首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: The effects of ATP and taurine on the kinetics of calcium uptake in rat retinal membrane preparations were determined. ATP increased calcium uptake at low calcium ion concentrations. Addition of ATP plus taurine further increased calcium uptake. Cooperative relationships were observed for calcium uptake in the absence of ATP and taurine. In the presence of phosphate ions reciprocal plots demonstrated upward deflections from linear ty, while in the absence of phosphate ions downward deflections were noted. Addition of ATP plus taurine to the incubation system appeared to obliterate the cooperativity. Two uptake systems for calcium were observed.  相似文献   

2.
In several tissues, transient receptor potential vanilloid 4 (TRPV4) channels are involved in the response to hyposmotic challenge. Here we report TRPV4 protein in porcine lens epithelium and show that TRPV4 activation is an important step in the response of the lens to hyposmotic stress. Hyposmotic solution (200 mosM) elicited ATP release from intact lenses and TRPV4 antagonists HC 067047 and RN 1734 prevented the release. In isosmotic solution, the TRPV4 agonist GSK1016790A (GSK) elicited ATP release. When propidium iodide (PI) (MW 668) was present in the bathing medium, GSK and hyposmotic solution both increased PI entry into the epithelium of intact lenses. Increased PI uptake and ATP release in response to GSK and hyposmotic solution were abolished by a mixture of agents that block connexin and pannexin hemichannels, 18α-glycyrrhetinic acid and probenecid. Increased Na-K-ATPase activity occurred in the epithelium of lenses exposed to GSK and 18α-glycyrrhetinic acid + probenecid prevented the response. Hyposmotic solution caused activation of Src family kinase and increased Na-K-ATPase activity in the lens epithelium and TRPV4 antagonists prevented the response. Ionomycin, which is known to increase cytoplasmic calcium, elicited ATP release, the magnitude of which was no greater when lenses were exposed simultaneously to ionomycin and hyposmotic solution. Ionomycin-induced ATP release was significantly reduced in calcium-free medium. TRPV4-mediated calcium entry was examined in Fura-2-loaded cultured lens epithelium. Hyposmotic solution and GSK both increased cytoplasmic calcium that was prevented by TRPV4 antagonists. The cytoplasmic calcium rise in response to hyposmotic solution or GSK was abolished when calcium was removed from the bathing solution. The findings are consistent with hyposmotic shock-induced TRPV4 channel activation which triggers hemichannel-mediated ATP release. The results point to TRPV4-mediated calcium entry that causes a cytoplasmic calcium increase which is an essential early step in the mechanism used by the lens to sense and respond to hyposmotic stress.  相似文献   

3.
A quantitative study was made of the adsorption of adenosine 5′-triphosphate (ATP) on collagen by following the change in the absorbance at 258 nm of ATP in the soaking solution. The amount of ATP adsorbed decreased exponentially with the increase of pH up to pH 8 and fell off more rapidly at higher pH values. At a given pH, when the concentration of ATP was increased, the amount of ATP adsorbed increased following the pattern of a Langmuir isotherm. The adsorption was independent of the cation present. The adsorption of adenosine 5′-diphosphate was essentially the same as that for ATP. For tendons deposited with calcium phosphate, the amount of ATP adsorbed decreased compared to natural tendons. The adsorption of ATP on collagen fibers inhibited the contraction caused by calcium chloride, calcium bromide, and lithium bromide. In solution, ATP had very little effect on the denaturation of acid-soluble collagen caused by calcium chloride.  相似文献   

