首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: To identify the metabolites produced from an isoflavonoid, daidzein, by colonic bacteria of rhesus monkeys. METHODS: The metabolism of daidzein by the fecal bacteria of nine monkeys was investigated. Daidzein was incubated anaerobically with fecal bacteria, and the metabolites were analyzed by use of liquid chromatography and mass spectrometry. RESULTS: The fecal bacteria of all of the monkeys metabolized daidzein to various extents. Dihydrodaidzein was found in cultures of fecal bacteria from two monkeys; dihydrodaidzein and equol were found in cultures from four monkeys; dihydrodaidzein, equol, and an unknown metabolite (MW = 244) were found in cultures from one monkey; and dihydrodaidzein and the unknown metabolite were found in cultures from two monkeys. CONCLUSIONS: Similar to that in humans, variation was evident in the metabolism of isoflavonoids by fecal bacteria from rhesus monkeys. Some metabolites produced by fecal bacteria from monkeys were the same as those produced by fecal bacteria from humans.  相似文献   

2.
Isoflavonoids found in legumes, such as soybeans, are converted by intestinal bacteria to metabolites that might have increased or decreased estrogenic activity. Variation in the effects of dietary isoflavonoids among individuals has been attributed to differences in their metabolism by intestinal bacteria. To investigate this variation, the metabolism of the isoflavonoid daidzein by bacteria from ten fecal samples, provided at different times by six individuals on soy-containing diets, was compared. After anaerobic incubation of bacteria with daidzein for 2 weeks, four samples had metabolized daidzein and six samples had not. Three of the positive samples were from individuals whose microflora had not metabolized daidzein in previous samples. Dihydrodaidzein was observed in one sample, dihydrodaidzein and equol in another sample, and equol and O-desmethylangolensin in two other samples. These results corroborate the hypothesis that the microflora of the gastrointestinal tract of an individual influences the particular isoflavone metabolites produced following consumption.  相似文献   

3.
Daidzein (4′,7-dihydroxyisoflavone), a phytoestrogen found in soybeans mainly in the form of its glycoside daidzin, is metabolized by colonic bacteria to compounds with altered estrogenic activities, which may affect human health. Antibacterial agents used for the treatment of infections can alter the composition of bacterial populations in the colon and therefore can affect daidzein metabolism. To rapidly detect the effects of different concentrations of antibiotics on daidzein metabolism by colonic bacteria of monkeys and identify the subpopulation involved in daidzein metabolism, Etest strips containing antibacterial agents from three classes (tetracyclines, fluoroquinolones, and β-lactams) were used to eliminate the colonic bacteria that were susceptible to 0–32 μg/ml of each antibacterial agent and test the surviving bacteria for their ability to metabolize daidzein. The metabolism of daidzein by the colonic microflora was measured before and after the colonic bacterial population was exposed to antibacterial agents. The metabolites were detected by high performance liquid chromatography and mass spectrometry after incubation of the cultures for various times. Exposure of colonic microflora to antibiotics had various effects on daidzein metabolism. Tetracycline completely removed the bacteria metabolizing daidzein, metabolism of daidzein was not changed in cultures of bacteria after ceftriaxone treatment, and ciprofloxacin enriched for the bacteria metabolizing daidzein. In liquid cultures treated with various concentrations of ciprofloxacin, 4 μg/ml of ciprofloxacin favored the growth of bacteria that metabolized daidzein. This is the first time in which the Etest has been used to show that, whereas some antibiotics eliminate phytoestrogen-metabolizing bacteria in colonic microflora, others enrich them by eliminating the non-metabolizing strains in the population.  相似文献   

