首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a follow-up study to Proctor et al. (Am J Phys Anthropol 135 (2008) 216-224), this study quantifies the first metatarsal proximal articular surface using three-dimensional morphometrics to test for differences in articular surface shape between habitually shod and habitually unshod humans. In addition, differences in shape between Homo, Pan, Gorilla, and Hylobates are compared to the fossil hominin specimens A. L. 333-54, Stw 562, Stw 573 ("Little Foot"), OH 8, SKX 5017, and SK 1813. No difference in surface shape was found between habitually shod and habitually unshod humans. There is a clear quantitative division in articular surface shape between humans and apes that is more pronounced than a previous study by Proctor et al. (Am J Phys Anthropol 135 (2008) 216-224), due to additional landmarks present in this study. The specimen OH 8 is indistinguishable from modern Homo. The fossils A. L. 333-54, Stw 562, and Stw 573 are intermediate in shape between humans and apes. The specimens SKX 5017 and SK 1813 have a more apelike articular surface. When combined with other characteristics, this trait suggests that Paranthropus used a degree of abduction during locomotion that was much less than that in extant apes, but greater than that in Australopithecus, allowing for some small degree of grasping ability.  相似文献   

2.
B Zipfel  R Kidd 《HOMO》2006,57(2):117-131
Two hominin metatarsals from Swartkrans, SKX 5017 and SK 1813, have been reported by Susman and Brain [1988. New first metatarsal (SKX 5017) from Swartkrans and the gait of Paranthropus robustus. Am. J. Phys. Anthropol. 79, 451-454] and Susman and de Ruiter [2004. New hominin first metatarsal (SK 1813) from Swartkrans. J. Hum. Evol. 47, 171-181]. They found these bones to have both primitive and derived traits indicating that, while being bipedal, these hominines had a unique toe-off mechanism. We have undertaken additional multivariate morphometric analyses, comparing the fossils to the first metatarsals of modern humans and extant apes. The largest proportion of discrimination lies in the different locomotor functions: apes on the one hand and the humans and fossils on the other. While the fossils have the closest affinity to humans, they have a unique biomechanical pattern suggesting a more facultative form of bipedalism. The implications of this are, while morphometric analyses do not necessarily directly capture the described primitive and derived traits, the associated functional pattern is held within the broader morphology of the bone.  相似文献   

3.
Based on an analysis of its endocast, Holloway (1981 Am J Phys Anthropol 53:109-118) attributed the juvenile Omo L338y-6 specimen to Australopithecus africanus (i.e., gracile australopithecines) rather than to Paranthropus (Australopithecus) boisei (robust australopithecines) favored by other workers (Rak and Howell [1978] Am J Phys Anthropol 48:345-366). Holloway's attribution was based on the specimen's (1) low cranial capacity, (2) gracile-like meningeal vessels, (3) gracile-like cerebellar hemispheres, and (4) absence of an enlarged occipital/marginal (O/M) sinus system. Recent work, however, has shown that criteria 1 and 2 are not useful for sorting gracile from robust australopithecines (Culotta [1999] Science 284:1109-1111; Falk [1993] Am J Phys Anthropol 92:81-98). In this paper, we test criterion 3 by quantifying the endocranial cerebellar and occipital morphology reproduced on the Omo L338y-6 endocast, and comparing it to seven endocasts from South and East African early hominids. Our preliminary results show that metric analysis of this specimen cannot be used to sort it preferentially with either robust or gracile australopithecines. Finally, we demonstrate that, contrary to previous reports, the Omo L338y-6 endocast reproduces an enlarged left occipital sinus (criterion 4). This observation is consistent with the original attribution of the Omo specimen to robust australopithecines (Rak and Howell [1978] Am J Phys Anthropol 48:345-366). Furthermore, if Omo L338y-6 was a robust australopithecine, this discovery extends the occurrence of an enlarged O/M sinus system to one of the earliest known paranthropines. Am J Phys Anthropol 110:399-406, 1999.  相似文献   

