首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Normal Human Telomeres Are Not Late Replicating   总被引:9,自引:0,他引:9  
Telomeres in yeast are late replicating. Genes placed next to telomeres in yeast can be repressed (telomere positional effects), leading to the hypothesis that telomeres may be heterochromatic and may control the expression of subtelomeric genes. In addition, yeast telomeres are processed to have a transient long overhang at the end of S phase. The applicability of the yeast data to human biology was examined by determining the timing of telomere replication and processing in normal human diploid fibroblasts. Telomeres were purified from synchronized cells that had been labeled with 5-bromodeoxyuridine (BrdU) at hourly intervals, and the fraction of labeled telomeres was analyzed by retrieval with anti-BrdU antibodies. We determined that normal human telomeres replicate throughout S phase rather than being very late replicating. Furthermore, the overall timing of replication was unaffected by telomere length in young versus old cells or cells whose telomeres had been elongated following transfection with the catalytic subunit of telomerase. Finally, the asymmetry in the length of the G-rich overhang in daughter telomeres produced by leading versus lagging strand synthesis was shown to be established within 1 h of telomere replication, indicating there is no significant delay between synthesis and the processing events that contribute to the establishment of asymmetric overhangs. Therefore, the timings of replication and processing of human telomeres are very different from those of yeast.  相似文献   

3.
To maintain genomic integrity, telomeres must undergo switches from a protected state to an accessible state that allows telomerase recruitment. To better understand how telomere accessibility is regulated in fission yeast, we analysed cell cycle‐dependent recruitment of telomere‐specific proteins (telomerase Trt1, Taz1, Rap1, Pot1 and Stn1), DNA replication proteins (DNA polymerases, MCM, RPA), checkpoint protein Rad26 and DNA repair protein Nbs1 to telomeres. Quantitative chromatin immunoprecipitation studies revealed that MCM, Nbs1 and Stn1 could be recruited to telomeres in the absence of telomere replication in S‐phase. In contrast, Trt1, Pot1, RPA and Rad26 failed to efficiently associate with telomeres unless telomeres are actively replicated. Unexpectedly, the leading strand DNA polymerase ε (Polε) arrived at telomeres earlier than the lagging strand DNA polymerases α (Polα) and δ (Polδ). Recruitment of RPA and Rad26 to telomeres matched arrival of DNA Polε, whereas S‐phase specific recruitment of Trt1, Pot1 and Stn1 matched arrival of DNA Polα. Thus, the conversion of telomere states involves an unanticipated intermediate step where lagging strand synthesis is delayed until telomerase is recruited.  相似文献   

4.
Telomeres are nucleoprotein structures located at the linear ends of eukaryotic chromosomes. Telomere integrity is required for cell proliferation and survival. Although the vast majority of eukaryotic species use telomerase as a primary means for telomere maintenance, a few species can use recombination or retrotransposon-mediated maintenance pathways. Since Saccharomyces cerevisiae can use both telomerase and recombination to replicate telomeres, budding yeast provides a useful system with which to examine the evolutionary advantages of telomerase and recombination in preserving an organism or cell under natural selection. In this study, we examined the life span in telomerase-null, post-senescent type II survivors that have employed homologous recombination to replicate their telomeres. Type II recombination survivors stably maintained chromosomal integrity but exhibited a significantly reduced replicative life span. Normal patterns of cell morphology at the end of a replicative life span and aging-dependent sterility were observed in telomerase-null type II survivors, suggesting the type II survivors aged prematurely in a manner that is phenotypically consistent with that of wild-type senescent cells. The shortened life span of type II survivors was extended by calorie restriction or TOR1 deletion, but not by Fob1p inactivation or Sir2p over-expression. Intriguingly, rDNA recombination was decreased in type II survivors, indicating that the premature aging of type II survivors was not caused by an increase in extra-chromosomal rDNA circle accumulation. Reintroduction of telomerase activity immediately restored the replicative life span of type II survivors despite their heterogeneous telomeres. These results suggest that telomere recombination accelerates cellular aging in telomerase-null type II survivors and that telomerase is likely a superior telomere maintenance pathway in sustaining yeast replicative life span.  相似文献   

