首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
3.
4.
Phosphorylated ribosomal proteins were isolated from Xenopus 40 S ribosomal subunits by reversed-phase high performance liquid chromatography (HPLC) to enable direct analysis of the phosphorylation sites in ribosomal protein S6. Xenopus S6 closely resembled mammalian S6 with respect to the following properties: (i) reversed-phase HPLC elution behavior, (ii) amino-terminal sequence (96% identity in the first 37 residues), and (iii) an identical sequence within the region of its phosphorylation sites. Whereas S6 was the only ribosomal protein phosphorylated in vitro by Xenopus S6 kinase II, ribosomes phosphorylated in vivo were found to be associated with an additional phosphoprotein having an amino-terminal sequence identical to that of the ubiquitin carboxyl-terminal extension protein CEP 80. S6 kinase II phosphorylated at least four sites (serines 1-3 and 5) in the sequence Arg-Arg-Leu-Ser(1)-Ser(2)-Leu-Arg-Ala-Ser(3)-Thr-Ser(4)-Lys-Ser(5)-, which correspond to the residues known to be phosphorylated in the carboxyl-terminal region of mammalian S6. The in vivo S6 phosphorylation sites in maturing Xenopus oocytes were shown to be located within the same cluster of serine residues, although individual sites were not identified. Kinetic analysis of S6 kinase II-catalyzed phosphorylation events indicated a simple sequential mechanism of multisite phosphorylation initiating at either serine 2 (preferred) or serine 1, with the rates of phosphorylation of individual sites occurring in the order serine 2 greater than serine 1 greater than serine 3 greater than serine 5.  相似文献   

5.
6.
C Grose  W Jackson    J A Traugh 《Journal of virology》1989,63(9):3912-3918
Varicella-zoster virus (VZV) glycoprotein gpI is the predominant viral glycoprotein within the plasma membranes of infected cells. This viral glycoprotein is phosphorylated on its polypeptide backbone during biosynthesis. In this report, we investigated the protein kinases which participate in the phosphorylation events. Under in vivo conditions, VZV gpI was phosphorylated on its serine and threonine residues by protein kinases present within lysates of either VZV-infected or uninfected cells. Because this activity was diminished by heparin, a known inhibitor of casein kinase II, isolated gpI was incubated with purified casein kinase II and shown to be phosphorylated in an in vitro assay containing [gamma-32P]ATP. The same glycoprotein was phosphorylated when [32P]GTP was substituted for [32P]ATP in the protein kinase assay. We also tested whether VZV gpI was phosphorylated by two other ubiquitous mammalian protein kinases--casein kinase I and cyclic AMP-dependent kinase--and found that only casein kinase I modified gpI. When the predicted 623-amino-acid sequence of gpI was examined, two phosphorylation sites known to be optimal for casein kinase II were observed. Immediately upstream from each of the casein kinase II sites was a potential casein kinase I phosphorylation site. In summary, this study showed that VZV gpI was phosphorylated by each of two mammalian protein kinases (casein kinase I and casein kinase II) and that potential serine-threonine phosphorylation sites for each of these two kinases were present in the viral glycoprotein.  相似文献   

7.
Amino-terminal protein sequence analysis revealed that exponentially growing human HeLa cells at 37 degrees C express two closely related 90-kDa "heat shock" proteins (hsp 90) in nearly equal amounts. Both hsp 90s begin with proline; the initial methionine residue is removed. The alpha protein contains a 9-amino acid segment, TQTQDQPME, from residues 4 to 12, that is replaced by a 4-amino acid segment, VHHG, in the beta form. The purified hsp 90 mixture contains 2 mol of phosphate/mol of polypeptide. Both hsp 90 proteins are phosphorylated at two homologous sites. For the alpha protein, these sites correspond to serine 231 and serine 263. A 5-amino acid segment, ESEDK, between the two phosphorylation sites is absent from the beta protein. The sequence between phosphorylation sites of both hsp 90s is predicted to have alpha helical structure. Dephosphorylated hsp 90 is phosphorylated at both sites by casein kinase II from HeLa cells, calf thymus, or rabbit reticulocytes; no other hsp 90 residues were phosphorylated by casein kinase II in vitro.  相似文献   