4.
Fecal bacteria from a healthy individual were screened for the specific bacteria involved in the metabolism of dietary isoflavonoids. Two strains of bacteria capable of producing primary and secondary metabolites from the natural isoflavone glycosides daidzin and genistin were detected. The metabolites were identified by comparison of their HPLC/mass, 1H NMR and UV spectra with those of standard and synthetic compounds. Both Escherichia coli HGH21 and the gram-positive strain HGH6 converted daidzin and genistin to the their respective aglycones daidzein and genistein. Under anoxic conditions, strain HGH6 further metabolized the isoflavones daidzein and genistein to dihydrodaidzein and dihydrogenistein, respectively. The reduction of a double bond between C-2 and C-3 to a single bond was isoflavonoid-specific by strain HGH6, which did not reduce a similar bond in the flavonoids apigenin and chrysin. Strain HGH6 did not further metabolize dihydrodaidzein and dihydrogenistein. This is the first study in which specific colonic bacteria that are involved in the metabolism of daidzin and genistin have been detected.  相似文献   

5.
兔肠道大豆异黄酮还原菌株的分离鉴定及其转化特性   总被引:1,自引:0,他引:1  
周博  孟建青  王秀伶 《微生物学通报》2014,41(11):2301-2309
【目的】从兔新鲜粪样中分离对大豆异黄酮黄豆苷原和染料木素具有转化作用的特定细菌菌株。【方法】在厌氧工作站内对獭兔新鲜粪样进行梯度稀释后涂板,挑取单菌落与底物黄豆苷原和染料木素分别厌氧混合培养,用高效液相色谱检测底物被转化情况。【结果】分离得到一株对大豆异黄酮黄豆苷原和染料木素均具有转化作用的革兰氏阳性严格厌氧细菌菌株AUH-JLR41(KJ188150)。根据产物的高效液相保留时间、紫外吸收图谱和质谱分析结果,将菌株AUH-JLR41代谢底物黄豆苷原和染料木素生成的产物分别鉴定为二氢黄豆苷原和二氢染料木素。经手性高效液相系统检测,产物二氢黄豆苷原和二氢染料木素均呈现两个等面积物质峰,表明这两个产物的对映体过量率均为0。通过转化动态研究发现,菌株AUH-JLR41分别在底物黄豆苷原和染料木素加入48 h和72 h后将底物全部转化为产物,该菌株能转化底物黄豆苷原和染料木素的最大浓度均为0.6 mmol/L。经BLAST比对,菌株AUH-JLR41的16S r RNA基因序列与斯奈克氏菌属菌株Slackia equolifaciens DZE(EU377663)的相似性高达99.6%。【结论】兔肠道分离的斯奈克氏菌属菌株Slackia sp.AUH-JLR41在厌氧条件下能将大豆异黄酮黄豆苷原和染料木素分别还原为二氢黄豆苷原和二氢染料木素。  相似文献   

6.
Colonic bacteria were screened for bacteria involved in the conversion of phytoestrogens. A gram-positive anaerobic bacterium, strain HGH 136, capable of conversion of the isoflavonoid daidzein, was isolated and identified as a Clostridium sp. The bacterium cleaved the C-ring of daidzein to produce O-demethylangolensin ( O-Dma). This compound was identified by comparison of the HPLC retention time and UV spectrum of the metabolite with chemically synthesized O-Dma. The identity of the metabolite was confirmed by liquid chromatography-mass spectrometry and NMR using synthetic O-Dma as a standard. The bacterium incubated with synthetic dihydrodaidzein also produced O-Dma. After 3 days of incubation, 28% of added daidzein and 12% of added dihydrodaidzein were converted to O-Dma. This is the first study in which an anaerobic bacterium involved in the ring cleavage of daidzein to produce O-Dma has been identified.  相似文献   

