首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The origin and renewal of the argentaffin cells in the pyloric glands of hamsters were studied by flash, cumulative and pulse labelling autoradiography with 3H-thymidine. The argentaffin cells were identified by the Diazo Method using Fast Red B Salt.By flash labelling autoradiography, it was shown that the argentaffin cells located from the middle to the lower level of the pyloric mucosa were not labelled with 3H-thymidine, indicating that this cell type has no proliferative activity. On the 10th and the 20th day of cumulative labelling, 31% and 63% of the argentaffin cells in the gland were found to be labelled, respectively. The labelled argentaffin cells were concentrated in the upper part of the gland (around the region of the isthmus), and no label was found over nuclei of the cells at the lowermost level of the gland. These labelled cells were shown to undergo a downward migration in the days following pulse labelling. They were replaced by unlabelled (and weakly or very weakly labelled) cells which arose at the region of the isthmus. The argentaffin cells in the pyloric gland are thought to arise from epithelial precursor cells at the region of the isthmus.The labelled argentaffin cells in the gland were found to decrease in number almost exponentially after pulse labelling. This indicates that the life span of argentaffin cells is not fixed, but their renewal conforms to the random loss system. The half time of turnover of this cell population was 15 days on average.Supported by a Grant-in-Aid for Cancer Research from the Ministry of Education, Science and Culture, Japan  相似文献   

2.
Summary Ten hamsters received repeated injections of 3H-thymidine for 4 days and were allowed to survive for 7, 28, 42 and 100 days. Changes in spatial distribution of the labelled cells and in labelling indices of each cell line in the gastric glands were studied at various days after 3H-thymidine injections, and the fate of the mucous neck cell, the replacement of the chief cell and the mode of cell migration were discussed.After 4 days of repeated injections of 3H-thymidine, the labelled parietal cells and the mucous neck cells were concentrated at the neck area. Starting from the neck area, they migrated an average of 3 micra downwards per day. By 42 days, they reached the middle level of the glands, where the labelled mucous neck cells decreased but the labelled chief cells increased in number. The differentiation of the chief cell then appears to take place at the middle level of the glands through transformation of the migratory mucous neck cells. After 4 days of the labelling, about 1.8% of the chief cells located in the lower part of the glands was found to undergo in situ replication. This indicates that the renewal of this cell type is partly assured by its own mitotic activity.The foveolar cell — the future surface epithelium — seems to migrate upwards along the long axis of the glandular tubule in the pipe line system, which means first produced, first migrates. After migrating out from the neck area, the parietal cell and the mucous neck cell (the future chief cell) take an average of 200 days to reach the lower end of the glands. In the process of migration, however, the cells produced contemporaneously at the neck area became scatteringly spread from the neck towards the bottom of the gland. The time required for the newly-formed cells to reach the lower end of the gland varied between 100 and 300 days. In the gastric glands the cells first produced at the neck area do not first reach the lower end of the glands. This mode of random migration is referred to as the stochastic flow system. As one of the probable factors which disturb the pipe line flow of downward cell migration, cellular movements perpendicular to the long axis of the glandular tubule were suggested to occur at random at an any level of the gastric glands.Supported by a Grant-in-Aid for Cancer Research from the Ministry of Education, Science and Culture, Japan  相似文献   

3.
Abstract. Cell proliferation kinetics of the extrahepatic bile duct were studied by flash and cumulative labelling methods and immunohistochemical techniques. We compared the cell kinetics of the epithelium of the intra- and extra-pancreatic bile ducts and of the bile duct of the ampulla in rats administered intraperitoneally with bromodeoxyuridine (BrdUrd). After a single injection of BrdUrd (flash labelling), labelled cells appeared in the lower portion of the downgrowths of the epithelium in the intra-and extra-pancreatic bile ducts. A gradual accumulation of the labelled cells at the surface epithelium was observed during the cumulative labelling. After cumulative labelling the labelled cells gradually decreased in number and were finally confined to the degenerative cell zone of the surface epithelium 30 days later. Similarly, after a single injection of BrdUrd, the labelled cells in the bile duct of the ampulla appeared at the lower half of the crypt from where they migrated to the upper portion during cumulative labelling. These findings indicate that epithelial cells of the bile duct are renewed at the lower portion of the downgrowths of the epithelium, or crypt, and shed from the surface epithelium or upper portion of the fold. The labelling indices reached 23.83 ± 7.47% in the intra-pancreatic bile duct, 14.74 ± 7.99% in the extra-pancreatic bile duct and 43.42 ± 4.40% in the bile duct of the ampulla at the end of 70 h cumulative labelling. The fluctuating values of the labelling index were higher in the bile duct of the ampulla than in the intra- or extra-pancreatic bile ducts. These results indicate that the bile-duct epithelium undergoes a slower renewal rate than the other parts of the gastrointestinal tract, and that the renewal time of the epithelial cells is shorter at the bile duct of the ampulla than at the intra- or extra-pancreatic bile ducts.  相似文献   