4.
The calcium ion dependence of calcium transport by isolated sarcoplasmic reticulum vesicles from rabbit skeletal muscle has been investigated by means of the Calcium-stat method, in which transport may be measured in the micromolar free calcium ion concentration range, in the absence of calcium buffers. At pH 7.2 and 20 degrees C, ATP, in the range 1 to 10 mM, decreased [Ca2+]0.5 from 2.0 microM to 0.3 microM and decreased Vmax of oxalate-supported transport from 0.5 to 1.3 mumol min-1 mg-1. Simultaneous measurements of transport and of ATPase activity in the range 0.8 to 10 microM free Ca2+ showed a ratio of 2.1 calcium ions translocated/molecule of ATP hydrolyzed. Transport, in the presence of 5 mM ATP, ceased when calcium ion concentration fell to 0.6 to 1.2 microM, whilst ATPase activity of 90 nmol of ATP hydrolyzed min-1 mg-1 persisted. The data obtained by the Calcium-stat method differed from those described previously using calcium buffers, in that they showed lower apparent affinities of the transport site for calcium ions, more marked sigmoidal behavior, an effect of ATP concentration on Ca2+ concentration dependence and lower ATPase activity in the absence of transport. The calcium complex of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (CaEGTA) had no effect when transport was stimulated maximally at saturating free Ca2+ concentrations. However, at calcium ion levels below [Ca2+]0.5, 70 microM CaEGTA stimulated transport to rates of 20 to 45% of Vmax. Half-maximal stimulation of transport occurred at 19 microM CaEGTA. CaEGTA, 50 microM, decreased [Ca2+]0.5, determined at 5 mM ATP, from 1.3 microM to 0.45 microM. It is proposed that a ternary complex, E . Ca2+ . EGTA4-, is formed as an intermediate species during CaEGTA-stimulated calcium transport by sarcoplasmic reticulum membranes and stimulates the calcium pump at limiting free Ca2+ ion concentration.  相似文献   

5.
A smooth muscle plasma membrane vesicular fraction (PMV) purified for the (Ca2+/Mg2+)-ATPase has endogenous glycolytic enzyme activity. In the presence of glycolytic substrate (fructose 1,6-diphosphate) and cofactors, PMV produced ATP and lactate and supported calcium uptake. The endogenous glycolytic cascade supports calcium uptake independent of bath [ATP]. A 10-fold dilution of PMV, with the resultant 10-fold dilution of glycolytically produced bath [ATP] did not change glycolytically fueled calcium uptake (nanomoles per milligram protein). Furthermore, the calcium uptake fueled by the endogenous glycolytic cascade persisted in the presence of a hexokinase-based ATP trap which eliminated calcium uptake fueled by exogenously added ATP. Thus, it appears that the endogenous glycolytic cascade fuels calcium uptake in PMV via a membrane-associated pool of ATP and not via an exchange of ATP with the bulk solution. To determine whether ATP produced endogenously was utilized preferentially by the calcium pump, the ATP production rates of the endogenous creatine kinase and pyruvate kinase were matched to that of glycolysis and the calcium uptake fueled by the endogenous sources was compared with that fueled by exogenous ATP added at the same rate. The rate of calcium uptake fueled by endogenous sources of ATP was approximately twice that supported by exogenously added ATP, indicating that the calcium pump preferentially utilizes ATP produced by membrane-bound enzymes.  相似文献   

6.
It was shown that physiological processes in taste buds (peripheral sensory gustatory organs in vertebrates) are realized with the involvement of several signal systems. In these structures, a number of “classical” neurotransmitters, including glutamate, serotonin, GABA, ATP, noradrenaline, and others, as well as receptors to these agents, were identified. The physiological roles of the above systems (separate ones and all as a whole) remain, however, far from final elucidation. We studied purinergic and cholinergic systems in the taste buds. Based on the data obtained in behavioral experiments using knockout animals, which indicated that ATP is an afferent neurotransmitter, we found stimulation-induced secretion of ATP by type-II cells. The release of ATP does not require the entry of external calcium and is mediated by ion channels permeable for ATP. The obtained data allowed us to explain the fact that classical synaptic structures are absent in the type-II cells. The type-I cells coat other elements including type-II cells; they provide formation of compartments in the intercellular space of the taste buds (this limits ATP diffusion). We showed that taste cells of just type I mostly generate calcium signals in response to the action of ATP and acetylcholine. These cell responses are generated with the involvement of metabotropic purine receptors (isoforms P2Y1, P2Y2, and P2Y4) and muscarinic receptors (isoforms M1, M3, and M5), respectively. Functioning of these receptors is combined with a phosphoinositide cascade, mobilization of intracellular Ca2+, and subsequent activation of calcium-activated Cl channels. It seems probable that purinergic and cholinergic signal systems in type-I cells are elements of negative feedback in the taste buds, which promote the process of adaptation to the action of gustatory stimuli.  相似文献   