7.
Enterococcus casseliflavus and Enterococcus gallinarum strains resistant to metronidazole, nitrofurantoin and nitrofurazone were isolated from fecal samples of a patient with recurrent ulcerative colitis treated with metronidazole. Unlike other metronidazole-resistant bacteria, these strains produced nitroreductase but metabolized metronidazole to compounds that could not be detected by liquid chromatography with UV or mass spectral analysis. Metronidazole-susceptible Clostridium perfringens grew equally well in spent cultures of Enterococcus spp. incubated with or without metronidazole. These data indicate that the nitroreductases produced by these Enterococcus strains did not activate metronidazole to bactericidal metabolites and these bacteria may reduce the effectiveness of metronidazole. We have indirect evidence for an alternative pathway that results in metronidazole resistance. These strains of enterococcus had nitroreductase so resistance should not have occurred.  相似文献   

8.
Equol is metabolized from daidzein, a soy isoflavone, by the gut microflora. In this study, we identified a novel dihydrodaidzein racemase (L-DDRC) that is involved in equol biosynthesis in a lactic acid bacterium, Lactococcus sp. strain 20-92, and confirmed that histidine-tagged recombinant L-DDRC (L-DDRC-His) was able to convert both the (R)- and (S)-enantiomers of dihydrodaidzein to the racemate. Moreover, we showed that recombinant L-DDRC-His was essential for in vitro equol production from daidzein by a recombinant enzyme mixture and that efficient in vitro equol production from daidzein was possible using at least four enzymes, including L-DDRC. We also proposed a model of the metabolic pathway from daidzein to equol in Lactococcus strain 20-92.  相似文献   

9.
Synthesis of phytoestrogenic isoflavonoid disulfates   总被引:3,自引:0,他引:3  
Soidinsalo O  Wähälä K 《Steroids》2004,69(10):613-616
Di-O-sulfates of six phytoestrogenic isoflavonoids, daidzein (1), genistein (2), glycitein (3), and the reduced metabolites dihydrodaidzein (4), dihydrogenistein (5) and equol (6) were synthesized. These compounds are known or potential inhibitors of steroid sulfatase enzymes. The new compounds were characterized by NMR and mass spectrometry.  相似文献   

10.
兼性肠球菌Enterococcus hirae AUH-HM195对黄豆苷原的开环转化   总被引:2,自引:0,他引:2  
摘要:【目的】从褐马鸡粪样中分离对大豆异黄酮黄豆苷原具有转化作用的功能微生物菌株。【方法】在厌氧工作站内对褐马鸡新鲜粪样进行梯度稀释后涂板,从板上挑取单菌落与底物黄豆苷原厌氧混合培养,用高效液相色谱检测底物被转化情况。【结果】分离出一株对黄豆苷原具开环转化作用的革兰氏阳性兼性好氧菌株AUH-HM195(EU919863),经BLAST比对,该菌株的16S rDNA基因全序与肠球菌属菌株Enterococcus hirae (DSM20160) 的相似性为100%。根据保留时间、代谢产物最大紫外吸图谱以及核  相似文献   

11.
Recently, the biological effects of isoflavones have attracted much attention. Intestinal microbiota plays an important role in the metabolism and bioavailability of isoflavones. However, few reports have discussed intestinal bacteria that metabolize daidzein into dihydrodaidzein. In this study, we isolated the dihydrodaidzein-producing intestinal bacterium TM-40 from a healthy boy's faeces. The bacteria from faecal samples were incubated with daidzein. Among all tested bacteria, one strain (strain TM-40) produced dihydrodaidzein both from daidzein and daidzin. However, in our experimental conditions, strain TM-40 did not produce equol from daidzein. The 16S rRNA partial sequence of strain TM-40 (AB249652) exhibited a 93% similarity to that of Coprobacillus catenaformis (AB030218). This strain seems to be a new species.  相似文献   