5.
Def1p is involved in telomere maintenance in budding yeast   总被引:3,自引:0,他引:3  
Saccharomyces Rrm3p, a member of Pif1 5'-3' DNA helicase subfamily, helps replication forks traverse protein-DNA complexes, including the telomere. Here we have identified an Rrm3p interaction protein known to be Def1p. In def1 mutants, telomeres were approximately 200-bp shorter than that in wild-type cells. DEF1 is also required for the stable maintenance of mitochondrial DNA, and the telomere shortening phenotype seen in def1 cells is not a secondary consequence of the mitochondrion defect. A combination of DEF1 null mutation with deletion of EST2 or EST3 resulted in an accelerated senescence phenotype, suggesting that Def1p is not involved in the telomerase recruitment pathway. In the absence of telomerase, cells escape senescence by either amplifying Y' regions or TG-telomeric repeats to generate type I or type II survivors, respectively. Only type I survivors were recovered from both def1Delta est2Delta and def1Delta est3Delta double mutant cells, further suggesting that the function of Def1p in telomere maintenance is specific. Our novel findings of the functions of Def1p in telomere and mitochondria suggested that Def1p plays multiple roles in yeast.  相似文献   

6.
Pif1 family helicases are evolutionary conserved 5′–3′ DNA helicases. Pfh1, the sole Schizosaccharomyces pombe Pif1 family DNA helicase, is essential for maintenance of both nuclear and mitochondrial DNAs. Here we show that its nuclear functions include roles in telomere replication and telomerase action. Pfh1 promoted semi-conservative replication through telomeric DNA, as replication forks moved more slowly through telomeres when Pfh1 levels were reduced. Unlike other organisms, S. pombe cells overexpressing Pfh1 displayed markedly longer telomeres. Because this lengthening occurred in the absence of homologous recombination but not in a replication protein A mutant (rad11-D223Y) that has defects in telomerase function, it is probably telomerase-mediated. The effects of Pfh1 on telomere replication and telomere length are likely direct as Pfh1 exhibited high telomere binding in cells expressing endogenous levels of Pfh1. These findings argue that Pfh1 is a positive regulator of telomere length and telomere replication.  相似文献   

7.
We investigated the effects of fission yeast replication genes on telomere length maintenance and identified 20 mutant alleles that confer lengthening or shortening of telomeres. The telomere elongation was telomerase dependent in the replication mutants analyzed. Furthermore, the telomerase catalytic subunit, Trt1, and the principal initiation and lagging-strand synthesis DNA polymerase, Polalpha, were reciprocally coimmunoprecipitated, indicating these proteins physically coexist as a complex in vivo. In a polalpha mutant that exhibited abnormal telomere lengthening and slightly reduced telomere position effect, the cellular level of the Trt1 protein was significantly lower and the coimmunoprecipitation of Trt1 and Polalpha was severely compromised compared to those in the wild-type polalpha cells. Interestingly, ectopic expression of wild-type polalpha in this polalpha mutant restored the cellular Trt1 protein to the wild-type level and shortened the telomeres to near-wild-type length. These results suggest that there is a close physical relationship between the replication and telomerase complexes. Thus, mutation of a component of the replication complex can affect the telomeric complex in maintaining both telomere length equilibrium and telomerase protein stability.  相似文献   

8.
Bianchi A  Shore D 《Cell》2007,128(6):1051-1062
The maintenance of an appropriate number of telomere repeats by telomerase is essential for proper chromosome protection. The action of telomerase at the telomere terminus is regulated by opposing activities that either recruit/activate the enzyme at shorter telomeres or inhibit it at longer ones, thus achieving a stable average telomere length. To elucidate the mechanistic details of telomerase regulation we engineered specific chromosome ends in yeast so that a single telomere could be suddenly shortened and, as a consequence of its reduced length, elongated by telomerase. We show that shortened telomeres replicate early in S phase, unlike normal-length telomeres, due to the early firing of origins of DNA replication in subtelomeric regions. Early telomere replication correlates with increased telomere length and telomerase activity. These data reveal an epigenetic effect of telomere length on the activity of nearby replication origins and an unanticipated link between telomere replication timing and telomerase action.  相似文献   