4.
In this issue of the Journal, McGraw et al. ([2006] Am. J. Phys. Anthropol. 000:00-00) present new data on the taphonomic signature of bone assemblages accumulated by crowned hawk eagles (Stephanoaetus coronatus), including characteristic talon damage to the inferior orbits of primates preyed upon by these birds. Reexamination of the Taung juvenile hominin specimen (the type specimen of Australopithecus africanus Dart 1925) reveals previously undescribed damage to the orbital floors that is nearly identical to that seen in the crania of monkeys preyed upon by crowned hawk eagles (as reported by McGraw et al., this issue). This new evidence, along with previously described aspects of the nonhominin bone assemblage from Taung and damage to the neurocranium of the hominin specimen itself, strongly supports the hypothesis that a bird of prey was an accumulating agent at Taung, and that the Taung child itself was the victim of a bird of prey.  相似文献   

5.
Mechanistic interpretations of bone cross-sectional shapes are based on the paradigm of shape optimization such that bone offers maximum mechanical resistance with a minimum of material. Recent in vivo strain studies (Demes et al., Am J Phys Anthropol 106 (1998) 87-100, Am J Phys Anthropol 116 (2001) 257-265; Lieberman et al., Am J Phys Anthropol 123 (2004) 156-171) have questioned these interpretations by demonstrating that long bones diaphyses are not necessarily bent in planes in which they offer maximum resistance to bending. Potential limitations of these in vivo studies have been pointed out by Ruff et al. (Am J Phys Anthropol 129 (2006) 484-498). It is demonstrated here that two loading scenarios, asymmetric bending and buckling, would indeed not lead to correct predictions of loads from strain. It is also shown that buckling is of limited relevance for many primate long bones. This challenges a widely held view that circular bone cross sections make loading directions unpredictable for bones which is based on a buckling load model. Asymmetric bending is a potentially confounding factor for bones with directional differences in principal area moments (I(max) > I(min)). Mathematical corrections are available and should be applied to determine the bending axis in such cases. It is concluded that loads can be reliably extrapolated from strains. More strain studies are needed to improve our understanding of the relationships between activities, bone loading regimes associated with them, and the cross-sectional geometry of bones.  相似文献   

6.
Recently, interest has peaked regarding the posture of extinct hominins. Here, we present a new method of reconstructing lordosis angles of extinct hominin specimens based on pelvic morphology, more specifically the orientation of the sacrum in relation to the acetabulum (pelvic incidence). Two regression models based on the correlation between pelvic incidence and lordosis angle in living hominoids have been developed. The mean values of the calculated lordosis angles based on these models are 36°?45° for australopithecines, 45°?47° for Homo erectus, 27°?34° for the Neandertals and the Sima de los Huesos hominins, and 49°?51° for fossil H. sapiens. The newly calculated lordosis values are consistent with previously published values of extinct hominins (Been et al.: Am J Phys Anthropol 147 (2012) 64–77). If the mean values of the present nonhuman hominoids are representative of the pelvic and lumbar morphology of the last common ancestor between humans and nonhuman hominoids, then both pelvic incidence and lordosis angle dramatically increased during hominin evolution from 27° ± 5 to 22° ± 3 (respectively) in nonhuman hominoids to 54° ± 10 and 51° ± 11 in modern humans. This change to a more human‐like configuration appeared early in the hominin evolution as the pelvis and spines of both australopithecines and H. erectus show a higher pelvic incidence and lordosis angle than nonhuman hominoids. The Sima de los Huesos hominins and Neandertals show a derived configuration with a low pelvic incidence and lordosis angle. Am J Phys Anthropol 154:307–314, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
The craniodental hypodigm of Paranthropus boisei sensu stricto is morphologically distinctive, but it has been suggested that the substantial variation in mandibular and dental size in that hypodigm may exceed that which is reasonable to subsume within a single hominin species. In this study, Fligner and Killeen, coefficient of variation (CV)-based and average taxonomic distance (ATD)-based bootstrap tests, were used to compare variation in size and shape of the mandibular corpus remains attributed to P. boisei s.s. with the variation observed in samples of great apes and modern humans. The degree of size variation in the P. boisei s.s. mandibular hypodigm is never observed in human and chimpanzee samples, is rare in gorillas, but is not uncommon in orangutans. However, the shape variation in the fossil group is comparable to the variation in the extant reference groups. Although the size variation in P. boisei s.s. is substantial, it is exaggerated by the effects of taphonomy. The small mandibles are more often abraded, whereas the large mandibles are more likely to have been infiltrated with matrix. On the basis of the results of this investigation of the mandibular corpus, there are no grounds for rejecting the "single-species" hypothesis for P. boisei s.s. When Sokal and Braumann's adjusted CV values were used to predict the index of sexual dimorphism (ISD) for the P. boisei s.s., despite the substantial geological time embraced by the mandibular corpus hypodigm, the predicted value of lnISD, when corrected for taphonomic factors, is comparable to the sexual dimorphism observed within Gorilla.  相似文献   

