首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abnormal deposition of α-synuclein in neurons and glia is implicated in many neurological diseases, such as Parkinson’s disease and Dementia with Lewy bodies. Recently, evidence has emerged that this protein and its aggregates are secreted from neuronal cells, and this extracellular protein may contribute to the pathogenic process. Here, we show that all the major brain cell types (neurons, astrocytes, and microglia) are capable of clearing the extracellular α-synuclein aggregates by internalization and degradation. Among these cell types, microglia showed the highest rate of degradation. Upon activation by lipopolysaccharide, the degradation of the internalized α-synuclein aggregates was slowed, causing protein accumulation in the microglial cytoplasm. These results suggest that microglia may be the major scavenger cells for extracellular α-synuclein aggregates in brain parenchyma, and that clearance may be regulated by the activation state of these cells.  相似文献   

2.
Genetic and biochemical abnormalities of α-synuclein are associated with the pathogenesis of Parkinson's disease. In the present study we investigated the in vivo interaction of mouse and human α-synuclein with the potent parkinsonian neurotoxin, MPTP. We find that while lack of mouse α-synuclein in mice is associated with reduced vulnerability to MPTP, increased levels of human α-synuclein expression is not associated with obvious changes in the vulnerability of dopaminergic neurons to MPTP. However, expressing human α-synuclein variants (human wild type or A53T) in the α-synuclein null mice completely restores the vulnerability of nigral dopaminergic neurons to MPTP. These results indicate that human α-synuclein can functionally replace mouse α-synuclein in regard to vulnerability of dopaminergic neurons to MPTP-toxicity. Significantly, α-synuclein null mice and wild type mice were equally sensitive to neurodegeneration induced by 2'NH(2)-MPTP, a MPTP analog that is selective for serotoninergic and noradrenergic neurons. These results suggest that effects of α-synuclein on MPTP like compounds are selective for nigral dopaminergic neurons. Immunoblot analysis of β-synuclein and Akt levels in the mice reveals selective increases in β-synuclein and phosphorylated Akt levels in ventral midbrain, but not in other brain regions, of α-synuclein null mice, implicating the α-synuclein-level dependent regulation of β-synuclein expression in modulation of MPTP-toxicity by α-synuclein. Together these findings provide new mechanistic insights on the role α-synuclein in modulating neurodegenerative phenotypes by regulation of Akt-mediated cell survival signaling in vivo.  相似文献   

3.
4.
Mutations of the leucine-rich repeat kinase 2 (LRRK2) gene are the leading cause of genetically inherited Parkinson’s disease (PD) and its more severe variant diffuse Lewy body disease (DLB). Pathological mutations in Lrrk2 are autosomal dominant, suggesting a gain of function. Mutations in α-synuclein also produce autosomal dominant disease. Here we report an interaction between Lrrk2 and α-synuclein in a series of diffuse Lewy body (DLB) cases and in an oxidative stress cell based assay. All five cases of DLB, but none of five controls, showed co-immunoprecipitation of Lrrk2 and α-synuclein in soluble brain extracts. Colocalization was also found in pathological deposits in DLB postmortem brains by double immunostaining. In HEK cells transfected simultaneously with plasmids expressing Lrrk2 and α-synuclein, co-immunoprecipitation of Lrrk2 and α-synuclein was detected when they were exposed to oxidative stress by H2O2. Taken together, these results suggest the possibility that in PD and related synucleinopathies, oxidative stress upregulates α-syn and Lrrk2 expression, paving the way for pathological interactions. New therapeutic approaches to PD and the synucleinopathies may result from limiting the interaction between Lrrk2 and α-synuclein.  相似文献   

5.
α-Synuclein is the fundamental component of Lewy bodies which occur in the brain of 60% of sporadic and familial Alzheimer’s disease patients. Moreover, a proteolytic fragment of α-synuclein, the so-called non-amyloid component of Alzheimer’s disease amyloid, was found to be an integral part of Alzheimer’s dementia related plaques. However, the role of α-synuclein in pathomechanism of Alzheimer’s disease remains elusive. In particular, the relationship between α-synuclein and amyloid beta is unknown. In the present study we showed the involvement of α-synuclein in amyloid beta secretion and in the mechanism of amyloid beta evoked mitochondria dysfunction and cell death. Rat pheochromocytoma PC12 cells transfected with amyloid beta precursor protein bearing Swedish double mutation (APPsw) and control PC12 cells transfected with empty vector were used in this study. α-Synuclein (10 μM) was found to increase by twofold amyloid beta secretion from control and APPsw PC12 cells. Moreover, α-synuclein decreased the viability of PC12 cells by about 50% and potentiated amyloid beta toxicity leading to mitochondrial dysfunction and caspase-dependent programmed cell death. Inhibitor of caspase-3 (Z-DEVD-FMK, 100 μM), and a mitochondrial permeability transition pore blocker, cyclosporine A (2 μM) protected PC12 cells against α-synuclein or amyloid beta evoked cell death. In contrast Z-DEVD-FMK and cyclosporine A were ineffective in APPsw cells containing elevated amount of amyloid beta treated with α-synuclein. It was found that the inhibition of neuronal and inducible nitric oxide synthase reversed the toxic effect of α-synuclein in control but not in APPsw cells. Our results indicate that α-synuclein enhances the release and toxicity of amyloid beta leading to nitric oxide mediated irreversible mitochondria dysfunction and caspase-dependent programmed cell death.  相似文献   