9.
Telomere maintenance is required for chromosome stability, and telomeres are typically replicated by the action of telomerase. In both mammalian tumor and yeast cells that lack telomerase, telomeres are maintained by an alternative recombination mechanism. Here we demonstrated that the budding yeast Saccharomyces cerevisiae type I survivors derived from telomerase-deficient cells were hypersensitive to DNA damaging agents. Assays to track telomere lengths and drug sensitivity of telomerase-deficient cells from spore colonies to survivors suggested a correlation between telomere shortening and bleomycin sensitivity. Our genetic studies demonstrated that this sensitivity depends on Mec1, which signals checkpoint activation, leading to prolonged cell-cycle arrest in senescent budding yeasts. Moreover, we also observed that when cells equipped with short telomeres, recruitments of homologous recombination proteins, Rad51 and Rad52, were reduced at an HO-endonuclease-catalyzed double-strand break (DSB), while their associations were increased at chromosome ends. These results suggested that the sensitive phenotype may be attributed to the sequestration of repair proteins to compromised telomeres, thus limiting the repair capacity at bona fide DSB sites.  相似文献   

10.
SGS1 is required for telomere elongation in the absence of telomerase   总被引:22,自引:0,他引:22  
In S. cerevisiae, mutations in genes that encode telomerase components, such as the genes EST1, EST2, EST3, and TLC1, result in the loss of telomerase activity in vivo. Two telomerase-independent mechanisms can overcome the resulting senescence. Type I survival is characterized by amplification of the subtelomeric Y' elements with a short telomere repeat tract at the terminus. Type II survivors arise through the abrupt addition of long tracts of telomere repeats. Both mechanisms are dependent on RAD52 and on either RAD50 or RAD51. We show here that the telomere elongation pathway in yeast (type II) is dependent on SGS1, the yeast homolog of the gene products of Werner's (WRN) and Bloom's (BLM) syndromes. Survival in the absence of SGS1 and EST2 is dependent upon RAD52 and RAD51 but not RAD50. We propose that the RecQ family helicases are required for processing a DNA structure specific to eroding telomeres.  相似文献   

11.
Homologous recombination and repair factors are known to promote both telomere replication and recombination‐based telomere extension. Herein, we address the diverse contributions of several recombination/repair proteins to telomere maintenance in Ustilago maydis, a fungus that bears strong resemblance to mammals with respect to telomere regulation and recombination mechanisms. In telomerase‐positive U. maydis, deletion of rad51 and blm separately caused shortened but stably maintained telomeres, whereas deletion of both engendered similar telomere loss, suggesting that the repair proteins help to resolve similar problems in telomere replication. In telomerase‐negative cells, the loss of Rad51 or Brh2 caused accelerated senescence and failure to generate survivors on semi‐solid medium. However, slow growing survivors can be isolated through continuous liquid culturing, and these survivors exhibit type II‐like as well as ALT‐like telomere features. In contrast, the trt1Δ blmΔ double mutant gives rise to survivors as readily as the trt1Δ single mutant, and like the single mutant survivors, exhibit almost exclusively type I‐like telomere features. In addition, we observed direct physical interactions between Blm and two telomere‐binding proteins, which may thus recruit or regulate Blm at telomeres. Our findings provide the basis for further analyzing the interplays between telomerase, telomere replication, and telomere recombination.  相似文献   