7.
The role of calcium and magnesium-ATP on the structure and contractility in motile extracts of Amoeba proteus and plasmalemma-ectoplasm "ghosts" of Chaos carolinensis has been investigated by correlating light and electron microscope observations with turbidity and birefringence measurements. The extract is nonmotile and contains very few F-actin filaments and myosin aggregates when prepared in the presence of both low calcium ion and ATP concentrations at an ionic strength of I = 0.05, pH 6.8. The addition of 1.0 mM magnesium chloride, 1.0 mM ATP, in the presence of a low calcium ion concentration (relaxation solution) induced the formation of some fibrous bundles of actin without contracting, whereas the addition of a micromolar concentration of calcium in addition to 1.0 mM magnesium-ATP (contraction solution) (Taylor, D. L., J. S. Condeelis, P. L. Moore, and R. D. Allen. 1973. J. Cell Biol. 59:378-394) initiated the formation of large arrays of F-actin filaments followed by contractions. Furthermore, plasmalemma-ectoplasm ghosts prepared in the relaxation solution exhibited very few straight F-actin filaments and myosin aggregates. In contrast, plasmalemmaectoplasm ghosts treated with the contraction solution contained many straight F-actin filaments and myosin aggregates. The increase in the structure of ameba cytoplasm at the endoplasm-ectoplasm interface can be explained by a combination of the transformation of actin from a less filamentous to a more structured filamentous state possibly involving the cross-linking of actin to form fibrillar arrays (see above-mentioned reference) followed by contractions of the actin and myosin along an undetermined distance of the endoplasm and/or ectoplasm.  相似文献   

8.
13C-NMR spectroscopic studies have been made on alginate solutions undergoing sol–gel transition induced by four different divalent cations: Ca, Cu, Co, and Mn. From the analysis of nmr spectra and relaxation times, we have found different interaction modes existing between the Ca–alginate systems and the transition metal (Cu, Co, and Mn)–alginate systems. In the Ca–alginate systems, there exists a specific interaction characterized by a strong autocooperative binding between guluronate residues and calcium ions, and all functional groups in guluronate residues are considered to involve the interaction with calcium ions. On the other hand, in transition metal (Cu, Co, and Mn)–alginate systems, sol–gel transition is characterized by a complex formation in which the carboxyl groups in both mannuronate and guluronate residues are coordinated to metal ions. The other functional groups, like hydroxyl groups, do not participate in the binding to metal ions. It is suggested by relaxation time measurements that from a microscopic point of view the sol–gel transition phenomena can be explained as a dynamic process in which the low frequency molecular motions are dominant and increase their proportions with the formation of three-dimensional cross-links. © 1993 John Wiley & Sons, Inc.  相似文献   

9.
The proton ionophore carbonyl cyanide m-chlorophenylhydrazone (CCCP) inhibited antigen-stimulated secretion and calcium influx in rat basophilic leukemia cells. In a glucose-free solution the inhibitory effects of CCCP were due to a decrease in the intracellular ATP concentration; however, when glucose was present there was no decrease in ATP. Instead, we found that in a glucose-containing saline solution, CCCP inhibited antigen-stimulated calcium uptake because it depolarized the plasma membrane, which in rat basophilic leukemia cells inhibits antigen-stimulated calcium uptake. In the presence of glucose, relatively low concentrations of CCCP inhibited calcium uptake while higher concentrations were required to inhibit secretion. In contrast, the initial antigen-stimulated rise in cytoplasmic calcium, measured with the fluorescent calcium indicator quin2, was not inhibited by CCCP. This suggests that the release of calcium from intracellular stores might, in some cases, be sufficient to support antigen-stimulated secretion. In the presence of CCCP the pH gradient becomes important for regulating the membrane potential across the plasma membrane. When cells were depolarized with CCCP and the external pH was increased, the membrane potential returned to resting levels and antigen-stimulated calcium uptake was restored. Inhibition of antigen-stimulated secretion by higher concentrations of CCCP could also be reversed by increasing the external pH.  相似文献   