6.
Inflammation in the brain plays a major role in neurodegenerative diseases. In particular, microglial cell activation is believed to be associated with the pathogenesis of neurodegenerative diseases, including Parkinson’s disease (PD). An increase in microglia activation has been shown in the substantia nigra pars compacta (SNpc) of PD models when there has been a decrease in tyrosine hydroxylase (TH) positive cells. This may be a sign of neurotoxicity due to prolonged activation of microglia in both early and late stages of disease progression. Natural products, such as spirulina, derived from blue green algae, are believed to help reverse this effect due to its anti-inflammatory/anti-oxidant properties. An adeno-associated virus vector (AAV9) for α-synuclein was injected in the substantia nigra of rats to model Parkinson''s disease and to study the effects of spirulina on the inflammatory response. One month prior to surgeries, rats were fed either a diet enhanced with spirulina or a control diet. Immunohistochemistry was analyzed with unbiased stereological methods to quantify lesion size and microglial activation. As hypothesized, spirulina was neuroprotective in this α-synuclein model of PD as more TH+ and NeuN+ cells were observed; spirulina concomitantly decreased the numbers of activated microglial cells as determined by MHCII expression. This decrease in microglia activation may have been due, in part, to the effect of spirulina to increase expression of the fractalkine receptor (CX3CR1) on microglia. With this study we hypothesize that α-synuclein neurotoxicity is mediated, at least in part, via an interaction with microglia. We observed a decrease in activated microglia in the rats that received a spirulina- enhanced diet concomitant to neuroprotection. The increase in CX3CR1 in the groups that received spirulina, suggests a potential mechanism of action.  相似文献   

7.
8.
Although there is known to be a marked concentration of reactive microglia in the substantia nigra pars compacta (SNpc) of patients with Parkinson's disease (PD), a disorder in which α-synuclein plays a key pathogenic role, the specific roles of α-synuclein and microglia remains poorly understood. In this study, we investigated the effects of α-synuclein and the mechanisms of invasive microglial migration into the SNpc. We show that α-synuclein up-regulates the expressions of the cell adhesion molecule CD44 and the cell surface protease membrane-type 1 matrix metalloproteinase through the extracellular regulated kinases 1/2 pathway. These concurrent inductions increased the generation of soluble CD44 to liberate microglia from the surrounding extracellular matrix for migration. The effects of α-synuclein were identical in BV-2 murine microglial cells subjected to cDNA transfection and extracellular treatment. These inductions in primary microglial cultures of C57Bl/6 mice were identical to those in BV-2 cells. α-Synuclein-induced microglial migration into the SNpc was confirmed in vivo using a 6-hydroxydopamine mouse model of PD. Our data demonstrate a correlation between α-synuclein-induced phenotypic changes and microglial migration. With the recruitment of the microglial population into the SNpc during dopaminergic neurodegeneration, α-synuclein may play a role in accelerating the pathogenesis of PD.  相似文献   

9.
Protein assembly into amyloid fibers underlies many neurodegenerative disorders. In Parkinson's disease, amyloid formation of α-synuclein is linked to brain cell death. The gut–brain axis plays a key role in Parkinson's disease, and initial α-synuclein amyloid formation may occur distant from the brain. Because different amyloidogenic proteins can cross-seed, and α-synuclein is expressed outside the brain, amyloids present in the gut (from food products and secreted by microbiota) may modulate α-synuclein amyloid formation via direct interactions. I here describe existing such data that only began to appear in the literature in the last few years. The striking, but limited, data set—spanning from acceleration to inhibition—calls for additional investigations that may unravel disease mechanisms as well as new treatments.  相似文献   