8.
The Plio-Pleistocene hominin Paranthropus boisei had enormous, flat, thickly enameled cheek teeth, a robust cranium and mandible, and inferred massive, powerful chewing muscles. This specialized morphology, which earned P. boisei the nickname "Nutcracker Man", suggests that this hominin could have consumed very mechanically challenging foods. It has been recently argued, however, that specialized hominin morphology may indicate adaptations for the consumption of occasional fallback foods rather than preferred resources. Dental microwear offers a potential means by which to test this hypothesis in that it reflects actual use rather than genetic adaptation. High microwear surface texture complexity and anisotropy in extant primates can be associated with the consumption of exceptionally hard and tough foods respectively. Here we present the first quantitative analysis of dental microwear for P. boisei. Seven specimens examined preserved unobscured antemortem molar microwear. These all show relatively low complexity and anisotropy values. This suggests that none of the individuals consumed especially hard or tough foods in the days before they died. The apparent discrepancy between microwear and functional anatomy is consistent with the idea that P. boisei presents a hominin example of Liem's Paradox, wherein a highly derived morphology need not reflect a specialized diet.  相似文献   

9.
Thorpe et al. (Am J Phys Anthropol 110:179–199, 1999) quantified chimpanzee (Pan troglodytes) muscle architecture and joint moment arms to determine whether they functionally compensated for structural differences between chimpanzees and humans. They observed enough distinction to conclude that musculoskeletal properties were not compensatory and suggested that chimpanzees and humans do not exhibit dynamically similar movements. These investigators based their assessment on unilateral limb musculatures from three male chimpanzees, of which they called one non-adult representative. Factors such as age, sex, and behavioral lateralization may be responsible for variation in chimpanzee muscle architecture, but this is presently unknown. While the full extent of variation in chimpanzee muscle architecture due to such factors cannot be evaluated with data presently available, the present study expands the chimpanzee dataset and provides a preliminary glimpse of the potential relevance of these factors. Thirty-seven forelimb and 36 hind limb muscles were assessed in two chimpanzee cadavers: one unilaterally (right limbs), and one bilaterally. Mass, fiber length, and physiological cross-sectional area (PCSA) are reported for individual muscles and muscle groups. The musculature of an adult female is more similar in architectural patterns to a young male chimpanzee than to humans, particularly when comparing muscle groups. Age- and sex-related intraspecific differences do not obscure chimpanzee-human interspecific differences. Side asymmetry in one chimpanzee, despite consistent forelimb directional asymmetry, also does not exceed the magnitude of chimpanzee-human differences. Left forelimb muscles, on average, usually had higher masses and longer fiber lengths than right, while right forelimb muscles, on average, usually had greater PCSAs than left. Most muscle groups from the left forelimb exhibited greater masses than right groups, but group asymmetry was significant only for the manual digital muscles. The hind limb exhibited less asymmetry than the forelimb in most comparisons. Examination of additional chimpanzees would clarify the full range of inter- and intra-individual variation.  相似文献   

10.
ERRATUM: Macho GA and Spears IR. 1999. Effects of Loading on the Biomechanical Behavior of Molars of Homo, Pan, and Pongo. Am J Phys Anthropol 109:211–227. The correct title of the article is given above. The word “biochemical” should be read as “biomechanical.”  相似文献   

11.
In this discussion, I evaluate our understanding of fallback foods in primate and hominin ecology and evolution with reference to the challenges of nomenclature, scale, and of linking individual responses to food availability and properties (process) to species traits (pattern). I use these challenges to form the framework of my discussion and ultimately conclude that we situate the discussion of primate fallback strategy into a broader, “synthetic” framework of animal form and the evolutionary significance of phenotypic plasticity. Am J Phys Anthropol 140:759–766, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