12.
The metabolism of isoflavones by gut bacteria plays a key role in the availability and bioactivation of these compounds in the intestine. Daidzein and genistein are the most common dietary soy isoflavones. While daidzein conversion yielding equol has been known for some time, the corresponding formation of 5-hydroxy-equol from genistein has not been reported previously. We isolated a strictly anaerobic bacterium (Mt1B8) from the mouse intestine which converted daidzein via dihydrodaidzein to equol as well as genistein via dihydrogenistein to 5-hydroxy-equol. Strain Mt1B8 was a gram-positive, rod-shaped bacterium identified as a member of the Coriobacteriaceae. Strain Mt1B8 also transformed dihydrodaidzein and dihydrogenistein to equol and 5-hydroxy-equol, respectively. The conversion of daidzein, genistein, dihydrodaidzein, and dihydrogenistein in the stationary growth phase depended on preincubation with the corresponding isoflavonoid, indicating enzyme induction. Moreover, dihydrogenistein was transformed even more rapidly in the stationary phase when strain Mt1B8 was grown on either genistein or daidzein. Growing the cells on daidzein also enabled conversion of genistein. This suggests that the same enzymes are involved in the conversion of the two isoflavones.  相似文献   

13.
An anaerobic incubation mixture of two bacterial strains Eggerthella sp. Julong 732 and Lactobacillus sp. Niu-O16, which have been known to transform dihydrodaidzein to S-equol and daidzein to dihydrodaidzein respectively, produced S-equol from daidzein through dihydrodaidzein. The biotransformation kinetics of daidzein by the mixed cultures showed that the production of S-equol from daidzein was significantly enhanced, as compared to the production of S-equol from dihydrodaidzein by Eggerthella sp. Julong 732 alone. The substrate daidzein in the mixed culture was almost completely converted to S-equol in 24 h of anaerobic incubation. The increased production of S-equol from daidzein by the mixed culture is likely related to the increased bacterial numbers of Eggerthella sp. Julong 732. In the mixture cultures, the growth of Eggerthella sp. Julong 732 was significantly increased while the growth of Lactobacillus sp. Niu-O16 was suppressed as compared to either the single culture of Eggerthella sp. Julong 732 or Lactobacillus sp. Niu-O16. This is the first report in which two metabolic pathways to produce S-equol from daidzein by a mixed culture of bacteria isolated from human and bovine intestinal environments were successfully linked under anaerobic conditions.  相似文献   

14.
The intestinal microbial transformation of daidzein into equol is subject to a wide inter-individual variability. The aim of this study was to investigate in vitro this transformation and to evaluate possible correlations between individual diet and equol production. The transformation of daidzein was investigated in anaerobic batch cultures inoculated with mixed fecal bacteria from 90 volunteers. The daidzein metabolism was monitored by liquid chromatography-mass spectrometry, and a chiral column was used to distinguish equol and dihydrodaidzein enantiomers. The obtained results show that daidzein was unchanged (≈27%) or degraded to equol (≈28%), O-desmethylangolensin (≈12%) or dihydrodaidzein (≈31%). Furthermore, some subjects (≈2%) are able to produce both equol and O-desmethylangolensin. Bacteria represent sub-dominant populations (105–109 cell/g wet faeces) in “slow” equol producers, while higher counts of equol-producing microorganisms (1010–1011 cell/g wet faeces) were found in “quick” equol producers. The in vitro test to evaluate equol-producing status is quick and not invasive, and the obtained results are comparable with those reported in vivo. Indeed, the only enantiomer present in the batch cultures containing equol was the S-form. No significant correlations between equol production, BMI, age and sex were found. It seems that the equol-producer group consumed less fibre, vegetables and cereals, and more lipids from animal sources.  相似文献   

15.
Isoflavones are recognized to be estrogenic compounds that are often associated with a reduced risk of cancers. The estrogenic activity can be enhanced after metabolization to more active compounds such as genistein and daidzein by gut microorganisms. The direct use of these metabolites has been investigated in laboratory rats and farm animals over the last decade. This paper reviews the research progress on the effect of isoflavonic compounds including metabolites on the physiology, gut microbiology and performance of farm animals in China.  相似文献   

