首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
We have analyzed the topological organization of chromatin inside mitotic chromosomes. We show that mitotic chromatin is heavily self-entangled through experiments in which topoisomerase (topo) II is observed to reduce mitotic chromosome elastic stiffness. Single chromosomes were relaxed by 35% by exogenously added topo II in a manner that depends on hydrolysable adenosine triphosphate (ATP), whereas an inactive topo II cleavage mutant did not change chromosome stiffness. Moreover, experiments using type I topos produced much smaller relaxation effects than topo II, indicating that chromosome relaxation by topo II is caused by decatenation and/or unknotting of double-stranded DNA. In further experiments in which chromosomes are first exposed to protease to partially release protein constraints on chromatin, ATP alone relaxes mitotic chromosomes. The topo II–specific inhibitor ICRF-187 blocks this effect, indicating that it is caused by endogenous topo II bound to the chromosome. Our experiments show that DNA entanglements act in concert with protein-mediated compaction to fold chromatin into mitotic chromosomes.  相似文献   

2.
The distribution of single-strand DNA breaks induced by various N-methyl-N-nitrosourea concentrations in S-phase of the cell cycle has been studied in Djungarian hamster fibroblast culture in the isolated samples of fractions of metaphase chromosomes of varying size. For the first time, a dose-effect relationship between the molecular mass of single-stranded DNA fragments isolated in an alkaline sucrose gradient from small chromosomes and the lack of the effect on DNA in large chromosomes has been established. The phenomenon detected is being discussed in terms of structural heterogeneity of interphase nuclear chromatin, i.e. irregular distribution of eu- and heterochromatin in small and large chromosomes. Another possible explanation is the storage of various damaged chromosome fragments in small chromosomes. The data obtained, apart from their significance for chromatin structure analysis, can serve as an experimental basis for the detection of, otherwise undetectable, postreparative molecular DNA damages.  相似文献   

3.
Proteome analysis of human metaphase chromosomes   总被引:7,自引:0,他引:7  
DNA is packaged as chromatin in the interphase nucleus. During mitosis, chromatin fibers are highly condensed to form metaphase chromosomes, which ensure equal segregation of replicated chromosomal DNA into the daughter cells. Despite >1 century of research on metaphase chromosomes, information regarding the higher order structure of metaphase chromosomes is limited, and it is still not clear which proteins are involved in further folding of the chromatin fiber into metaphase chromosomes. To obtain a global view of the chromosomal proteins, we performed proteome analyses on three types of isolated human metaphase chromosomes. We first show the results from comparative proteome analyses of two types of isolated human metaphase chromosomes that have been frequently used in biochemical and morphological analyses. 209 proteins were quantitatively identified and classified into six groups on the basis of their known interphase localization. Furthermore, a list of 107 proteins was obtained from the proteome analyses of highly purified metaphase chromosomes, the majority of which are essential for chromosome structure and function. Based on the information obtained on these proteins and on their localizations during mitosis as assessed by immunostaining, we present a four-layer model of metaphase chromosomes. According to this model, the chromosomal proteins have been newly classified into each of four groups: chromosome coating proteins, chromosome peripheral proteins, chromosome structural proteins, and chromosome fibrous proteins. This analysis represents the first compositional view of human metaphase chromosomes and provides a protein framework for future research on this topic.  相似文献   

4.
BACKGROUND: Restructuring chromatin into morphologically distinct chromosomes is essential for cell division, but the molecular mechanisms underlying this process are poorly understood. Condensin complexes have been proposed as key factors, although controversial conclusions about their contribution to chromosome structure were reached by different experimental approaches in fixed cells or cell extracts. Their function under physiological conditions still needs to be defined. RESULTS: Here, we investigated the specific functions of condensin I and II in live cells by fluorescence microscopy and RNAi depletion. Photobleaching and quantitative time-lapse imaging showed that GFP-tagged condensin II bound stably to chromosomes throughout mitosis. By contrast, the canonical condensin I interacted dynamically with chromatin after completion of prophase compaction, reaching steady-state levels on chromosomes before congression. In condensin I-depleted cells, compaction was normal, but chromosomes were mechanically labile and unable to withstand spindle forces during alignment. However, normal levels of condensin II were not required for chromosome stability. CONCLUSIONS: We conclude that while condensin I seems dispensable for normal chromosome compaction, its dynamic binding after nuclear envelope breakdown locks already condensed chromatin in a rigid state required for mechanically stable spindle attachment.  相似文献   