12.
Some adult human females show bone resorption (pitting) at the dorsal aspect of the pubis and preauricular area of the ilium. The etiology of pelvic bone resorption is attributed alternatively to reproduction and to pelvic anatomy. While most researchers infer that pelvic pitting is related to reproduction, only a few studies are based on women of known parity. Degree of pubic resorption is directly associated with both parity (Suchey et al.: Am. J. Phys. Anthropol. 51:517-539, 1979; Bergfelder and Hermann: J. Hum. Evol. 9:611-613, 1980) and age (Suchey et al.: Am. J. Phys. Anthropol. 51:517-539, 1979). The relationship between parity and degree of resorption of the preauricular area is equivocal, found to be significant by Dunlap (A Study of the Preauricular Sulcus in a Cadaver Population, Ph.D. dissertation, East Lansing, Michigan State University, 1981) but not by Spring et al. (Am. J. Phys. Anthropol. 79:247-252, 1989); both studies report that age is not associated with resorption of the preauricular area. Other mammals evidence public resorption, but the morphology of the preauricular area is less well known. This study addresses the issue on the etiology of pelvic bone resorption using a sample of Macaca mulatta (the free-ranging population from Cayo Santiago) for which parity and age at death are known for all specimens. The following results are reported. Resorption of the pubis is common among females but infrequent among males. Contrary to Rawlins (Am. J. Phys. Anthropol. 42:477-488, 1975), the degree of pubic resorption in female macaques is significantly related to both parity and age at death.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
This study reevaluates the hypothesis in Demarchi et al. (2001 Am. J. Phys. Anthropol. 115:199-203) that Gran Chaco peoples demonstrate a unique pattern of genetic diversity due to a distinct regional population history. Specifically, they found populations in the central part of the Gran Chaco, or Central Chaco, to have higher within- and lower between-population mitochondrial DNA (mtDNA) haplogroup frequency variation compared to populations in other South American regions. To test this hypothesis of regional uniqueness, we applied analytical and simulation methods to mtDNA first hypervariable (HVI) region sequence data from a broad set of comparative South and Central American population samples. Contrary to the results of Demarchi et al. (2001 Am. J. Phys. Anthropol. 115:199-203), we found that the Gran Chaco's regional within-population diversity is about average among regions, and populations are highly differentiated from each other. When we limited the scale of analysis to the Central Chaco, a more localized subregion of the Gran Chaco, our results fell more in line with the original findings of Demarchi et al. (2001 Am. J. Phys. Anthropol. 115:199-203). Still, we conclude that neither the Gran Chaco regional pattern, nor the Central Chaco subregional pattern, is unique within South America. Nonetheless, the Central Chaco pattern accords well with the area's history, including pre-European contact lifeways and the documented historical use of the area as an interregional crossroads. However, we cannot exclude post-European contact disruption of traditional mating networks as an equally plausible explanation for the observed diversity pattern. Finally, these results additionally inform broader models of South American genetic diversity. While other researchers proposed an east-west continental division in patterns of genetic variation (e.g., Fuselli et al. 2003 Mol. Biol. Evol. 20:1682-1691), we found that in the geographically intermediate Central Chaco, a strict east-west divide in genetic variation breaks down. We suggest that future genetic characterizations of the continent, and subsequent interpretations of evolutionary history, involve a broad regional sampling of South American populations.  相似文献   

14.
The authors previously compared energetic costs of bipedal and quadrupedal walking in bipedally trained macaques used for traditional Japanese monkey performances (Nakatsukasa et al. 2004 Am. J. Phys. Anthropol. 124:248-256). These macaques used inverted pendulum mechanics during bipedal walking, which resulted in an efficient exchange of potential and kinetic energy. Nonetheless, energy expenditure during bipedal walking was significantly higher than that of quadrupedal walking. In Nakatsukasa et al. (2004 Am. J. Phys. Anthropol. 124:248-256), locomotor costs were measured before subjects reached a steady state due to technical limitations. The present investigation reports sequential changes of energy consumption during 15 min of walking in two trained macaques, using carbon dioxide production as a proxy of energy consumption, as in Nakatsukasa et al. (2004 Am. J. Phys. Anthropol. 124:248-256). Although a limited number of sessions were conducted, carbon dioxide production was consistently greater during bipedal walking, with the exception of some irregularity during the first minute. Carbon dioxide production gradually decreased after 1 min, and both subjects reached a steady state within 10 min. Energy expenditure during bipedalism relative to quadrupedalism differed between the two subjects. It was considerably higher (140% of the quadrupedal walking cost) in one subject who walked with more bent-knee, bent-hip gaits. This high cost strongly suggests that ordinary macaques, who adopt further bent-knee, bent-hip gaits, consume a far greater magnitude of energy during bipedal walking.  相似文献   