4.
Summary With autoradiography after labelling with tritiated thymidine, the kinetics of zymogen and parietal cells were studied in the gastric mucosa of mice. After one intraperitoneal injection of the DNA precursor, zymogen cells in the DNA synthesis phase were clearly identified on autoradiograms, whereas no parietal cells were seen to synthesize DNA.In another group of mice, multiple injections were used in order to obtain a greater number of labelled cells. Following the latter procedure, analysis of grain count distributions over labelled zymogen cells and of labelling indices allowed detection of two subsequent zymogen cell divisions within an interval of approximately two months. This indicates that the cell turnover of zymogen cells is at least partly assured by their own mitotic activity.By contrast, parietal cells showed no evidence of cell division, but appeared to be derived through differentiation from other cells in the neck area of the gland. Analysis of spatial distribution of the labelled parietal cells in the glandular tube indicated that, in time, most newly formed parietal cells undergo a slow migration directed downwards to the bottom of the fundic glands.These results clearly show that the zymogen and the parietal cell population of the fundic glands have a different kinetic behaviour.This work was supported by a grant of the Nationaal Fonds voor Wetenschappelijk Onderzoek.  相似文献   

5.
The stomach of Oreochromis niloticus has three regions   总被引:6,自引:0,他引:6  
The stomach of Oreochromis niloticus was divided into three distinct regions: initial, middle and terminal, corresponding roughly to the cardiac, fundic, and pyloric portions of the mammalian stomach. Grossly, the organ showed initial and terminal portions, the former connected to the distal part of the oesophagus and the latter to the proximal portion of the intestine. There was also a middle region, forming a large blind diverticulum communicating with the first two at their point of junction. The initial or cardiac region was shorter than the middle region but longer than the terminal one, and had a smooth surface devoid of gastric pits. The epithelium in this region was simple columnar devoid of goblet cells, with glandular regions in the lamina propria. The mucosa of the middle or fundic region had gastric pits lined by columnar epithelium, and simple tubular glands filled most of the lamina propria. The terminal or pyloric part of the stomach was very short and its mucosa was slightly folded and devoid of both gastric pits and mucous glandular cells. The lining epithelium of this portion of the stomach was simple columnar and a few goblet cells were seen at its junction with the first part of the intestine. The tunica muscularis of the stomach contained skeletal muscle in the initial and terminal regions, usually intermingled with smooth muscle fibres. Skeletal muscle fibres were also observed in the first portion of the small intestine, near the junction with the stomach.  相似文献   

6.
初生扬子鳄胃粘膜表面及胃腺的形态   总被引:1,自引:0,他引:1  
华田苗  汪仁平 《四川动物》1996,15(4):159-161
观察了2例初生扬子鳄(Alligatorsinensis)胃粘膜表面及胃腺的形态。扫描电镜观察:胃贲门具11—13个贲门瓣,贲门区及幽门区粘膜上皮凹陷稀而浅,胃体部上皮凹陷密而深,排列很规则,胃小凹明显。组织切片观察:贲门腺及幽门腺均为短的单管腺,腺上皮由单一类型的腺细胞组成,胃底腺为分校管状腺,晚上皮由多种腺细胞组成。对扬子鳄胃粘膜表面及胃腺的形态特点作了讨论。  相似文献   

7.
The mucosa of the rabbit's stomach has been studied histochemically, electron microscopically and fluorescence immunologically. The main purpose was to find out whether or not this mucosa secrets the enzyme rennin. During the first two weeks after birth, the gastric glands are composed of only undifferentiated cells. The differentiation of these glands into cardiac, fundic and pyloric glands coincides with the final stage of this period. In the course of the period mentioned the P.A.S.-positive material and the fluorescence induced by rennin exhibit a similar location in the apical cytoplasm of the epithelial cells lining the mucosal surface, the gastric pits and the necks of gastric glands. In the light of these findings, the elaboration and activation of the enzyme rennin is being discussed.  相似文献   