10.
We investigated changes in calcium concentration in cultured bovine aortic endothelial cells (BAECs) and rat adrenomedulary endothelial cells (RAMECs, microvascular) in response to different levels of shear stress. In BAECs, the onset of shear stress elicited a transient increase in intracellular calcium concentration that was spatially uniform, synchronous, and dose dependent. In contrast, the response of RAMECs was heterogeneous in time and space. Shear stress induced calcium waves that originated from one or several cells and propagated to neighboring cells. The number and size of the responding groups of cells did not depend on the magnitude of shear stress or the magnitude of the calcium change in the responding cells. The initiation and the propagation of calcium waves in RAMECs were significantly suppressed under conditions in which either purinergic receptors were blocked by suramin or extracellular ATP was degraded by apyrase. Exogenously applied ATP produced similarly heterogeneous responses. The number of responding cells was dependent on ATP concentration, but the magnitude of the calcium change was not. Our data suggest that shear stress stimulates RAMECs to release ATP, causing the increase in intracellular calcium concentration via purinergic receptors in cells that are heterogeneously sensitive to ATP. The propagation of the calcium signal is also mediated by ATP, and the spatial pattern suggests a locally elevated ATP concentration in the vicinity of the initially responding cells.  相似文献   

11.
The rod outer segments of bovine retina contain two different adenylate kinases: a soluble activity, which is not sensitive to calcium ion, and an activity bound to disk membranes, which is dependent on the calcium levels. In fact, the maximal activity associated to the disks is reached at Ca(2+) concentrations between 10(-6) and 10(-7) M, which is the range of calcium level actually present in the rod cell. The Michaelis-Menten kinetics of the enzyme activity on disk membranes was determined and the actual concentrations of ATP, AMP and ADP were measured in the photoreceptor outer segment. Therefore, the physiological relevance of the adenylate kinase activity was discussed considering the above results. The formation of ATP catalyzed by the enzyme seems appropriate to supply at least some of the reactions necessary for phototransduction, indicating that ATP could be regenerated from ADP directly on the disk membranes where the photoreception events take place.  相似文献   

12.
Single-channel currents were recorded from ATP-sensitive K+ channels in inside-out membrane patches excised from isolated rat ventricular myocytes. Perfusion of the internal surface of excised membrane patches with solutions which contained between 5 and 100 microM free calcium caused the loss of K+ATP channel activity which was not reversed when the membranes were washed with Ca-free solution. K+ATP channel activity could be recovered by bathing the patches in Mg.ATP. The loss of K+ATP channel activity provoked by internal calcium was a process which occurred over a time scale of seconds. Channel closure evoked by internal ATP was essentially instantaneous. The speed of K+ATP channel inactivation increased with the concentration of calcium. Neither a phosphatase inhibitor (fluoride ions) nor a proteinase inhibitor (leupeptin) had any effect upon the loss of K+ channel activity stimulated by internal calcium.  相似文献   

13.
Rhythm is an important dynamic behavior in biological systems. We have been studying oscillatory reactions of enzymes induced by gradual entry of substances through semipermeable membrane. Not only enzymes but also a few species of substance of living system have been elucidated to cause oscillatory reaction. Here we present the oscillatory reaction by chondroitin sulfate in a system of gradual entry of calcium ion. Introducing calcium ion through dialysis membrane into chondroitin sulfate solution induces an oscillation of free calcium ion concentration in chondroitin sulfate solution. Simultaneously, it is elucidated that oscillation of conformation occurs with permeation of calcium ion. In both measurements, oscillations with 25h period are obtained. The phases of oscillation, however, differ slightly from each other. From these results, it is suggested that autocatalysis exerts in the contraction of chondroitin sulfate conformation. These phenomena are very intriguing for elucidating oscillation in living system.  相似文献   