10.
《Autophagy》2013,9(5):754-766
Synucleinopathies like Parkinson disease and dementia with Lewy bodies (DLB) are characterized by α-synuclein aggregates within neurons (Lewy bodies) and their processes (Lewy neurites). Whereas α-synuclein has been genetically linked to the disease process, the pathological relevance of α-synuclein aggregates is still debated. Impaired degradation is considered to result in aggregation of α-synuclein. In addition to the ubiquitin-proteasome degradation, the autophagy-lysosomal pathway (ALP) is involved in intracellular degradation processes for α-synuclein. Here, we asked if modulation of ALP affects α-synuclein aggregation and toxicity. We have identified an induction of the ALP markers LAMP-2A and LC3-II in human brain tissue from DLB patients, in a transgenic mouse model of synucleinopathy, and in a cell culture model for α-synuclein aggregation. ALP inhibition using bafilomycin A1 (BafA1) significantly potentiates toxicity of aggregated α-synuclein species in transgenic mice and in cell culture. Surprisingly, increased toxicity is paralleled by reduced aggregation in both in vivo and in vitro models. The dichotomy of effects on aggregating and nonaggregating species of α-synuclein was specifically sensitive to BafA1 and could not be reproduced by other ALP inhibitors. The present study expands on the accumulating evidence regarding the function of ALP for α-synuclein degradation by isolating an aggregation specific, BafA1-sensitive, ALP-related pathway. Our data also suggest that protein aggregation may represent a detoxifying event rather than being causal for cellular toxicity.  相似文献   

11.
α-Synuclein is involved in Parkinson's disease and its interaction with cell membrane is crucial to its pathological and physiological functions. Membrane properties, such as curvature and lipid composition, have been shown to affect the interactions by various techniques, but ion effects on α-synuclein membrane interactions remain elusive. Ca2 + dynamic fluctuation in neurons plays important roles in the onset of Parkinson's disease and its influx is considered as one of the reasons to cause cell death. Using solution Nuclear Magnetic Resonance (NMR) spectroscopy, here we show that Ca2 + can modulate α-synuclein membrane interactions through competitive binding to anionic lipids, resulting in dissociation of α-synuclein from membranes. These results suggest a negative modulatory effect of Ca2 + on membrane mediated normal function of α-synuclein, which may provide a clue, to their dysfunction in neurodegenerative disease.  相似文献   

12.
Synucleinopathies like Parkinson disease and dementia with Lewy bodies (DLB) are characterized by α-synuclein aggregates within neurons (Lewy bodies) and their processes (Lewy neurites). Whereas α-synuclein has been genetically linked to the disease process, the pathological relevance of α-synuclein aggregates is still debated. Impaired degradation is considered to result in aggregation of α-synuclein. In addition to the ubiquitin-proteasome degradation, the autophagy-lysosomal pathway (ALP) is involved in intracellular degradation processes for α-synuclein. Here, we asked if modulation of ALP affects α-synuclein aggregation and toxicity. We have identified an induction of the ALP markers LAMP-2A and LC3-II in human brain tissue from DLB patients, in a transgenic mouse model of synucleinopathy, and in a cell culture model for α-synuclein aggregation. ALP inhibition using bafilomycin A 1 (BafA1) significantly potentiates toxicity of aggregated α-synuclein species in transgenic mice and in cell culture. Surprisingly, increased toxicity is paralleled by reduced aggregation in both in vivo and in vitro models. The dichotomy of effects on aggregating and nonaggregating species of α-synuclein was specifically sensitive to BafA1 and could not be reproduced by other ALP inhibitors. The present study expands on the accumulating evidence regarding the function of ALP for α-synuclein degradation by isolating an aggregation specific, BafA1-sensitive, ALP-related pathway. Our data also suggest that protein aggregation may represent a detoxifying event rather than being causal for cellular toxicity.  相似文献   

13.
Genetic, biochemical, and animal model studies strongly suggest a central role for α-synuclein in the pathogenesis of Parkinson's disease. α-synuclein lacks a signal peptide sequence and has thus been considered a cytosolic protein. Recent data has suggested that the protein may be released from cells via a non-classical secretory pathway and may therefore exert paracrine effects in the extracellular environment. However, proof that α-synuclein is actually secreted into the brain extracellular space in vivo has not been obtained. We developed a novel highly sensitive ELISA in conjugation with an in vivo microdialysis technique to measure α-synuclein in brain interstitial fluid. We show for the first time that α-synuclein is readily detected in the interstitial fluid of both α-synuclein transgenic mice and human patients with traumatic brain injury. Our data suggest that α-synuclein is physiologically secreted by neurons in vivo. This interstitial fluid pool of the protein may have a role in the propagation of synuclein pathology and progression of Parkinson's disease.  相似文献   