8.
In a previous characterization of the ABCA subfamily of the ATP-binding cassette (ABC) transporters, we identified potential protein kinase 2 (CK2) phosphorylation sites, which are conserved in eukaryotic and prokaryotic members of the ABCA transporters. These phosphorylation residues are located in the conserved cytoplamic R1 and R2 domains, downstream of the nucleotide binding domains NBD1 and NBD2. To study the possible regulation of the ABCA1 transporter by CK2, we expressed the recombinant cytoplasmic domains of ABCA1, NBD1+R1 and NBD2+R2. We demonstrated that in vitro ABCA1 NBD1+R1, and not NBD2+R2, is phosphorylated by CK2, and we identified Thr-1242, Thr-1243, and Ser-1255 as the phosphorylated residues in the R1 domain by mass spectrometry. We further investigated the functional significance of the threonine and serine phosphorylation sites in NBD1 by site-directed mutagenesis of the entire ABCA1 followed by transfection into Hek-293 Tet-Off cells. The ABCA1 flippase activity, apolipoprotein AI and AII binding, and cellular phospholipid and cholesterol efflux were enhanced by mutations preventing CK2 phosphorylation of the threonine and serine residues. This was confirmed by the effect of specific protein kinase CK2 inhibitors upon the activity of wild type and mutant ABCA1 in transfected Hek-293 Tet-Off cells. The activities of the mutants mimicking threonine phosphorylation were close to that of wild type ABCA1. Our data, therefore, suggest that besides protein kinase A and C, protein kinase CK2 might play an important role in vivo in regulating the function and transport activity of ABCA1 and possibly of other members of the ABCA subfamily.  相似文献   

9.
Eukaryotic translation initiation factor 5 (eIF5) interacts with the 40S initiation complex (40S•eIF3•AUG•Met-tRNAf•eIF2•GTP) and, acting as a GTPase activating protein, promotes the hydrolysis of bound GTP. We isolated a protein kinase from rabbit reticulocyte lysates on the basis of its ability to phosphorylate purified bacterially expressed recombinant rat eIF5. Physical, biochemical and antigenic properties of this kinase identify it as casein kinase II (CK II). Mass spectrometric analysis of maximally in vitro phosphorylated eIF5 localized the major phosphorylation sites at Ser-387 and Ser-388 near the C-terminus of eIF5. These serine residues are embedded within a cluster of acidic amino acid residues and account for nearly 90% of the total in vitro eIF5 phosphorylation. A minor phosphorylation site at Ser-174 was also observed. Alanine substitution mutagenesis at Ser-387 and Ser-388 of eIF5 abolishes phosphorylation by the purified kinase as well as by crude reticulocyte lysates. The same mutations also abolish phosphorylation of eIF5 when transfected into mammalian cells suggesting that CK II phosphorylates eIF5 at these two serine residues in vivo as well.  相似文献   

10.
Smooth muscle myosin light chain kinase (MLC kinase) was phosphorylated by smooth muscle calmodulin-dependent protein kinase II (CaM protein kinase II). When MLC kinase was free from calmodulin, two sites were phosphorylated. The phosphorylation at the one site was much faster than the other site; however, the phosphorylation at the first site was completely blocked by calmodulin binding to MLC kinase. Phosphorylation of MLC kinase by CaM protein kinase II increased the dissociation constant of MLC kinase for calmodulin about 10 times without changing the Vmax. The location of the phosphorylation sites was identified by isolating and sequencing the tryptic phosphopeptides of MLC kinase. The preferred site was identified as serine 512 and the second site as serine 525. These sites are the same as the sites phosphorylated by cAMP-dependent protein kinase.  相似文献   