8.
The presence and changes of estradiol nuclear binding and related functions in uterine luminal and glandular epithelium were studied before and after blastocyst implantation using receptor autoradiography with 3H-estradiol-17 in association with 3H-thymidine incorporation and immunocytochemical binding of antibody to estrogen receptor ER-. 3H-estradiol nuclear binding is present but variable during days 1.5–7.5 of pregnancy. Sites of strong nuclear binding of 3H-estradiol exhibit strong immunocytochemical staining with ER- antibody. Qualitative and quantitative evaluation of autoradiograms reveal that there is a general increase of nuclear 3H-estradiol binding during the first 3 days after fertilization in both luminal and glandular epithelium. The binding of estradiol is stronger in glandular epithelium from day 2.5 to day 7.5, paralleled by a rise in 3H-thymidine incorporation on day 2.5. By comparison, in the epithelium of the uterine lumen 3H-estradiol nuclear binding is low, but relatively high in epithelial cells at lateral branching of the lumen where the increase in 3H-estradiol binding corresponds to an increased labeling index with 3H-thymidine. A highly differentiated binding of 3H-estradiol to luminal and glandular epithelium was demonstrated with region- and time-specific changes of related effects on cell proliferation, differentiation, and secretion, probably involving involution and remodeling. The strong 3H-estradiol binding to glandular epithelium suggests that estradiol exerts pronounced effects on glandular activities in the periimplantation period.  相似文献   

9.
Eph receptors and ephrin ligands are membrane-bound cell–cell communication molecules that regulate the spatial organisation of cells in various tissues by repulsive or adhesive signals arising from contact between EphB- and ephrin-bearing cells. However, the expression and functions of Eph receptors in the gastric epithelium and Brunner’s glands are virtually unknown. We detected several EphB receptors and ephrin-B ligands in the pyloric and duodenal mucosa of the adult mouse by RT-PCR amplification. Immunostaining showed complementary expression patterns, with ephrin-B1 being preferentially expressed in the superficial part and EphB receptors in the deeper part of both epithelia. In the gastric pylorus, ephrin-B1 was expressed in pit cells and proliferating cells of the isthmus. In contrast, EphB2, EphB3, and EphB4 were expressed in pyloric glandular cells and proliferating cells of the isthmus. In the duodenum, ephrin-B1 was expressed in cells lining the ducts of Brunner’s glands as well as those covering villi and the upper portion of the crypts of Lieberkühn. In contrast, EphB2 and EphB3 were expressed in the gland segment of Brunner’s glands and the lower portion of the crypts and EphB4, in the crypts. In both mucosae, EphB2, EphB3, and EphB4 were found to be tyrosine phosphorylated, suggesting that EphB/ephrin-B signalling might occur preferentially in the isthmus, crypts, and duct-gland transition of Brunner’s glands, where the receptor and ligand expression overlaps. Based on these findings, we propose that EphB/ephrin-B signalling may regulate cell positioning within the pyloric and duodenal epithelium.  相似文献   

10.
刀鲚幼鱼消化系统的组织形态学结构   总被引:3,自引:0,他引:3  
采用光镜和扫描电镜观察长江刀鲚(Coilia nasus)幼鱼消化系统组织形态学结构。结果显示,刀鲚体长,口裂大,含有犬齿状的颌齿和尖锥状的腭齿,具有5对鳃弓,鳃耙长度明显大于鳃丝且表面附着不规则绒毛状细齿;胃呈"Y"型,胃与肠连接处具有16~21个指状环形幽门盲囊;肠为直肠,较短,比肠长为0.241±0.080;肝分为两叶,胰为独立的器官。刀鲚口咽腔为复层鳞状上皮,含有腺体、大量椭圆形黏液细胞、少量杯状细胞及味蕾;胃黏膜都为典型的单层柱状上皮,含有较多由上皮凹陷形成的胃小凹和胃腺;幽门盲囊具有20~25个丰富的褶皱,占满大部分幽门盲囊腔,黏膜层具有微绒毛;中肠黏膜上皮最发达,形成的褶皱细长且连接成网状,单层柱状上皮与复层扁平上皮交替分布。观察结果表明,刀鲚消化系统具有典型肉食性鱼类特征。  相似文献   

