首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Developmental prolongation is thought to contribute to the remarkable brain enlargement observed in modern humans (Homo sapiens). However, the developmental trajectories of cerebral tissues have not been explored in chimpanzees (Pan troglodytes), even though they are our closest living relatives. To address this lack of information, the development of cerebral tissues was tracked in growing chimpanzees during infancy and the juvenile stage, using three-dimensional magnetic resonance imaging and compared with that of humans and rhesus macaques (Macaca mulatta). Overall, cerebral development in chimpanzees demonstrated less maturity and a more protracted course during prepuberty, as observed in humans but not in macaques. However, the rapid increase in cerebral total volume and proportional dynamic change in the cerebral tissue in humans during early infancy, when white matter volume increases dramatically, did not occur in chimpanzees. A dynamic reorganization of cerebral tissues of the brain during early infancy, driven mainly by enhancement of neuronal connectivity, is likely to have emerged in the human lineage after the split between humans and chimpanzees and to have promoted the increase in brain volume in humans. Our findings may lead to powerful insights into the ontogenetic mechanism underlying human brain enlargement.  相似文献   

2.
3.
Cohen MX 《Current biology : CB》2011,21(22):1900-1905
The hippocampus and prefrontal cortex interact to support working memory (WM) and long-term memory [1-3]. Neurophysiologically, WM is thought to be subserved by reverberatory activity of distributed networks within the prefrontal cortex (PFC) [2, 4-8], which become synchronized with reverberatory activity in the hippocampus [1, 4]. This electrophysiological synchronization is difficult to study in humans because noninvasive electroencephalography (EEG) cannot measure hippocampus activity. Here, using a novel integration of EEG and diffusion-weighted imaging, it is shown that individuals with relatively stronger anatomical connectivity linking the hippocampus to the right ventrolateral PFC (ventral Brodmann area 46) exhibited slower frequency neuronal oscillations during a WM task. Furthermore, subjects with stronger hippocampus-PFC connectivity were better able to encode the complex pictures used in the WM task into long-term memory. These findings are consistent with models suggesting that electrophysiological oscillations provide a mechanism of long-range interactions [9] and link hippocampus-PFC structural connectivity to PFC rhythmic electrical dynamics and memory performance. More generally, these results highlight the importance of incorporating individual differences when linking structure and function to cognition.  相似文献   

4.
Increases in endocranial volume (a measure of brain size) play a major role in human evolution. Despite the importance of brain size increase, the developmental bases of human brain size evolution remain poorly characterized. Comparative analyses of endocranial volume size growth illustrate that distinctions between humans and other primates are consequences of differences in rates of brain size growth, with little evidence for differences in growth duration. Evaluation of available juvenile fossils shows that earliest hominins do not differ perceptibly from chimpanzees (Pan). However, rapid and human-like early brain growth apparently characterized Homo erectus at about 1?Ma before present. Neandertals show patterns of brain growth consistent with modern humans during infancy, but reach larger sizes than modern humans as a result of differences in later growth. Growth analyses reveal commonalities in patterns of early brain size growth during the last million years human evolution, despite major increases in adult size. This result implies consistency across hominins in terms of maternal metabolic costs of infancy. Continued size growth past infancy in Neandertals and modern humans, when compared to earlier hominins, may have cognitive implications. Differences between Neandertals and modern humans are implied, but difficult to define with certainty.  相似文献   

5.
6.
Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized by superior cognition, their muscular performance might be markedly inferior to that of chimpanzees and macaque monkeys.  相似文献   

7.
It has been hypothesized that neurological adaptations associated with evolutionary selection for throwing may have served as a precursor for the emergence of language and speech in early hominins. Although there are reports of individual differences in aimed throwing in wild and captive apes, to date there has not been a single study that has examined the potential neuroanatomical correlates of this very unique tool-use behaviour in non-human primates. In this study, we examined whether differences in the ratio of white (WM) to grey matter (GM) were evident in the homologue to Broca's area as well as the motor-hand area of the precentral gyrus (termed the KNOB) in chimpanzees that reliably throw compared with those that do not. We found that the proportion of WM in Broca's homologue and the KNOB was significantly higher in subjects that reliably throw compared with those that do not. We further found that asymmetries in WM within both brain regions were larger in the hemisphere contralateral to the chimpanzee's preferred throwing hand. We also found that chimpanzees that reliably throw show significantly better communication abilities than chimpanzees that do not. These results suggest that chimpanzees that have learned to throw have developed greater cortical connectivity between primary motor cortex and the Broca's area homologue. It is suggested that during hominin evolution, after the split between the lines leading to chimpanzees and humans, there was intense selection on increased motor skills associated with throwing and that this potentially formed the foundation for left hemisphere specialization associated with language and speech found in modern humans.  相似文献   