11.
DNA topoisomerase II alpha is required for chromatin condensation during prophase. This process is temporally linked with the appearance of mitosis-specific phosphorylation sites on topoisomerase IIalpha including one recognized by the MPM-2 monoclonal antibody. We now report that the ability of mitotic extracts to create the MPM-2 epitope on human topoisomerase II alpha is abolished by immunodepletion of protein kinase CK2. Furthermore, the MPM-2 phosphoepitope on topoisomerase II alpha can be generated by purified CK2. Phosphorylation of C-truncated topoisomerase II alpha mutant proteins conclusively shows, that the MPM-2 epitope is present in the last 163 amino acids. Use of peptides containing all conserved CK2 consensus sites in this region indicates that only the peptide containing Arg-1466 to Ala-1485 is able to compete with topoisomerase II alpha for binding of the MPM-2 antibody. Replacement of Ser-1469 with Ala abolishes the ability of the phosphorylated peptide to bind to the MPM-2 antibody while a peptide containing phosphorylated Ser-1469 binds tightly. Surprisingly, the MPM-2 phosphoepitope influences neither the catalytic activity of topoisomerase II alpha nor its ability to form molecular complexes with CK2 in vitro. In conclusion, we have identified protein kinase CK2 as a new MPM-2 kinase able to phosphorylate an important mitotic protein, topoisomerase II alpha, on Ser-1469.  相似文献   

12.
13.
Mdm2 is a cellular oncoprotein the most obvious function of which is the down-regulation of the growth suppressor protein p53. It represents a highly phosphorylated protein but only little is yet known about the sites phosphorylated in vivo, the kinases that are responsible for the phosphorylation or the functional relevance of the phosphorylation status. Recently, we have shown that mdm2 is a good substrate for protein kinase CK2 at least in vitro. Computer analysis of the primary amino acid sequence of mdm2 revealed 19 putative CK2 phosphorylation sites. By using deletion mutants of mdm2 and a peptide library we identified the serine residue at position 269 which lies within a canonical CK2 consensus sequence (EGQELSDEDDE) as the most important CK2 phosphorylation site. Moreover, by using the mdm2 S269A mutant for in vitro phosphorylation assays this site was shown to be phosphorylated by CK2. Binding studies revealed that phosphorylation of mdm2 at S269 does not have any influence on the binding of p53 to mdm2.  相似文献   

14.
High mobility group (HMG) N1 protein, formerly known as HMG 14, is a member of the chromosomal HMG protein family. Protein kinase CK2 was previously reported to be able to phosphorylate bovine HMGN1 in vitro; Ser89 and Ser99, corresponding to Ser88 and Ser98 in human HMGN1, were shown to be major and minor recognition sites, respectively. In this report, we employed mass spectrometry and examined both the extent and the sites of phosphorylation in HMGN1 protein catalyzed by recombinant human protein kinase CK2. We found that five serine residues, i.e., Ser6, Ser7, Ser85, Ser88, and Ser98, in HMGN1 can be phosphorylated by the kinase in vitro. All five sites were previously shown to be phosphorylated in MCF-7 human breast cancer cells in vivo. Among these five sites, Ser6, Ser7, and Ser85 were new sites of phosphorylation induced by protein kinase CK2 in vitro.  相似文献   

