籽量为标准,依10%的入选率对16个林分进行评价选择,林分3 206和3 308入选,入选2个林分的土壤有机质比总体均值提高了11.91 g·kg-1,碱解氮比总体平均值提高30.92 mg·kg-1,速效磷比总体均值提高13.65 mg·kg-1,全氮比总体平均值提高0.4 g·kg-1,每公顷松籽产量比总体均值提高461.35 kg·hm-2,胸径比总体均值提高1.9 cm,树高比总体平均值提高0.69 m,每公顷株数比平均值减少了104株;研究结果为选择适当的抚育管理办法来提高松籽产量及红松果林改造提供理论基础。  相似文献   

19.
Question: To what extent do low flammability fuel traits enhance the survival and persistence of fire‐sensitive (slowing‐growing, non‐serotinous, non‐resprouting) dominant trees in highly flammable landscapes, under varying fire‐weather conditions? Location: Mixed forests co‐dominated by flammable Eucalyptus species and fire‐sensitive Callitris glaucophylla in Pilliga State Forest, southeast Australia. Methods: The influence of vegetation composition (relative abundance of Callitris and flammable Eucalyptus) on fire intensity and survival of fire‐sensitive Callitris was assessed across gradients of Callitris abundance in mixed EucalyptusCallitris forests that burned under low‐moderate and extreme fire‐weather conditions. Results: In areas that burned under low‐moderate fire‐weather conditions, as Callitris abundance increased, fire intensity declined and Callitris survival increased (46%). By comparison, in extreme fire‐weather conditions, lower fire intensity at higher levels of Callitris abundance, was not sufficient to increase Callitris survival (4%). Callitris survival was also positively related to trunk diameter. Ground fuel type, but not biomass, varied with vegetation composition. Conclusions: These results demonstrate that flammable feedbacks, mediated by low flammability fuel traits of dominant trees, can provide an important mechanism for enhancing the survival and persistence of slow‐growing, non‐serotinous, non‐resprouting, fire‐killed trees in highly flammable landscapes. By modifying vegetation and fuel structure, patches of fire‐sensitive Callitris reduce fire intensity, and thereby reduce Callitris mortality, enhancing population persistence. However, this feedback loop is insufficient to ensure Callitris survival under extreme fire‐weather conditions, when fire intensity is greater. After burning, stands remain vulnerable to future fires, until trees grow large enough to modify fuel levels and reduce stand flammability.  相似文献   

20.
Ne'eman  G.  Fotheringham  C.J.  Keeley  J.E. 《Plant Ecology》1999,145(2):235-242
Obligate seeding species are highly specialized to fire disturbance and many conifers such as cypress, which are adapted to high intensity stand-replacing fires, have canopy seed banks stored in serotinous cones. Resilience of these trees to fire disturbance is a function of disturbance frequency and one focus of this study was to determine the effect of patch age on postfire recruitment. A second focus was to determine the extent to which fire induced a landscape level change in the location of the forest boundary. Prior to a fire in 1994, a large Cupressus sargentii forest was a mosaic landscape of different aged patches of nearly pure cypress bordered by chaparral. Patches less than 60 years of age were relatively dense with roughly one tree every 1–2 m2 but older patches had thinned to one tree every 3–15 m2. Older trees had substantially greater canopy cone crops but the stand level seed bank size was not significantly correlated with stand age. Fire-dependent obligate seeding species are sensitive to fire return interval because of potential changes in the size of seed banks – facing both a potential `immaturity risk' and a `senescence risk'. At our site, C. sargentii regeneration was substantial in stands as young as 20 years, suggesting that fire return interval would need to be shorter than this to pose any significant risk. Reduced seedling recruitment in stands nearly 100 years of age may indicate risk from senescence is greater, however, even the lowest density seedling recruitment was many times greater than the density of mature forests – thus this cypress would appear to be resilient to a wide range of fire return intervals. Changes in landscape patterning of forest and chaparral are unlikely except after fire. Factors that inhibit tree establishment within the shrubland, as well as factors that affect shrub establishment within the forest border likely affect the `permeability' of this ecotone. After the 1994 fire this boundary appeared to be stable in that cypress recruited best within the shadow of burned canopies and cypress were weak invaders of adjacent shrublands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号