8.
9.
This paper aims to better understand the physiological meaning of negative correlations in resting state functional connectivity MRI (r-fcMRI). The correlations between anatomy-based brain regions of 18 healthy humans were calculated and analyzed with and without a correction for global signal and with and without spatial smoothing. In addition, correlations between anatomy-based brain regions of 18 naïve anesthetized rats were calculated and compared to the human data. T-statistics were used to differentiate between positive and negative connections. The application of spatial smoothing and global signal correction increased the number of significant positive connections but their effect on negative connections was complex. Positive connections were mainly observed between cortical structures while most negative connections were observed between cortical and non-cortical structures with almost no negative connections between non-cortical structures. In both human and rats, negative connections were never observed between bilateral homologous regions. The main difference between positive and negative connections in both the human and rat data was that positive connections became less significant with time-lags, while negative connections became more significant with time-lag. This effect was evident in all four types of analyses (with and without global signal correction and spatial smoothing) but was most significant in the analysis with no correction for the global signal. We hypothesize that the valence of r-fcMRI connectivity reflects the relative contributions of cerebral blood volume (CBV) and flow (CBF) to the BOLD signal and that these relative contributions are location-specific. If cerebral circulation is primarily regulated by CBF in one region and by CBV in another, a functional connection between these regions can manifest as an r-fcMRI negative and time-delayed correlation. Similarly, negative correlations could result from spatially inhomogeneous responses of rCBV or rCBF alone. Consequently, neuronal regulation of brain circulation may be deduced from the valence of r-fcMRI connectivity.  相似文献   

10.
Hu HY  Guo S  Xi J  Yan Z  Fu N  Zhang X  Menzel C  Liang H  Yang H  Zhao M  Zeng R  Chen W  Pääbo S  Khaitovich P 《PLoS genetics》2011,7(10):e1002327
Among other factors, changes in gene expression on the human evolutionary lineage have been suggested to play an important role in the establishment of human-specific phenotypes. However, the molecular mechanisms underlying these expression changes are largely unknown. Here, we have explored the role of microRNA (miRNA) in the regulation of gene expression divergence among adult humans, chimpanzees, and rhesus macaques, in two brain regions: prefrontal cortex and cerebellum. Using a combination of high-throughput sequencing, miRNA microarrays, and Q-PCR, we have shown that up to 11% of the 325 expressed miRNA diverged significantly between humans and chimpanzees and up to 31% between humans and macaques. Measuring mRNA and protein expression in human and chimpanzee brains, we found a significant inverse relationship between the miRNA and the target genes expression divergence, explaining 2%-4% of mRNA and 4%-6% of protein expression differences. Notably, miRNA showing human-specific expression localize in neurons and target genes that are involved in neural functions. Enrichment in neural functions, as well as miRNA-driven regulation on the human evolutionary lineage, was further confirmed by experimental validation of predicted miRNA targets in two neuroblastoma cell lines. Finally, we identified a signature of positive selection in the upstream region of one of the five miRNA with human-specific expression, miR-34c-5p. This suggests that miR-34c-5p expression change took place after the split of the human and the Neanderthal lineages and had adaptive significance. Taken together these results indicate that changes in miRNA expression might have contributed to evolution of human cognitive functions.  相似文献   

11.
Compared to our closest living and extinct relatives, humans have a large, specialized, and complex brain embedded in a uniquely shaped braincase. Here, we quantitatively compare endocranial shape changes during ontogeny in humans and chimpanzees. Identifying shared and unique aspects in developmental patterns of these two species can help us to understand brain evolution in the hominin lineage.Using CT scans of 58 humans and 60 chimpanzees varying in age from birth to adulthood, we generated virtual endocasts to measure and analyze 29 three-dimensional endocranial landmarks and several hundred semilandmarks on curves and the endocranial surface; these data were then analyzed using geometric morphometric methods.The ontogenetic shape trajectories are nonlinear for both species, which indicates several developmental phases. Endocranial shape is already distinct at birth and there is no overlap between the two species throughout ontogeny. While some aspects of the pattern of endocranial shape change are shared between humans and chimpanzees, the shape trajectories differ substantially directly after birth until the eruption of the deciduous dentition: in humans but not in chimpanzees, the parietal and cerebellar regions expand relatively (contributing to neurocranial globularity) and the cranial base flexes within the first postnatal year when brain growth rates are high. We show that the shape changes associated with this early “globularization phase” are unique to humans and do not occur in chimpanzees before or after birth.  相似文献   