15.
The phosphorylation and activation of tyrosine hydroxylase was examined in PC12 cells following depolarization with KCl or treatment with nerve growth factor. Both treatments activate tyrosine hydroxylase (TH) and increase enzyme phosphorylation. Site-specific analysis of the tryptic phosphopeptides of TH isolated from [32P]phosphate-labeled PC12 cells demonstrated that the major phosphorylated peptide (termed "H25") did not contain any of the previously reported phosphorylation sites. Phosphoamino acid analysis of this peptide demonstrated that the phosphorylated residue was a serine. Synthetic tryptic peptides containing putative phosphorylation sites were prepared, and subjected to high performance liquid chromatography analysis and isoelectric focusing. The tryptic phosphopeptide containing serine 31 comigrated with the H25 peptide during both of these analytical techniques. The tryptic phosphopeptide produced by the phosphorylation of tyrosine hydroxylase by the recently discovered proline-directed protein kinase and the phosphorylated synthetic phosphopeptide TH2-12 are clearly separated from H25 by this analysis. We conclude that serine 31 is phosphorylated during KCl depolarization and nerve growth factor treatment of PC12 cells and that this phosphorylation is responsible for the activation of tyrosine hydroxylase. Since this site is not located in a sequence selective for any of the "classical" protein kinases, we suggest that a novel protein kinase may be responsible for the phosphorylation of this site. Since serine 31 has a proline residue on the carboxyl-terminal side, the possibility that this kinase may be related to the recently reported proline-directed protein kinase is discussed. Other sites that are also phosphorylated on TH during KCl depolarization include serine 19, which is known to be phosphorylated by calmodulin-dependent protein kinase II. A schematic model for the regulation of tyrosine hydroxylase activity by phosphorylation of the NH2-terminal regulatory domain is presented.  相似文献   

16.
We previously identified the Fas-associated factor FAF1 as an in vitro substrate of protein kinase CK2 and determined Ser289 and Ser291 as phosphorylation sites. Here we demonstrate that these two serine residues are the only sites phosphorylated by CK2 in vitro, and that at least one site is phosphorylated in vivo. Furthermore, we analyzed putative physiological functions of FAF1 phosphorylation. The ability of FAF1 to potentiate Fas-induced apoptosis is not influenced by the FAF1 phosphorylation status; however, the nuclear import of a phosphorylation-deficient FAF1 mutant was delayed in comparison to wild-type FAF1.  相似文献   

17.
18.
Ser-473 is solely phosphorylated in vivo in the tail region of neurofilament L (NF-L). With peptides including the native phosphorylation site, it was not possible to locate responsible kinases. We therefore adopted full-length dephosphorylated NF-L as the substrate, and employed MALDI/TOF (matrix-assisted laser desorption and ionization/time of flight) mass spectrometry and a site-specific phosphorylation-dependent antibody recognizing Ser-473 phosphorylation. The antibody showed that casein kinase I (CK I) as well as casein kinase II (CK II) phosphorylated Ser-473 in vitro, while neither GSK-3beta nor calcium/calmodulin-dependent protein kinase II did so. However, the mass spectra of the tail fragments of the phosphorylated NF-L indicated that CK II was the kinase mediating Ser-473 phosphorylation in vitro as opposed to CK I, because CK I phosphorylated another site as well as Ser-473 in vitro. The antibody also demonstrated that NF-L phosphorylated at Ser-473 was abundant in the neuronal perikarya of the rat cortex, indicating that phosphorylation of Ser-473 may take place there. This result may support the suggestion that CK II is the kinase responsible for Ser-473 phosphorylation. Despite many reports showing that CK I mediates phosphorylation of neurofilaments, CK II may phosphorylate NF-L in vivo.  相似文献   

19.
Jiang X  Wang Y 《Biochemistry》2004,43(49):15567-15576
Dehydrins are a group of proteins that are accumulated during environmental stress such as drought and low temperature or during late embryogenesis. In the present study, we isolated dehydrin DHN1, also known as Rab17 protein, from maize kernel by an acid extraction method, removed the phosphoric acid groups from phosphorylated residues by beta-elimination via treating the protein with barium hydroxide, and identified the sites of phosphorylation by tandem mass spectrometry. Our results showed that each of the seven contiguous serine residues (Ser78-Ser84) in the serine tract could be phosphorylated. The beta-elimination procedure was shown to be essential for the detection and subsequent site mapping of the heavily phosphorylated peptide by mass spectrometry. We also found that protein kinase CK2 could catalyze the phosphorylation of the DHN1 protein in vitro and the level of phosphorylation was comparable to that of the DHN1 isolated from maize seeds. Moreover, the in vitro phosphorylation also occurred on the serine residues in the serine tract region, suggesting that CK2 might be involved in the phosphorylation of the serine track region in maize kernel in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号