5.
The structural organisation of chromatin in eukaryotes plays an important role in a number of biological processes. Our results provide a comprehensive insight into the nuclear topography of human peripheral blood granulocytes, mainly neutrophils. The nuclei of granulocytes are characterised by a segmented shape consisting of two to five lobes that are in many cases connected by a thin DNA-containing filament. The segregation of chromosomes into the nuclear lobes was studied using fluorescence in situ hybridisation (FISH). We were able to distinguish different topographic types of granulocytes on the basis of the pattern of segregation. Five topographic types were detected using dual-colour FISH in two-lobed nuclei. The segregation of four sets of genetic structures could be studied with the aid of repeated FISH and a large number of topographic types were observed. In all these experiments a non-random distribution of chromosomes into nuclear lobes was found. The painting of a single type of chromosome in two-lobed nuclei showed the prevalence of symmetric topographic types (on average in 65.5% of cases) with significant variations among individual chromosomes. The results of analysis of five topographic types (defined by two chromosomes in two-lobed nuclei) showed that the symmetric topographic types for both chromosomes are significantly more frequent than predicted. Repeated hybridisation experiments confirmed that the occurrence of certain patterns of chromosome segregation is much higher than that predicted from the combination of probabilities. The frequency of symmetric topographic types for chromosome domains was systematically higher than for genes located on these chromosomes. It appears that the prevalence of symmetric segregation patterns is more probable for large objects such as chromosome domains than for genes located on chromatin loops extending outwards from the surface of the domain defined by specific chromosome paints. This means that one chromosome domain may occur in different lobes of granulocytic nuclei. This observation is supported by the fact that both genes and centromeres were observed on filaments joining different lobes. For all chromosomes, the distances between the membrane and fluorescence gravity centre of the chromosome were measured and correlated with the segregation patterns. A higher percentage of symmetric topographic types was found in those chromosomes that were located closer to the nuclear membrane. Nuclear positioning of all genetic elements in granulocytic nuclei was studied in two-dimensional projection; however, the results were verified using three-dimensional analysis.  相似文献   

6.
7.
The mechanisms by which sister chromatids maintain biorientation on the metaphase spindle are critical to the fidelity of chromosome segregation. Active force interplay exists between predominantly extensional microtubule-based spindle forces and restoring forces from chromatin. These forces regulate tension at the kinetochore that silences the spindle assembly checkpoint to ensure faithful chromosome segregation. Depletion of pericentric cohesin or condensin has been shown to increase the mean and variance of spindle length, which have been attributed to a softening of the linear chromatin spring. Models of the spindle apparatus with linear chromatin springs that match spindle dynamics fail to predict the behavior of pericentromeric chromatin in wild-type and mutant spindles. We demonstrate that a nonlinear spring with a threshold extension to switch between spring states predicts asymmetric chromatin stretching observed in vivo. The addition of cross-links between adjacent springs recapitulates coordination between pericentromeres of neighboring chromosomes.  相似文献   

8.
Drosophila melanogaster oocytes heterozygous for mutations in the alpha-tubulin 67C gene (alphatub67C) display defects in centromere positioning during prometaphase of meiosis I. The centromeres do not migrate to the poleward edges of the chromatin mass, and the chromatin fails to stretch during spindle lengthening. These results suggest that the poleward forces acting at the kinetochore are compromised in the alphatub67C mutants. Genetic studies demonstrate that these mutations also strongly and specifically decrease the fidelity of achiasmate chromosome segregation. Proper centromere orientation, chromatin elongation, and faithful segregation can all be restored by a decrease in the amount of the Nod chromokinesin. These results suggest that the accurate segregation of achiasmate chromosomes requires the proper balancing of forces acting on the chromosomes during prometaphase.  相似文献   