12.
Perseveration, inhibition and the prefrontal cortex: a new look.   总被引:5,自引:0,他引:5  
Perseverative actions are often the result of inhibitory problems; however, inhibitory problems do not always lead to perseverative actions. Some problems of inhibition have been attributed to immaturity of, or severe damage to, the prefrontal cortex. Research in this area has generally failed both to take into account species differences in prefrontal function that lead to different perseverative errors and to distinguish between perseverative errors that arise from a failure to inhibit salient emotions or motivational drives and errors that arise from an inability to engage in conceptual change. Recent studies on humans, chimpanzees, rhesus macaques, Japanese macaques, cotton-top tamarins and marmosets support this notion.  相似文献   

13.
Postnatal neurogenesis occurs in the subventricular zone and dentate gyrus, and evidence suggests that new neurons may be present in additional regions of the mature primate brain, including the prefrontal cortex (PFC). Addition of new neurons to the PFC implies local generation of neurons or migration from areas such as the subventricular zone. We examined the putative contribution of new, migrating neurons to postnatal cortical development by determining the density of neurons in white matter subjacent to the cortex and measuring expression of doublecortin (DCX), a microtubule-associated protein involved in neuronal migration, in humans and rhesus macaques. We found a striking decline in DCX expression (human and macaque) and density of white matter neurons (humans) during infancy, consistent with the arrival of new neurons in the early postnatal cortex. Considering the expansion of the brain during this time, the decline in white matter neuron density does not necessarily indicate reduced total numbers of white matter neurons in early postnatal life. Furthermore, numerous cells in the white matter and deep grey matter were positive for the migration-associated glycoprotein polysialiated-neuronal cell adhesion molecule and GAD65/67, suggesting that immature migrating neurons in the adult may be GABAergic. We also examined DCX mRNA in the PFC of adult schizophrenia patients (n?=?37) and matched controls (n?=?37) and did not find any difference in DCX mRNA expression. However, we report a negative correlation between DCX mRNA expression and white matter neuron density in adult schizophrenia patients, in contrast to a positive correlation in human development where DCX mRNA and white matter neuron density are higher earlier in life. Accumulation of neurons in the white matter in schizophrenia would be congruent with a negative correlation between DCX mRNA and white matter neuron density and support the hypothesis of a migration deficit in schizophrenia.  相似文献   

14.
L Wang  L Su  H Shen  D Hu 《PloS one》2012,7(8):e44530
The development of large-scale functional brain networks is a complex, lifelong process that can be investigated using resting-state functional connectivity MRI (rs-fcMRI). In this study, we aimed to decode the developmental dynamics of the whole-brain functional network in seven decades (8-79 years) of the human lifespan. We first used parametric curve fitting to examine linear and nonlinear age effect on the resting human brain, and then combined manifold learning and support vector machine methods to predict individuals' "brain ages" from rs-fcMRI data. We found that age-related changes in interregional functional connectivity exhibited spatially and temporally specific patterns. During brain development from childhood to senescence, functional connections tended to linearly increase in the emotion system and decrease in the sensorimotor system; while quadratic trajectories were observed in functional connections related to higher-order cognitive functions. The complex patterns of age effect on the whole-brain functional network could be effectively represented by a low-dimensional, nonlinear manifold embedded in the functional connectivity space, which uncovered the inherent structure of brain maturation and aging. Regression of manifold coordinates with age further showed that the manifold representation extracted sufficient information from rs-fcMRI data to make prediction about individual brains' functional development levels. Our study not only gives insights into the neural substrates that underlie behavioral and cognitive changes over age, but also provides a possible way to quantitatively describe the typical and atypical developmental progression of human brain function using rs-fcMRI.  相似文献   

15.
Allometric analyses of brain structure sizes across the primate order demonstrate that human, ape, and other anthropoid brains are not simply allometrically scaled versions of the same generalized design. Both human and ape brains exhibit specializations with respect to other anthropoid brains. Ape specializations include elaboration of the cerebellum (all apes) and frontal lobes (great apes only), and probably connectivity between them. Human brain specializations include an overall larger proportion of neocortex, with disproportionate enlargement of prefrontal and temporal association cortices; an apparent increase in cerebellar connections with cerebral cortical association areas involved in cognition; and a probable augmentation of intracortical connectivity in prefrontal cortex.  相似文献   