11.
In the glandular stomach, gap junctional intercellular communication (GJIC) plays an important role in the gastric mucosal defense system, and loss of GJIC is associated with ulcer formation. In spite of the high incidence of gastric ulcers in horses, particularly at pars nonglandularis, the presence of gap junctions in the equine stomach has not yet been studied. The objective was to obtain basic data on the distribution of gap junction protein connexin 32 (Cx32) in the different regions of normal equine gastric mucosa. Samples of mucosa were taken from seven horses at cardiac, fundic, and pyloric region and pars nonglandularis. To detect Cx32, immunohistochemical staining and Western blot analysis were performed. Corresponding mRNA was shown by RT-PCR and localised in tissue sections by in situ hybridisation. Cx32 was found in the glandular regions, whereas it was not detectable in squamous mucosa. Within the glandular epithelium, Cx32 was abundant in surface and foveolar cells and decreased towards the proliferative zone of the glands. These results suggest that gap junctions develop during the maturation of surface cells. Whether the lack of Cx32 at pars nonglandularis contributes to its susceptibility for developing ulcers, has to be further elucidated.  相似文献   

12.
Basolateral uptake of chloride by the HCl-secreting parietal cells of the gastric (oxyntic) glands is most likely mediated by a HCO 3/Cl anion exchange mechanism. Circumstantial evidence indicates that in rodents the anion exchange proceeds through an anion exchanger 2(AE2)-like membrane protein. In the present study, we raised antibodies against a bacterial fusion protein expressing a -26-kDa portion of the human AE2 sequence. These antibodies were used to identify and localize AE2 in the human stomach. Here we report that the mucosa of the human stomach expresses an 160-kDa immunoreactive form of AE2 containing the AE2-specific exoplasmic domain (Z-loop) as identified by polymerase chain reaction. Immunostaining specific for AE2 was restricted to the basolateral membrane domain of parietal cells and was also detected in small epithelial cells localized in the glandular isthmus region. The latter cells most likely represent pre-parietal cells. Parietal cells were identified by simultaneous and sequential labelling with antibodies against the gastric H+, K+-ATPase and actin, respectively. Both actin and the H+, K+-ATPase were localized along the apical membrane of parietal cells and the membrane of their secretory intracellular canaliculi. In addition, actin was shown to be colocalized with AE2 along the basolateral cell surface. Discontinuous staining for AE2 coincided with infoldings of the basolateral plasma membrane labelled by the actin antibody. These observations indicate that AE2 might be placed at specialized (folded) microdomains of the basolateral cell surface by linkage to the actin-based cytoskeleton.Large parts of this publication belong to the MD thesis of B. Warrings. B. Warrings and T. Jöns should be considered alphabetically listed first authors who made equally strong contributions to this study  相似文献   

13.
Summary The hypothalamus of male and female rats, given 0.3 g/100 g body weight of 6.7-3H-oestradiol-17 and killed 1 hour after the injection, was examined by autoradiography in order to 1) localize the areas and the cells involved in the uptake of the hormone, and 2) study the intracellular localization of the labelled material.Only nerve cells contained radioactive material while glial and ependymal cells were not significantly labelled. In the anterior hypothalamus, labelled nerve cells were concentrated in areas corresponding to nucleus preopticus medialis and nucleus preopticus, pars suprachiasmatica. The nucleus supraopticus was unlabelled. In the medial basal hypothalamus, neurons corresponding to the nucleus arcuatus and the lateral part of the nucleus ventromedialis showed marked labelling. No significant labelling was observed in the nucleus paraventricularis, pars magnocellularis.Although the individual nerve cells varied in their extent of labelling, the major proportion of the silver grains were consistently concentrated over the nuclei. Castration was not found to influence the results. The findings were essentially the same in male and female rats and appear to suggest that oestradiol exerts a direct effect on nerve cells in certain hypothalamic areas.This work was supported by grants from the Norwegian Cancer Society, Nordisk Insulinfond and Anders Jahres Fond. The skilful assistance of Miss Helga Friedl and Mrs. Jane Larsen is gratefully acknowledged.  相似文献   

14.
Summary Complex carbohydrate components of secretory granules and the glycocalix were analysed in surface epithelia, endoepithelial glands and exoepithelial tubuloalveolar glands of the biliary-ductular system (guinea pig). Brunner glands and pyloric glands were studied for comparison. The columnar epithelial cells of the gallbladder and biliary ducts displayed a well-developed PAS-positive apical glycocalix. These materials strongly bound Ricinus communis AI, Ulex europaeus I, Lotus tetragonolobus A and wheat-germ-A lectins. With the exception of Lotus A lectin which did not bind at all, the same lectins stained the basolateral cell surface. The secretory granules in the supranuclear regions of surface epithelia and in the exoepithelial glands strongly bound Ricinus A I, Ulex europaeus I, wheat-germ-A and Helix pomatia lectins. Concanavalin A was less intensively bound by the secretions of tubuloalveolar glands than by the secretory granules in surface epithelia. The luminal and basolateral cell surfaces of glandular cells in the exoepithelial glands were stained by the same spectrum of lectins as were the less distinct. In the guinea pig, the lectin-binding patterns of tubuloalveolar glands in the biliary ducts closely resembled those of Brunner glands and pyloric glands. The secretions of the tubuloalveolar glands were different from the secretion of surface epithelia, as they bound Concanavalin A less intensively.  相似文献   