15.
Femoral lengths and stature in Plio-Pleistocene hominids   总被引:1,自引:0,他引:1  
This study reports the femoral lengths of 31 Plio-Pleistocene hominids dated between 3.1 and 0.7 million years ago, and uses those lengths to estimate stature by way of the femur-stature ratio reported by Feldesman et al. (Am. J. Phys. Anthropol. 78:219-220, 1989). By this method the average female Australopithecus afarensis is 105 cm and the average male is 151 cm. The respective values are 115 and 138 cm for A. africanus. As defined by Howell (In VJ Maglio and HBS Cooke (eds): The Evolution of African Mammals. Cambridge: Harvard University Press, 1978) and Johanson et al. (Kirtlandia 28:1-14, 1978), Homo habilis is a sexually dimorphic species, with females standing 118 cm and males 157 cm. Such apparently strong dimorphism may be due to the possibility that there are actually two species of nonrobust hominids between 2 and 1.7 m.y.a. The estimate for the female Australopithecus boisei is 124 cm and for the male, 137 cm, but these estimates are especially difficult to be certain of because there are no femora that can be positively identified as male A. boisei. Australopithecus robustus is estimated to be 110 cm (female) and 132 cm (male). African Homo erectus stood 160 cm (female) and 180 cm (male). From these estimates several generalizations are apparent. First, there is apparently strong sexual dimorphism in stature in A. afarensis and H. habilis, but less in the other species. Second, the "robust" australopithecines were relatively small statured. Third, it is apparently not true that humans have been getting progressively taller throughout their evolutionary history. Some individuals were as tall as modern humans 3 m.y.a., by 2 m.y.a. one individual stood about 173 cm, and by 1.7 m.y.a. a stature of 180+ cm was not uncommon.  相似文献   

