首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Different mitogens elicit similar effects on growth and differentiation of skeletal muscle, suggesting that potential overlap exists in the signaling cascades activated by such factors. To investigate this possibility, we examined the status of STAT and ERK proteins in C2C12 myoblasts and myotubes following stimulation with bFGF or LIF. Both STAT1 and STAT3 as well as ERK1 and ERK2 proteins were detectable in extracts of myoblasts. LIF stimulation of myoblasts lead to rapid phosphorylation on tyrosine of STAT3 and of ERKs 1 and 2. Similarly, bFGF stimulation of myoblasts resulted in the tyrosine phosphorylation of STAT3. However, unlike LIF, the bFGF induced tyrosine phosphorylation of STAT3 appeared cyclical, with recurrent peaks of phosphorylation even after prolonged exposure. By contrast, STAT1 remained unphosphorylated in myoblasts treated with bFGF or LIF. In differentiated myotubes, LIF treatment resulted in the tyrosine phosphorylation of both STAT3 and STAT1, but ERK phosphorylation was not detectable, and bFGF treatment did not lead to STAT1 or STAT3 tyrosine phosphorylation. Therefore these observations suggest that disparate mitogens can activate similar downstream effectors in proliferating myoblasts. © 1996 Wiley-Liss, Inc.  相似文献   

3.
Mice genetically deficient in growth and differentiation factor 8 (GDF8/myostatin) had markedly increased muscle fiber numbers and fiber hypertrophy. In the regenerating muscle of mice possessing FGF6 mutation, fiber remodeling was delayed. Although myostatin and FGF6 may be important for the maintenance, regeneration and/or hypertrophy of muscle, little work has been done on the possible role of these proteins in adult muscle in vivo. Using Western blot and immunohistochemical analysis, we investigated, in rats, the distribution of myostatin, FGF6 and LIF proteins between slow- and fast-type muscles, and the adaptive response of these proteins in mechanically overloaded muscles, in regenerating muscles following bupivacaine injection and in denervated muscles after section of the sciatic nerve. The amounts of myostatin and LIF protein were markedly greater in normal slow-type muscles. In the soleus muscle, myostatin and LIF proteins were detected at the site of the myonucleus in both slow-twitch and fast-twitch fibers. In contrast, FGF6 protein was selectively expressed in normal fast-type muscles. Mechanical overloading rapidly enhanced the myostatin and LIF but not FGF6 protein level. In the regenerating muscles, marked diminution of myostatin and FGF6 was observed besides enhancement of LIF. Denervation of fast-type muscles rapidly increased the LIF, but decreased the FGF6 expression. Therefore, the increased expressions of myostatin and LIF play an important role in muscle hypertrophy following mechanical overloading. The marked reduction of FGF6 in the hypertrophied and regenerating muscle would imply that FGF6 regulates muscle differentiation but not proliferation of satellite cells and/or myoblasts.  相似文献   

4.
5.
6.
7.
Skeletal myogenesis is a multistep process by which multinucleated mature muscle fibers are formed from undifferentiated, mononucleated myoblasts. However, the molecular mechanisms of skeletal myogenesis have not been fully elucidated. Here, we identified muscle-restricted coiled-coil (MURC) protein as a positive regulator of myogenesis. In skeletal muscle, MURC was localized to the cytoplasm with accumulation in the Z-disc of the sarcomere. In C2C12 myoblasts, MURC expression occurred coincidentally with myogenin expression and preceded sarcomeric myosin expression during differentiation into myotubes. RNA interference (RNAi)-mediated knockdown of MURC impaired differentiation in C2C12 myoblasts, which was accompanied by impaired myogenin expression and ERK activation. Overexpression of MURC in C2C12 myoblasts resulted in the promotion of differentiation with enhanced myogenin expression and ERK activation during differentiation. During injury-induced muscle regeneration, MURC expression increased, and a higher abundance of MURC was observed in immature myofibers compared with mature myofibers. In addition, ERK was activated in regenerating tissue, and ERK activation was detected in MURC-expressing immature myofibers. These findings suggest that MURC is involved in the skeletal myogenesis that results from modulation of myogenin expression and ERK activation. MURC may play pivotal roles in the molecular mechanisms of skeletal myogenic differentiation.  相似文献   

8.
Leukaemia inhibitory factor (LIF) has been reported to specifically enhance myoblast proliferation in vitro and increase the number and size of myotubes in regenerating skeletal muscle in vivo. The present study specifically tests the effect of LIF on myoblast replication in vivo. Administration of exogenous LIF by slow release alginate gels in vivo sustained the level of myoblast proliferation at 2 days in regenerating crush-injured muscle. Since the extracellular matrix (ECM) plays an important role in regulating the effects of many growth factors, the hypothesis was tested, both in vivo and in vitro, that some of the beneficial effects of LIF are mediated by modulation of the ECM. The effects of LIF in vivo on the amount and localisation of the ECM molecules, fibronectin, tenascin-C, collagen type IV and laminin were assessed by immunohistochemistry on regenerating skeletal muscle but no influence of LIF on ECM composition was observed. In tissue culture, LIF increased BALB/c myoblast proliferation at day 3 on culture dishes coated with Matrigel and also increased the viability in vitro of BALB/c myoblasts grown under suboptimal conditions. Quantitation of the ECM produced by cultures (enzyme-linked immunosorbent assay) showed that LIF affected the amount of fibronectin, tenascin-C, collagen type IV and laminin produced by fusing myoblasts. No significant affect of LIF was seen on myotube formation either in vitro or in vivo. These combined in vitro and in vivo studies show an effect of LIF on ECM production in vitro, on myoblast survival and on in vivo myoblast replication.  相似文献   