15.
Summary The distribution of lysozyme in normal gastric and duodenal mucosa was studied by light- and electronmicroscopic immunocytochemical techniques (direct enzyme-labeled antibody method).In the duodenal mucosa, lysozyme was found in the Paneth cells and the epithelial cells of Brunner's glands. Electron-microscopically, lysozyme was found in rough endoplasmic reticulum and perinuclear spaces, which were assumed to be protein-synthesizing organelles, and also in the secretory granules of Paneth cells. Additionally, lysozyme was detected in the stomach in mucinous granules and in some parts of the rough endoplasmic reticulum within the epithelial cells of the pyloric glands, the mucous neck cells of the fundic glands, and in several surface epithelial cells of the plyoric and fundic regions.This suggests that some quantity of lysozyme in gastrointestinal secretion originates from the gastric and duodenal glands, and that it acts as a defense mechanism in the gastrointestinal tract.  相似文献   

16.
Summary Cellular differentiation and migration in the fundic glands of adult and larval Xenopus laevis have been examined using bromodeoxyuridine-immunohistochemistry. In the adult fundic gland, cumulative labeling with bromodeoxyuridine revealed a proliferative cell zone between the surface mucous cells and mucous neck cells, in what is referred to as the neck portion of the gland. The labeling-index of mucous neck cells had rapidly increased by week-5. The labeling-index of oxynticopeptic cells showed a more delayed increase until week-7, coincident with the decrease in the labeling of mucous neck cells. In the immature fundic glands of larvae, the labeled proliferating cells were randomly distributed throughout the developing gastric mucosa. During metamorphosis, the labeling-index of immature epithelial cells was highest at stage 63. Following administration of bromodeoxyurdine at this, stage, there was no significant loss of labeled epithelial cells during the metamorphosing period. Furthermore, there was no significant difference in the labeling-indices among the epithelial cells, such as surface mucous cells/generative cells, mucous neck cells, and oxynticopeptic cells, 7 days after administration. Cellular differentiation and migration pathways of epithelial cells in the fundic gland of adult X. laevis and its larvae are discussed.  相似文献   

17.
An histological and histochemical study was conducted on the stomach of adult Senegal sole, Solea senegalensis specimens. The stomach was made up of four distinct layers: mucosa, lamina propria-submucosa-, muscularis and serosa. Surface epithelial, glandular and rodlet cells were present in the mucosa. Cells of the columnar epithelium contained a basal nucleus. Numerous mitochondria, granular endoplasmic reticulum and Golgi apparatus consisting of several parallel cisternae and vesicles were observed in the cytoplasm of these cells. The lysosomes were small, round and dense. The gastric glands were numerous in the pyloric and fundic regions but absent in the cardiac stomach. These glands were formed by two cell-types: light and dark cells. The light cells were characterised by numerous mitochondria, while dark cells had slightly fewer mitochondria and a tubulo-vesicular system. Rodlet cells similar to those observed in other teleostean fish were present among the epithelial cells. Although the epithelial cells of the mucosa contained a weak presence of neutral and acid mucopolysaccharides/mucosubstances, these substances were abundant in the lamina propria-submucosa. Proteins rich in arginine, lysine, cysteine and cystine were rarely present in the mucosa and lamina propria-submucosa of stomach, while proteins rich in tyrosine were abundant in these layers. Acid phosphatase, and ATP-ase (pH 7.2 and 9.4) activities were detected in the mucosa and lamina propria-submucosa. Alkaline phosphatase activity was not detected.  相似文献   