9.
The past few years have brought renewed interest in understanding the dynamics of chromosomes in interphase cells as well as during cell division, particularly meiosis. This research has been fueled by new imaging methods, particularly three-dimensional, high-resolution, and live microscopy. Major contributors are also new genetic tools that allow elucidation of mechanisms controlling chromosome behavior. Recent studies in plants have explored chromatin arrangement in interphase nuclei, chromosome interactions and movement during meiotic prophase I, and mechanisms that ensure correct segregation of chromosomes during anaphase. These studies shed light on chromosome dynamics in a small-genome plant Arabidopsis thaliana, as well as in plants with large and complex genomes of polyploid origin, such as wheat and maize.  相似文献   

10.
11.
Chromosome segregation during sporulation in Bacillus subtilis involves the anchoring of sister chromosomes to opposite ends of the cell. Anchoring is mediated by RacA, which acts as a bridge between a centromere-like element in the vicinity of the origin of replication and the cell pole. To define this element we mapped RacA binding sites by performing chromatin immunoprecipitation in conjunction with gene microarray analysis. RacA preferentially bound to 25 regions spread over 612 kb across the origin portion of the chromosome. Computational and biochemical analysis identified a GC-rich, inverted 14 bp repeat as the recognition sequence. Experiments with single molecules of DNA demonstrated that RacA can condense nonspecific DNA dramatically against appreciable forces to form a highly stable protein-DNA complex. We propose that interactions between DNA bound RacA molecules cause the centromere-like element to fold up into a higher order complex that fastens the chromosome to the cell pole.  相似文献   

12.
Recent technological advances in the field of chromosome conformation capture are facilitating tremendous progress in the ability to map the three-dimensional (3D) organization of chromosomes at a resolution of several Kb and at the scale of complete genomes. Here we review progress in analyzing chromosome organization in human cells by building 3D models of chromatin based on comprehensive chromatin interaction datasets. We describe recent experiments that suggest that long-range interactions between active functional elements are sufficient to drive folding of local chromatin domains into compact globular states. We propose that chromatin globules are commonly formed along chromosomes, in a cell type specific pattern, as a result of frequent long-range interactions among active genes and nearby regulatory elements. Further, we speculate that increasingly longer range interactions can drive aggregation of groups of globular domains. This process would yield a compartmentalized chromosome conformation, consistent with recent observations obtained with genome-wide chromatin interaction mapping.  相似文献   

13.
14.
The ultrastructural modifications produced by anisotonic NaCl treatment of Chinese hamster mitotic cells were observed at three NaCl concentrations which have been frequently used in radiosensitization studies: 0.05, 0.5 and 1.5 M. After exposure to 0.05 M NaCl, many well-spread chromosomes are visible. The chromatin fibres are well dispersed and membraneous material is associated with the chromosomes. After hypertonic treatment with 0.5 M NaCl, the chromosomes have a uniform, structureless appearance with some coalescing into larger anaphase-like masses. At 1.5 M NaCl, large scale cellular dehydration is apparent, and filamentous structures such as microfilaments are tightly constricted. The degree of chromosome staining is also reduced below the level of the cytoplasm. After both hypo- and hypertonic NaCl treatment the chromosomes appear swollen relative to untreated cells, but hypertonic treatment causes chromosome clumping and dissociates chromatin. Conformational changes in the chromatin may restrict the capacity for DNA repair and be related to cellular radiosensitivity.  相似文献   

15.
16.
Sheval' EV  Poliakov VIu 《Ontogenez》2006,37(6):405-418
Chromosome scaffold represents a continuous protein substructure revealed in isolated metaphase chromosomes after harsh extraction. According to postulates of the widespread radial loop model the scaffold plays an important role in the formation and maintenance of structural integrity of the mitotic chromosomes. Here, the data concerning the structure and major components of the chromosome scaffold are presented. The experiments suggesting that the scaffold represents a system of discrete linker proteins and the data about high mobility of scaffolding proteins are discussed. Furthermore, the data about higher-level chromatin structures (elementary chromonema and 200-250 nm fibers) and behavior of scaffolding proteins are compared. The results presented agree with the idea that at the present stage it is possible to discriminate chromatin complexes, whose structural integrity is not maintained by the chromosome scaffold.  相似文献   