14.
In most bacterial cell types studied, low intracellular free calcium is maintained by a variety of secondary exchangers which utilize transmembrane ion gradients. Prokaryotic calcium ATPases appear to be extremely uncommon, and none have been reported in Gram-negative organisms. We demonstrate ATP-dependent calcium uptake in everted membrane vesicles of Flavobacterium odoratum, a common Gram-negative soil and water bacterium. Calcium is transported with an apparent initial rate of 10 nmol/min mg of protein. It is inhibited by 20 microM orthovanadate, a specific P-type ATPase inhibitor, but significantly, it is unaffected by the addition of N-ethylmaleimide, N,N-dicyclohexylcarbodiimide, valinomycin, or nigericin. Because the Ca(2+)-ATPase makes up a high proportion of the total ATPase activity it is easily detected by a soluble ATP hydrolysis assay, with an initial rate for calcium-dependent ATPase activity in vesicles of 25-40 nmol/min.mg at pH 7.8 and 25 degrees C. The calcium-dependent activity is preferentially solubilized by the detergent C12E8 and can be precipitated at 55-80% ammonium sulfate in a fraction free of other contaminating ATPase activities. This partially purified fraction is enriched 15-fold and demonstrates an apparent Km for calcium of 2 microM, and for ATP of 130 microM. The IC50 for vanadate is 1.6 microM. These values are similar to those obtained for the eukaryotic sarcoplasmic reticulum calcium ATPase. The enzyme is rapidly phosphorylated by [gamma-32P]ATP in a calcium-dependent, vanadate-inhibitable manner. The phosphorylated species migrates with an apparent molecular mass of 60 kDa by NaDodSO4-polyacrylamide gel electrophoresis, and the phosphoryl group is sensitive to alkaline conditions, a characteristic of the acylphosphate linkage found in ATPases. These data demonstrate that the majority of calcium transport in F. odoratum is facilitated by a P-type ATPase.  相似文献   

15.
Recently, ATP has gained much interest as an extracellular messenger involved in the communication of calcium signals between cells. The mechanism of ATP release is, however, still a matter of debate. In the present study we investigated the possible contribution of connexin hemichannels or ion channels in the release of ATP in GP8, a rat brain endothelial cell line. Release of ATP was triggered by photoactivation of InsP(3) or by reducing the extracellular calcium concentration. Both trigger protocols induced ATP release significantly above baseline. InsP(3)-triggered ATP release was completely blocked by alpha-glycyrrhetinic acid (alpha-GA), the connexin mimetic peptides gap 26 and 27, and the trivalent ions gadolinium and lanthanum. ATP release triggered by zero calcium was, in addition to these substances, also blocked by flufenamic acid (FFA), niflumic acid, and NPPB. Gap 27 selectively blocked zero calcium-triggered ATP release in connexin-43 transfected HeLa cells, while having no effect in wild-type and connexin-32 transfected cells. Of all the agents used, only alpha-GA, FFA and NPPB significantly reduced gap junctional coupling. In conclusion, InsP(3) and zero calcium-triggered ATP release show major similarities but also some differences in their sensitivity to the agents applied. It is suggested that both stimuli trigger ATP release through the same mechanism, which is connexin-dependent, permeable in both directions, potently blocked by connexin mimetic peptides, and consistent with the opening of connexin hemichannels.  相似文献   

16.
It was found that ACTH greatly reduced lipogenesis in fat cells in the presence of calcium ion, but not in the absence of calcium ion. Of the enzymes involved in triglyceride synthesis from fatty acid in lipid micelle membranes, only acyl-CoA synthetase was inhibited by calcium ion, the apparent Ki value of calcium ion being 4.2 X 10(-4) M. The Km values of the enzyme for palmitate and ATP were 2.0 X 10(-4) M and 2.5 X 10(-4) M, respectively and calcium ion caused non-competitive inhibition with both palmitate and ATP. The acyl-CoA synthetase activity of lipid micelle membranes was inhibited by treatment with phospholipase A or C, but not by treatment with phospholipase D. The mechanism of inhibition of triglyceride synthesis by ACTH is discussed on the basis of these results.  相似文献   