9.
The biological actions of interleukin-6 (IL-6), leukemia inhibitory factor (LIF), and ciliary neurotrophic factor (CNTF) are mediated via respective functional receptor complexes consisting of a common signal-transducing component, gp130, and other specific receptor components, IL-6 receptor alpha (IL-6R), LIF receptor beta (LIFR), and CNTF receptor alpha (CNTFR). IL-6, LIF, and CNTF are implicated in skeletal muscle regeneration. However, the cell populations that express these receptor components in regenerating muscles are unknown. Using in situ hybridization histochemistry, we examined spatiotemporal expression patterns of gp130, IL-6R, LIFR, and CNTFR mRNAs in regenerating muscles after muscle contusion. At the early stages of regeneration (from 3 hr to Day 2 post contusion), significant signals for gp130 and LIFR mRNAs were detected in myonuclei and/or nuclei of muscle precursor cells (mpcs) and in mononuclear cells located in extracellular spaces between myofibers after muscle contusion, but IL-6R mRNA was expressed only in mononuclear cells. At Day 7 post contusion, signals for gp130, LIFR, and IL-6R mRNAs were not detected in newly formed myotubes, whereas the CNTFR mRNA level was upregulated in myotubes. These findings suggest that the upregulation of receptor subunits in distinct cell populations plays an important role in the effective regeneration of both myofibers and motor neurons. (J Histochem Cytochem 48:1203-1213, 2000)  相似文献   

10.
11.
12.
13.
14.
We previously showed in vitro that calcium entry through Trpc1 ion channels regulates myoblast migration and differentiation. In the present work, we used primary cell cultures and isolated muscles from Trpc1(-/-) and Trpc1(+/+) murine model to investigate the role of Trpc1 in myoblast differentiation and in muscle regeneration. In these models, we studied regeneration consecutive to cardiotoxin-induced muscle injury and observed a significant hypotrophy and a delayed regeneration in Trpc1(-/-) muscles consisting in smaller fiber size and increased proportion of centrally nucleated fibers. This was accompanied by a decreased expression of myogenic factors such as MyoD, Myf5, and myogenin and of one of their targets, the developmental MHC (MHCd). Consequently, muscle tension was systematically lower in muscles from Trpc1(-/-) mice. Importantly, the PI3K/Akt/mTOR/p70S6K pathway, which plays a crucial role in muscle growth and regeneration, was down-regulated in regenerating Trpc1(-/-) muscles. Indeed, phosphorylation of both Akt and p70S6K proteins was decreased as well as the activation of PI3K, the main upstream regulator of the Akt. This effect was independent of insulin-like growth factor expression. Akt phosphorylation also was reduced in Trpc1(-/-) primary myoblasts and in control myoblasts differentiated in the absence of extracellular Ca(2+) or pretreated with EGTA-AM or wortmannin, suggesting that the entry of Ca(2+) through Trpc1 channels enhanced the activity of PI3K. Our results emphasize the involvement of Trpc1 channels in skeletal muscle development in vitro and in vivo, and identify a Ca(2+)-dependent activation of the PI3K/Akt/mTOR/p70S6K pathway during myoblast differentiation and muscle regeneration.  相似文献   

15.
Many stress conditions are accompanied by skeletal muscle dysfunction and regeneration, which is essentially a recapitulation of the embryonic development. However, regeneration usually occurs under conditions of hypothalamus-pituitary-adrenal gland axis activation and therefore increased glucocorticoid (GC) levels. Glucocorticoid receptor (GR), the main determinant of cellular responsiveness to GCs, exists in two isoforms (GRalpha and GRbeta) in humans. While the role of GRalpha is well characterized, GRbeta remains an elusive player in GC signalling. To elucidate basic characteristics of GC signalling in the regenerating human skeletal muscle we assessed GRalpha and GRbeta expression pattern in cultured human myoblasts and myotubes and their response to 24-hour dexamethasone (DEX) treatment. There was no difference in GRalpha mRNA and protein expression or DEX-mediated GRalpha down-regulation in myoblasts and myotubes. GRbeta mRNA level was very low in myoblasts and remained unaffected by differentiation and/or DEX. GRbeta protein could not be detected. These results indicate that response to GCs is established very early during human skeletal muscle regeneration and that it remains practically unchanged before innervation is established. Very low GRbeta mRNA expression and inability to detect GRbeta protein suggests that GRbeta is not a major player in the early stages of human skeletal muscle regeneration.  相似文献   

16.
17.
18.
This review of androgen receptor (AR) coregulators, which also function as actin-binding proteins, intends to establish the connection between actin cytoskeletal components and androgen signaling, especially in skeletal muscle. In cellular and animal models, androgen activated AR modulates myoblasts proliferation, promotes sexual dimorphic muscle development, and alters muscle fiber type. In the clinical setting, administration of anabolic androgens can decrease cachexia and speed wound healing. During myogenesis and regeneration of skeletal muscle in embryo and adult, the membrane of myoblasts fuse and the actin cytoskeleton is rearranged to form an alignment with myosin to form myotubes then ultimately the myofibrils. Contraction of skeletal muscle promotes the growth of myocytes by coordinating signals from the neuromuscular junction to intra-myofibrils through costameres, the functional structure comprised of signal proteins closely associated with actin filaments and involved in muscular dystrophy. Therefore, the discovery of actin-binding proteins functioning as AR coregulators implies that androgen signaling is tightly regulated during the process of the development and regeneration of skeletal muscle. The search for selective androgen receptor modulators (SARM) that act precisely in skeletal muscle instead of other tissues could target the engineering of a SARM-AR complex that selectively recruits these coregulators.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号