16.
Oliver is an African ape whose species identity has been debated in the popular media and by various scientists since the early 1970s. Although decisive morphological data has never been adduced on Oliver, many reports indicated that Oliver was morphologically unusual for a chimpanzee, particularly in his habitual bipedal posture. In addition, his diploid chromosome number was reported to be inconsistent with either human or chimpanzee, but instead intermediate between those species. We performed standard chromosomal studies which demonstrated that Oliver had the diploid number expected for a chimpanzee (2N = 48) and that the banding patterns of his chromosomes were typical for a chimpanzee and different from both humans and bonobos. We also sequenced a 312 bp region of his mitochondrial DNA D-loop region. Results indicated a high sequence homology to the Central African variety of chimpanzee, Pan troglodytes troglodytes. The highest percent homology was observed with a previously characterized specimen from Gabon, strongly suggesting that Oliver originated from this region. Am J Phys Anthropol 105:395–403, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Center of mass (CoM) oscillations were documented for 81 bipedal walking strides of three chimpanzees. Full‐stride ground reaction forces were recorded as well as kinematic data to synchronize force to gait events and to determine speed. Despite being a bent‐hip, bent‐knee (BHBK) gait, chimpanzee walking uses pendulum‐like motion with vertical oscillations of the CoM that are similar in pattern and relative magnitude to those of humans. Maximum height is achieved during single support and minimum height during double support. The mediolateral oscillations of the CoM are more pronounced relative to stature than in human walking when compared at the same Froude speed. Despite the pendular nature of chimpanzee bipedalism, energy recoveries from exchanges of kinetic and potential energies are low on average and highly variable. This variability is probably related to the poor phasic coordination of energy fluctuations in these facultatively bipedal animals. The work on the CoM per unit mass and distance (mechanical cost of transport) is higher than that in humans, but lower than that in bipedally walking monkeys and gibbons. The pronounced side sway is not passive, but constitutes 10% of the total work of lifting and accelerating the CoM. CoM oscillations of bipedally walking chimpanzees are distinctly different from those of BHBK gait of humans with a flat trajectory, but this is often described as “chimpanzee‐like” walking. Human BHBK gait is a poor model for chimpanzee bipedal walking and offers limited insights for reconstructing early hominin gait evolution. Am J Phys Anthropol 156:422–433, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Underground storage organs (USOs) have been proposed as critical fallback foods for early hominins in savanna, but there has been little discussion as to which habitats would have been important sources of USOs. USOs consumed by hominins could have included both underwater and underground storage organs, i.e., from both aquatic and terrestrial habitats. Shallow aquatic habitats tend to offer high plant growth rates, high USO densities, and relatively continuous USO availability throughout the year. Baboons in the Okavango delta use aquatic USOs as a fallback food, and aquatic or semiaquatic USOs support high-density human populations in various parts of the world. As expected given fossilization requisites, the African early- to mid-Pleistocene shows an association of Homo and Paranthropus fossils with shallow-water and flooded habitats where high densities of plant-bearing USOs are likely to have occurred. Given that early hominins in the tropics lived in relatively dry habitats, while others occupied temperate latitudes, ripe, fleshy fruits of the type preferred by African apes would not normally have been available year round. We therefore suggest that water-associated USOs were likely to have been key fallback foods, and that dry-season access to aquatic habitats would have been an important predictor of hominin home range quality. This study differs from traditional savanna chimpanzee models of hominin origins by proposing that access to aquatic habitats was a necessary condition for adaptation to savanna habitats. It also raises the possibility that harvesting efficiency in shallow water promoted adaptations for habitual bipedality in early hominins. Am J Phys Anthropol 140:630–642, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

19.
It has long been assumed that stone tool making was a major factor in the evolution of derived hominin hand morphology. However, stresses on the hand associated with food retrieval and processing also have been recognized as relevant early hominin behaviors that should be investigated. To this end, chimpanzee food manipulation was videotaped in the Mahale Mountains National Park, Tanzania. Grips and hand movements by 39 chimpanzees were analyzed for arboreal and terrestrial feeding involving 10 food‐types and associated vegetation. It was predicted that (1) new grips would be found that had not been observed in captivity, (2) forceful precision grips would be absent from the repertoire, as in captivity, and (3) precision handling would be observed. New grips involving the full thumb and buttressed index finger, and a new integrated pattern of grips and forceful hand movements were discovered, associated with feeding on large fruits and meat. Participation of the full thumb in these grips, rather than the distal thumb and fingers, throws light on feeding behaviors that may have become increasingly significant factors in the evolution of derived hominin thumb morphology. The proximal thumb stabilizes food with the flexed index finger against the pull of the teeth and provides leverage in breaking food into portions. Isolated qualitative observations of possibly forceful pinch by the thumb and side of the index finger highlight the need for comparative quantitative data to test whether humans are unique in forceful precision gripping capability. Precision handling was not seen. Am J Phys Anthropol 156:317–326, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
A nearly complete human skeleton dating to the Early Holocene (epi-Paleolithic culture) excavated from Gua Gunung Runtuh, Malaysia, is described. Cranial, dental, and limb bone measurements are recorded on the skeleton, and compared with early and modern skeletal samples from Southeast Asia and Australia. The comparisons demonstrate that the Gua Gunung specimen is most similar to Australian Aborigines in dental and limb measurements, while the cranial measurements indicate a close affinity to Mesolithic samples from Malaysia and Flores. These findings further suggest that the Gua Gunung skeleton, as well as other fossils from Tabon and Niah, are representative of an early group of people who occupied Sundaland during the late Pleistocene, and may be the ancestors of Australian Aborigines. Some of the dental and limb bone measurements exhibited by the ancestors persist in Southeast Asian populations until the early Holocene. Differences in cranial traits have, however, accumulated since the late Pleistocene in Australian Aborigines and early Southeast Asian peoples. Am J Phys Anthropol 109:327–340, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号