16.
A rod-shaped and Gram-positive anaerobic bacterium, named Niu-O16, which was isolated from bovine rumen contents, was found to be capable of anaerobically converting isoflavones daidzein and genistein to dihydrodaidzein (DHD) and dihydrogenistein (DHG), respectively. The metabolites DHD and DHG were identified using EI-MS and NMR spectrometric analyses. Stereoisomeric metabolites, which were separated on chiral stationary phase HPLC, were formed in equal amounts by the strain Niu-O16. Tautomerization reaction occurred on the B-ring of DHD and DHG seems to be attributed to the equal production of stereoisomeric metabolites. For the synthesis of DHD, the strain Niu-O16 showed an optimal pH range from 6.0 to 7.0 and completely reduced up to 800 microM of daidzein to DHD with the initial OD600nm=1.0 and pH 7.0 for 3 days incubation. The strain Niu-O16, showed relatively faster reduction activity toward daidzein to produce DHD than the previously isolated human intestinal bacterium Clostridium sp. HGH6.  相似文献   

17.
18.
Phytoestrogens and mycoestrogens are naturally occurring plant and fungus secondary metabolites with estrogen-like structure and/or actions. We aimed to check the hypothesis that phytoestrogens and mycoestrogens, due to their ability to elicit cerebral vasodilation, can induce acute increases in brain blood perfusion. For this purpose, we continuously recorded cerebrocortical perfusion by laser-Doppler flowmetry in anesthetized rats receiving intracarotid infusions (1 mg/kg) of one of the following estrogenic compounds: biochanin A, daidzein, genistein or zearalanone. We have shown the ability of two isoflavone class phytoestrogens (daidzein and biochanin A) and the mycoestrogen zearalanone to induce acute increases in brain blood flow when locally infused into the cerebral circulation of anesthetized rats. The isoflavone genistein failed to induce a significant increase in brain perfusion. No concomitant changes in blood pressure were recorded during the cerebral effects of the estrogenic compounds. Therefore, these microcirculatory effects were due to direct actions of the estrogenic compounds on the cerebrovascular bed.  相似文献   

19.
Asaccharobacter celatus AHU1763 is a Gram-positive, obligate anaerobic, non-spore forming, rod-shaped bacteria that was successfully isolated from rat cecal content. Daizein was converted to equol via dihydrodaidzein by this bacterium. A crude enzyme that converted daidzein to dihydrodaidzein was detected mainly in the culture supernatant. The ability of this enzyme dropped after the culture supernatant was exposed to a normal atmospheric environment for even 5 min. Furthermore, the enzyme responsible for changing dihydrodaidzein to equol was detected mainly in the cell debris, which required anaerobic conditions for its activity.  相似文献   

20.
The metabolic products of daidzein and genistein, the principal isoflavones of soy, were examined. Six volunteers included soy into their normal diet for a 2-week period and urine samples were analyzed before and after soy consumption. Isolation and characterization of the urinary metabolites were carried out with absorption chromatography on Sephadex LH-20 and gas chromatography-electron ionization mass spectrometry (GC-EIMS). The structures of the isoflavones isolated were confirmed by using authentic reference compounds. Dihydrogenistein, 6'-OH-O-desmethylangolensin, and cis-4-OH-equol were identified, in addition to known isoflavonoids daidzein, genistein, glycitein, and the known metabolites equol, O-desmethylangolensin, and dihydrodaidzein, by comparing the retention times and the spectra of the urinary compounds with those of the synthesized reference standards. The mammalian lignans enterolactone and enterodiol were also identified. Derivatization of the isoflavones for GC-MS was examined by comparing two silylating reagents, N, O-bis-(trimethylsilyl)-trifluoroacetamide (BSTFA) and pyridine:hexamethyldisilazan:trimethylchlorosilane (QSM), both used for the derivatization of these compounds. The silylation experiments revealed significant differences in the compositions of the derivatization products. Some corrections were made concerning the earlier published data of dihydrogenistein and 6'-OH-O-dma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号