17.
Myofibrils which lengthen by several per cent in the presence of ATP and magnesium ions were prepared by teasing indirect flight muscle of Drosophila in solutions containing ethylenediaminetetraacetate. A study was made of the hydrogen ion, magnesium ion, ATP, and potassium chloride concentrations with which this effect could be observed. The lack of elongation with pyrophosphate and several nucleoside triphosphates suggests that the lengthening is ATP specific. A relaxing factor system comparable to that described for rabbit muscle was not demonstrable, as elongated fibrils did not shorten with calcium ions, carnosine, or digitonin.  相似文献   

18.
Calcium and zinc pectinate gels were prepared using a method which allowed calcium or zinc to diffuse from the cross-linking solution through a dialysis membrane to form a gel with amidated low-methoxyl pectin. The gel thus obtained was then dried, and the film structure was studied using FTIR spectroscopy as a function of the cation content (0%, 5%, 10%, and 15% w/v). Important consideration was given to the three functional groups (amide, carboxyl ester, and carboxylate groups) present in the pectin. When the zinc content was increased, the three wavenumber values corresponding to these three functional groups did not change significantly, while for calcium pectinate, the three wavenumber values were shifted profoundly when the amount of calcium ions changed. These results confirm that calcium ions could form stable interactions with carboxylate groups as described by the eggbox model [Grant, G.T.; Morris, E.R.; Rees, D.A.; Smith, P.J.C.; Tho, D. FEBS Lett.1973, 32, 195-198] while the lower coordination number of zinc does not permit a structured gel to develop.  相似文献   

19.
The stability constants of the supramolecular complexes formed between L ((a,b,c,d)) or their Zn(2+) complexes, and adenosine 5'-triphosphate (ATP) in aqueous solution were determined by potentiometric titrations (25 degrees C, I = 0.1 mol dm(-3) KNO(3)). The results show that protonated aliphatic-substituted L (a,d) and aromatic-substituted L (b,c) ligands and/or Zn(II) ion can efficiently recognition the substrate, ATP. All of the equilibrium studies, (1)H and (31)P nuclear magnetic resonance spectra indicate that multiple interactions, including coordination, pi-stacking, ion-pairing, H-bonding, and possible ion-pi-donor, hydrophobic and even van der Waals interactions exist in the Zn(II)-L-ATP systems. On the other hand, the recognition of the substrates by the protonated ligands was significantly promoted by the addition of Zn(II), which leads to coordination competition between the mixed ligands, L and nucleotide. In Zn(II)/L/ATP systems the tendency for phosphate chain to receive proton and metal ion increases, facilitating the cleavage of the phosphate chain of the nucleotide.  相似文献   

20.
Cultured astroglia express purinergic receptors that initiate phosphoinositide metabolism and calcium mobilization. Experiments were conducted to characterize the purinergic receptor subtype on type 1 astroglia responsible for stimulation these second-messenger systems. Inositol phosphate (IP) accumulation and calcium mobilization were measured after stimulation with ATP or purinergic receptor subtype-selective ATP analogues. ATP (10(-5) M) increased IP accumulation severalfold. Dose-effect assays monitoring astroglial IP accumulation revealed the order of potency that defines the P2Y receptor: 2-methylthioadenosine 5'-triphosphate greater than ATP greater than alpha beta-methyleneadenosine 5'-triphosphate greater than beta gamma-methyleneadenosine 5'-triphosphate. The influence of ATP on intracellular calcium levels in individual type 1 astroglia was examined using the calcium indicator dye, fura-2. Dose-effect experiments indicated that ATP was equally potent for generating inositol phosphates and increasing cellular calcium. The most prevalent response (87% of total responses) to ATP consisted of a rapid increase in calcium to a peak level that was approximately five times greater than the prestimulation level. This peak was followed by a decline to a plateau level that was significantly above baseline. This plateau phase of the calcium increase was maintained for at least 5 min in the presence of ATP and was dependent on external calcium. Many (23%) astroglia exhibited spontaneous calcium oscillations whose frequency and magnitude increased after the addition of 10(-5) M ATP. Immunocytochemical staining indicated that the responses occurred in glial fibrillary acidic protein positive cells. We conclude that type 1 astroglia express the P2Y purinergic receptor which regulates IP production and calcium mobilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号