17.
Chromosome scaffold represents a continuous protein substructure revealed in isolated metaphase chromosomes after harsh extraction. According to postulates of the widespread radial loop model the scaffold plays an important role in the formation and maintenance of structural integrity of the mitotic chromosomes. Here, the data concerning the structure and major components of the chromosome scaffold are presented. The experiments suggesting that the scaffold represents a system of discrete linker proteins and the data about high mobility of scaffolding proteins are discussed. Furthermore, the data about higher-level chromatin structures (elementary chromonema and 200–250 nm fibers) and behavior of scaffolding proteins are compared. The results presented agree with the idea that at the present stage it is possible to discriminate chromatin complexes, whose structural integrity is not maintained by the chromosome scaffold.  相似文献   

18.
The mitotic segregation apparatus composed of microtubules and chromatin functions to faithfully partition a duplicated genome into two daughter cells. Microtubules exert extensional pulling force on sister chromatids toward opposite poles, whereas pericentric chromatin resists with contractile springlike properties. Tension generated from these opposing forces silences the spindle checkpoint to ensure accurate chromosome segregation. It is unknown how the cell senses tension across multiple microtubule attachment sites, considering the stochastic dynamics of microtubule growth and shortening. In budding yeast, there is one microtubule attachment site per chromosome. By labeling several chromosomes, we find that pericentromeres display coordinated motion and stretching in metaphase. The pericentromeres of different chromosomes exhibit physical linkage dependent on centromere function and structural maintenance of chromosomes complexes. Coordinated motion is dependent on condensin and the kinesin motor Cin8, whereas coordinated stretching is dependent on pericentric cohesin and Cin8. Linking of pericentric chromatin through cohesin, condensin, and kinetochore microtubules functions to coordinate dynamics across multiple attachment sites.  相似文献   

19.
Mature Drosophila oocytes are arrested in metaphase of the first meiotic division. We have examined microtubule and chromatin reorganization as the meiosis I spindle assembles on maturation using indirect immunofluorescence and laser scanning confocal microscopy. The results suggest that chromatin captures or nucleates microtubules, and that these subsequently form a highly tapered spindle in which the majority of microtubules do not terminate at the poles. Nonexchange homologs separate from each other and move toward opposite poles during spindle assembly. By the time of metaphase arrest, these chromosomes are positioned on opposite half spindles, between the metaphase plate and the spindle poles, with the large nonexchange X chromosomes always closer to the metaphase plate than the smaller nonexchange fourth chromosomes. Nonexchange homologs are therefore oriented on the spindle in the absence of a direct physical linkage, and the spindle position of these chromosomes appears to be determined by size. Loss-of-function mutations at the nod locus, which encodes a kinesin-like protein, cause meiotic loss and nondisjunction of nonexchange chromosomes, but have little or no effect on exchange chromosome segregation. In oocytes lacking functional nod protein, most of the nonexchange chromosomes are ejected from the main chromosomal mass shortly after the nuclear envelope breaks down and microtubules interact with the chromatin. In addition, the nonexchange chromosomes that are associated with spindles in nod/nod oocytes show excessive poleward migration. Based on these observations, and the structural similarity of the nod protein and kinesin, we propose that nonexchange chromosomes are maintained on the half spindle by opposing poleward and anti-poleward forces, and that the nod protein provides the anti-poleward force.  相似文献   

20.
Condensin, a major non-histone protein complex on chromosomes, is responsible for the formation of rod-shaped chromosome in mitosis. A heterodimer composed of SMC2 (structural maintenance of chromosomes) and SMC4 subunits constitutes the core part of condensin. Although extensive studies have been done in yeast, fruit fly and Xenopus to uncover the mechanisms and molecular nature of SMC proteins, little is known about the complex in mammalian cells. We have conducted a series of experiments to unveil the nature of condensin complex in human chromosome formation. The results show that overexpression of the C-terminal domain of SMC subunits disturbs chromosome condensation, leading to formation of swollen chromosomes, while knockdown of SMC subunits severely disturbs mitotic chromosome formation, resulting in chromatin bridges between daughter cells and multiple nuclei in single cells. The salt extraction assay indicates that a fraction of the condensin complex is bound to chromatin in interphase, but most of the condensin bind to chromatin at the onset of mitosis. Thus, disturbance in condensin function or expression affects chromosome condensation and influences mitotic progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号