18.
Suíçmez M  Ulus E 《Folia biologica》2005,53(1-2):95-100
The anatomy, histology and ultrastructure of the digestive tract of Orthrias angorae (Steindachner, 1897) were investigated using light microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The histological structure consists of four layers: mucosa, submucosa, muscularis and serosa. The esophageal mucosa consists of undifferentiated basal epithelial cells, mucous cells and surface epithelial cells. It was observed that the J-shaped stomach had a meshwork of folds in the cardiac region, and longitudinal folds in the fundic and pyloric regions. A single layer of columnar cells, PAS positive only in their apical portions, forms the epithelium. The convoluted tube-shape intestine is lined by simple columnar epithelial cells, which have microvilli at the apical surface. The wall of the esophagus and stomach are thicker than that of the intestine because of the thick muscle layer. There were numerous goblet cells in the intestine. There were numerous gastric glands in the submucosa layer ofthe cardiac stomach, but none were present in the pyloric region of the stomach. There were no pyloric caeca between the stomach and intestine. The enterocytes with microvilli contained rough endoplasmic reticulum, ribosomes and rounded bodies, and the gastric cells contained a well-developed Golgi apparatus.  相似文献   

19.
Summary Antibodies to histamine were used to examine the localization of the amine in cells of the stomach and upper small intestine of a great variety of species, including cartilaginous and bony fish, amphibia, reptiles (lizard), birds (chicken) and a large number of mammals. In all species gastric histamine was localized in endocrine cells (invariably found in the epithelium) and mast cells (usually with an extra-epithelial localization). The endocrine cells were identified as such by immunostaining with antibodies to chromogranin A and the mast cells were identified by toluidine blue staining. Histamine-immunoreactive endocrine cells were found almost exclusively in the acid-producing part of the stomach; only rarely were such cells observed in the pyloric gland area. They were fairly numerous in the gastric mucosa of the two subclasses of fish as well as in the amphibia and reptile species studied. Here, the majority of the histamine-immunoreactive endocrine cells seemed to have contact with the gastric lumen (open type cells) and were located in the surface epithelium (certain fish only) or together with mucous neck cells at the bottom of the pits. In the chicken, histamine-immunoreactive endocrine cells were numerous and located peripherally in the deep compound glands. They were without contact with the lumen (closed type) and had long basal extensions (paracrine appearance), running close to the base of the oxyntico-peptic cells. In mammals, the number of histamine-immunoreactive endocrine cells in the stomach varied greatly. They were particularly numerous in the rat and notably few in the dog, monkey and man. In all mammals, the histamine-immunoreactive endocrine cells were of the closed type and located basally in the oxyntic glands. They often had a paracrine appearance with long basal processes. Histamine-storing mast cells, finally, were few in both subclasses of fish as well as in the amphibian species and in the lizard. They were fairly numerous in chicken proventriculus (beneath the surface epithelium), few in the oxyntic mucosa of mouse, rat and hamster, moderate in number in hedge-hog, guinea-pig, rabbit, pig and monkey, and numerous in cat, dog and man. In the oxyntic mucosa of the latter three species mast cells sometimes seemed to have an intraepithelial localization which made their distinction from endocrine cells difficult. In newborn cats (1–3 days old) in human foetuses (17–24 weeks gestational age) mast cells were relatively few in the gastric mucosa and the histamine-containing endocrine cells were easier to demonstrate as a consequence. Patients with achlorhydria (and pernicious anemia) or suffering from hypergastrinemia due to gastrinoma had a greatly increased number of histamine-storing endocrine cells in the oxyntic mucosa compared with normal individuals.  相似文献   

20.
The anatomical arrangement of the digestive tract and the length (cm) of the oesophagus and intestine of the catfish Lophiosilurus alexandri were described, and the intestinal coefficient was determined. L. alexandri oesophagus is short, in median position, and presents longitudinally folded mucosa, whilst its epithelium is stratified and non-keratinised, with mucous, claviform and epithelial cells. Stomach has “C” shape, with folded mucosa along cardiac region, disordered in the fundic region, and directed to the sphincter in the pyloric region. Its epithelium is simple prismatic, and cardiac and fundic portions have gastric glands. Cranial intestine is formed by pyloric flexure and descending loop attached to the right side of stomach. Middle intestine is winding and positioned to the right of caudal portion of stomach. Caudal intestine is linear and with a median position up to the anus. Intestinal coefficient was 1.39 ± 0.30 cm. Epithelium is simple prismatic with brush border and contains epithelial and goblet cells. Caudal region has highest concentration of goblet cells. Were detected neutral glycoproteins, carboxylated and sulphated acid glycoconjugates for mucous cells and goblet cells, and neutral glycoproteins for the apical region of gastric epithelial cells. Morphological features could be related to piscivorous species feeding habit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号