12.
Telomerase action is temporally linked to DNA replication. Although yeast telomeres are normally late replicating, telomere shortening leads to early firing of subtelomeric DNA replication origins. We show that double‐strand breaks flanked by short telomeric arrays cause origin firing early in S phase at late‐replicating loci and that this effect on origin firing time is dependent on the Tel1ATM checkpoint kinase. The effect of Tel1ATM on telomere replication timing extends to endogenous telomeres and is stronger than that elicited by Rif1 loss. These results establish that Tel1ATM specifies not only the extent but also the timing of telomerase recruitment.  相似文献   

13.
Dewar JM  Lydall D 《The EMBO journal》2010,29(23):4020-4034
Essential telomere 'capping' proteins act as a safeguard against ageing and cancer by inhibiting the DNA damage response (DDR) and regulating telomerase recruitment, thus distinguishing telomeres from double-strand breaks (DSBs). Uncapped telomeres and unrepaired DSBs can both stimulate a potent DDR, leading to cell cycle arrest and cell death. Using the cdc13-1 mutation to conditionally 'uncap' telomeres in budding yeast, we show that the telomere capping protein Cdc13 protects telomeres from the activity of the helicase Pif1 and the exonuclease Exo1. Our data support a two-stage model for the DDR at uncapped telomeres; Pif1 and Exo1 resect telomeric DNA <5 kb from the chromosome end, stimulating weak checkpoint activation; resection is extended >5 kb by Exo1 and full checkpoint activation occurs. Cdc13 is also crucial for telomerase recruitment. However, cells lacking Cdc13, Pif1 and Exo1, do not senesce and maintain their telomeres in a manner dependent upon telomerase, Ku and homologous recombination. Thus, attenuation of the DDR at uncapped telomeres can circumvent the need for otherwise-essential telomere capping proteins.  相似文献   

14.
Type II survivors arise in Saccharomyces cells lacking telomerase by a recombinational pathway that results in very long and heterogeneous length telomeres. Here we show that type II telomeres appeared abruptly in a population of cells with very short telomeres. Once established, these long telomeres progressively shortened. Short telomeres were substrates for rare, one-step lengthening events. The generation of type II survivors was absolutely Rad50p dependent. In a telomerase-proficient cell, the telomere-binding Rif proteins inhibited telomerase lengthening of telomeres. In a telomerase-deficient strain, Rif proteins, especially Rif2p, inhibited type II recombination. These data argue that only short telomeres are substrates for type II recombination and suggest that the donor for this recombination is not a chromosomal telomere.  相似文献   

15.
Yeast cells can survive in the absence of telomerase RNA, TLC1, by recombination-mediated telomere elongation. Two types of survivors, type I and type II, can be distinguished by their characteristic telomere patterns. RAD52 is essential for the generation of both types of survivors. Deletion of both RAD50 and RAD51 produces a phenotype similar to that produced by deletion of RAD52. Here we examined the effects of the RAD50 and the RAD51 epistasis groups as well as the RAD52 homologue, RAD59, on the types of survivors generated in the absence of telomerase. rad59 mutations completely abolished the ability to generate type II survivors, while rad50 mutations decreased the growth viability of type II survivors but did not completely eliminate their appearance. Mutations in RAD51, RAD54, and RAD57 had the converse affect: they eliminated the ability of cells to generate type I survivors in a tlc1 strain. The triple mutant, tlc1 rad51 rad59, was not able to generate survivors. Thus either type I or type II recombination pathways can allow cells to survive in the absence of telomerase; however, elimination of both pathways in a telomerase mutant leads to the inability to elongate telomeres and ultimately cell death.  相似文献   

16.
During telomere replication in yeast, chromosome ends acquire a long single-stranded extension of the strand making the 3' end. Previous work showed that these 3' tails are generated late in S-phase, when conventional replication is virtually complete. In addition, the extensions were also observed in cells that lacked telomerase. Therefore, a model was proposed that predicted an activity that recessed the 5' ends at yeast telomeres after conventional replication was complete. Here, we demonstrate that this processing activity is dependent on the passage of a replication fork through yeast telomeres. A non-replicating linear plasmid with telomeres at each end does not acquire single-stranded extensions, while an identical construct containing an origin of replication does. Thus, the processing activity could be associated with the enzymes at the replication fork itself, or the passage of the fork through the telomeric sequences allows a transient access for the activity to the telomeres. We therefore propose that there is a mechanistic link between the conventional replication machinery and telomere maintenance.  相似文献   