16.
Cordoni G  Palagi E 《PloS one》2011,6(11):e27344
Social play, a widespread phenomenon in mammals, is a multifunctional behavior, which can have many different roles according to species, sex, age, relationship quality between playmates, group membership, context, and habitat. Play joins and cuts across a variety of disciplines leading directly to inquiries relating to individual developmental changes and species adaptation, thus the importance of comparative studies appears evident. Here, we aim at proposing a possible ontogenetic pathway of chimpanzee play (Pan troglodytes) and contrast our data with those of human play. Chimpanzee play shows a number of changes from infancy to juvenility. Particularly, solitary and social play follows different developmental trajectories. While solitary play peaks in infancy, social play does not show any quantitative variation between infancy and juvenility but shows a strong qualitative variation in complexity, asymmetry, and playmate choice. Like laughter in humans, the playful expressions in chimpanzees (at the different age phases) seem to have a role in advertising cooperative dispositions and intentions thus increasing the likelihood of engaging in solid social relationships. In conclusion, in chimpanzees, as in humans, both play behavior and the signals that accompany play serve multiple functions according to the different age phases.  相似文献   

17.
18.
By comparing species-specific developmental patterns, we can approach the question of how development shapes adult morphology and contributes to the evolution of novel forms. Studies of evolutionary changes to brain development in primates can provide important clues about the emergence of human cognition, but are hindered by the lack of preserved neural tissue in the fossil record. As a proxy, we study the shape of endocasts, virtual imprints of the endocranial cavity, using 3D geometric morphometrics. We have previously demonstrated that the pattern of endocranial shape development is shared by modern humans, chimpanzees and Neanderthals after the first year of life until adulthood. However, whether this represents a common hominoid mode of development is unknown. Here, we present the first characterization and comparison of ontogenetic endocranial shape changes in a cross-sectional sample of modern humans, chimpanzees, gorillas, orangutans and gibbons. Using developmental simulations, we demonstrate that from late infancy to adulthood ontogenetic trajectories are similar among all hominoid species, but differ in the amount of shape change. Furthermore, we show that during early ontogeny gorillas undergo more pronounced shape changes along this shared trajectory than do chimpanzees, indicative of a dissociation of size and shape change. As shape differences between species are apparent in even our youngest samples, our results indicate that the ontogenetic trajectories of extant hominoids diverged at an earlier stage of ontogeny but subsequently converge following the eruption of the deciduous dentition.  相似文献   

19.
Working memory (WM) capacity and WM processing speed are simple cognitive measures that underlie human performance in complex processes such as reasoning and language comprehension. These cognitive measures have shown to be interrelated in behavioral studies, yet the neural mechanism behind this interdependence has not been elucidated. We have carried out two functional MRI studies to separately identify brain regions involved in capacity and speed. Experiment 1, using a block-design WM verbal task, identified increased WM capacity with increased activity in right prefrontal regions, and Experiment 2, using a single-trial WM verbal task, identified increased WM processing speed with increased activity in similar regions. Our results suggest that right prefrontal areas may be a common region interlinking these two cognitive measures. Moreover, an overlap analysis with regions associated with binding or chunking suggest that this strategic memory consolidation process may be the mechanism interlinking WM capacity and WM speed.  相似文献   

20.
Diffusion-weighted magnetic resonance imaging holds substantial promise as a technique for non-invasive imaging of white matter (WM) axonal projections. For diffusion imaging to be capable of providing new insight into the connectional neuroanatomy of the human brain, it will be necessary to histologically validate the technique against established tracer methods such as horseradish peroxidase and biocytin histochemistry. The macaque monkey provides an ideal model for histological validation of the diffusion imaging method due to the phylogenetic proximity between humans and macaques, the gyrencephalic structure of the macaque cortex, the large body of knowledge on the neuroanatomic connectivity of the macaque brain and the ability to use comparable magnetic resonance acquisition protocols in both species. Recently, it has been shown that high angular resolution diffusion imaging (HARDI) can resolve multiple axon orientations within an individual imaging voxel in human WM. This capability promises to boost the accuracy of tract reconstructions from diffusion imaging. If the macaque is to serve as a model for histological validation of the diffusion tractography method, it will be necessary to show that HARDI can also resolve intravoxel architecture in macaque WM. The present study therefore sought to test whether the technique can resolve intravoxel structure in macaque WM. Using a HARDI method called q-ball imaging (QBI) it was possible to resolve composite intravoxel architecture in a number of anatomic regions. QBI resolved intravoxel structure in, for example, the dorsolateral convexity, the pontine decussation, the pulvinar and temporal subcortical WM. The paper concludes by reviewing remaining challenges for the diffusion tractography project.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号