17.
Broken replication forks result in DNA breaks that are normally repaired via homologous recombination or break induced replication (BIR). Mild insufficiency in the replicative ligase Cdc9 in budding yeast Saccharomyces cerevisiae resulted in a population of cells with persistent DNA damage, most likely due to broken replication forks, constitutive activation of the DNA damage checkpoint and longer telomeres. This telomere lengthening required functional telomerase, the core DNA damage signaling cascade Mec1-Rad9-Rad53, and the components of the BIR repair pathway – Rad51, Rad52, Pol32, and Pif1. The Mec1-Rad53 induced phosphorylation of Pif1, previously found necessary for inhibition of telomerase at double strand breaks, was also important for the role of Pif1 in BIR and telomere elongation in cdc9-1 cells. Two other mutants with impaired DNA replication, cdc44-5 and rrm3Δ, were similar to cdc9-1: their long telomere phenotype was dependent on the Pif1 phosphorylation locus. We propose a model whereby the passage of BIR forks through telomeres promotes telomerase activity and leads to telomere lengthening.  相似文献   

18.
Hug N  Lingner J 《Chromosoma》2006,115(6):413-425
  相似文献   

19.
Telomerase, the enzyme that maintains telomeres, preferentially lengthens short telomeres. The S. cerevisiae Pif1 DNA helicase inhibits both telomerase-mediated telomere lengthening and de novo telomere addition at double strand breaks (DSB). Here, we report that the association of the telomerase subunits Est2 and Est1 at a DSB was increased in the absence of Pif1, as it is at telomeres, suggesting that Pif1 suppresses de novo telomere addition by removing telomerase from the break. To determine how the absence of Pif1 results in telomere lengthening, we used the single telomere extension assay (STEX), which monitors lengthening of individual telomeres in a single cell cycle. In the absence of Pif1, telomerase added significantly more telomeric DNA, an average of 72 nucleotides per telomere compared to the 45 nucleotides in wild type cells, and the fraction of telomeres lengthened increased almost four-fold. Using an inducible short telomere assay, Est2 and Est1 no longer bound preferentially to a short telomere in pif1 mutant cells while binding of Yku80, a telomere structural protein, was unaffected by the status of the PIF1 locus. Two experiments demonstrate that Pif1 binding is affected by telomere length: Pif1 (but not Yku80) -associated telomeres were 70 bps longer than bulk telomeres, and in the inducible short telomere assay, Pif1 bound better to wild type length telomeres than to short telomeres. Thus, preferential lengthening of short yeast telomeres is achieved in part by targeting the negative regulator Pif1 to long telomeres.  相似文献   

20.
Telomere shortening caused by incomplete DNA replication is balanced by telomerase-mediated telomere extension, with evidence indicating that the shortest telomeres are preferred substrates in primary cells. Critically short telomeres are detected by the cellular DNA damage response (DDR) system. In budding yeast, the important DDR kinase Tel1 (homologue of ATM [ataxia telangiectasia mutated]) is vital for telomerase recruitment to short telomeres, but mammalian ATM is dispensable for this function. We asked whether closely related ATR (ATM and Rad3 related) kinase, which is important for preventing replicative stress and chromosomal breakage at common fragile sites, might instead fulfill this role. The newly created ATR-deficient Seckel mouse strain was used to examine the function of ATR in telomerase recruitment and telomere function. Telomeres were recently found to resemble fragile sites, and we show in this study that ATR has an important role in the suppression of telomere fragility and recombination. We also find that wild-type ATR levels are important to protect short telomeres from chromosomal fusions but do not appear essential for telomerase recruitment to short telomeres in primary mouse embryonic fibroblasts from the ATR-deficient Seckel mouse model. These results reveal a previously unnoticed role for mammalian ATR in telomere protection and stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号