14.
Microglia-mediated neuroinflammation induced by α-synuclein in the substantianigra likely either initiates or aggravates nigral neuro degeneration in Parkinson’s disease (PD). We aimed to explore the effects of α-mangostin (α-M), a polyphenolicxanthone derivative from mangosteen on α-synuclein-stimulated DA neurodegeneration. Primary microglia, mesencephalic neuron, mesencephalic neuron-glianeuronal cultures, and transwell co-cultures were prepared separately. Liquid scintillation counting was used to determine the radioactivity in DA uptake. Enzyme-linked immunosorbent assay (ELISA) was performed in the IL-1β, IL-6, and TNF-α assay. The expression of proteins was analyzed by Western blot. α-M inhibited the increased levels of pro-inflammatory cytokines, NO, and ROS in α-synuclein-stimulated primary microglia. Mechanistic study revealed that α-M functioned by inhibition of nuclear factor kappa B (NF-κB) and NADPH oxidase. Further, α-M protected α-synuclein-induced microglial and direct neurotoxicity. Although detailed mechanisms remain to be defined, our observations suggest a potential compound, which inhibits microglial activation induced by α-synuclein by targeting NADPH oxidase, might be a therapeutic possibility in preventing PD progression.  相似文献   

15.
Several people with Parkinson's disease have been treated with intrastriatal grafts of fetal dopaminergic neurons. Following autopsy, 10-22 years after surgery, some of the grafted neurons contained Lewy bodies similar to those observed in the host brain. Numerous studies have attempted to explain these findings in cell and animal models. In cell culture, α-synuclein has been found to transfer from one cell to another, via mechanisms that include exosomal transport and endocytosis, and in certain cases seed aggregation in the recipient cell. In animal models, transfer of α-synuclein from host brain cells to grafted neurons has been shown, but the reported frequency of the event has been relatively low and little is known about the underlying mechanisms as well as the fate of the transferred α-synuclein. We now demonstrate frequent transfer of α-synuclein from a rat brain engineered to overexpress human α-synuclein to grafted dopaminergic neurons. Further, we show that this model can be used to explore mechanisms underlying cell-to-cell transfer of α-synuclein. Thus, we present evidence both for the involvement of endocytosis in α-synuclein uptake in vivo, and for seeding of aggregation of endogenous α-synuclein in the recipient neuron by the transferred α-synuclein. Finally, we show that, at least in a subset of the studied cells, the transmitted α-synuclein is sensitive to proteinase K. Our new model system could be used to test compounds that inhibit cell-to-cell transfer of α-synuclein and therefore might retard progression of Parkinson neuropathology.  相似文献   

16.
Zhu M  Li W  Lu C 《PloS one》2012,7(4):e36377
α-Synuclein is highly associated with some neurodegeneration and malignancies. Overexpressing wild-type or mutant α-synuclein promotes neuronal death by mitochondrial dysfunction, the underlying mechanisms of which remain poorly defined. It was recently reported that α-synuclein expression could directly lead to mitochondrial fragmentation in vitro and in vivo, which may be due to α-synuclein localization on mitochondria. Here, we applied a double staining method to demonstrate mitochondrial morphogenetic changes in cells overexpressed with α-synuclein. We show that mitochondrial localization of α-synuclein was increased following its overexpression in three distinct cell lines, including HeLa, SH-SY5Y, and PC12 cells, but no alteration in mitochondrial morphology was detected. However, α-synuclein knockdown prevents MPP(+)-induced mitochondrial fragmentation in SH-SY5Y and PC12 cells. These data suggest that α-synuclein protein levels hardly affect mitochondrial morphology in normal cell lines, but may have some influence on that under certain environmental conditions.  相似文献   

17.
The interaction of brain lipids with α-synuclein may play an important role in the pathogenesis of Parkinson disease (PD). Docosahexaenoic acid (DHA) is an abundant fatty acid of neuronal membranes, and it is presents at high levels in brain areas with α-synuclein inclusions of patients with PD. In animal models, an increase of DHA content in the brain induces α-synuclein oligomer formation in vivo. However, it is not clear whether these oligomeric species are the precursors of the larger aggregates found in Lewy bodies of post-mortem PD brains. To characterize these species and to define the role of fatty acids in amyloid formation, we investigated the aggregation process of α-synuclein in the presence of DHA. We found that DHA readily promotes α-synuclein aggregation and that the morphology of these aggregates is dependent on the ratio between the protein and DHA. In the presence of a molar ratio protein/DHA of 1:10, amyloid-like fibrils are formed. These fibrils are morphologically different from those formed by α-synuclein alone and have a less packed structure. At a protein/DHA molar ratio of 1:50, we observe the formation of stable oligomers. Moreover, chemical modifications, methionine oxidations, and protein-lipid adduct formations are induced by increasing concentrations of DHA. The extent of these modifications defines the structure and the stability of aggregates. We also show that α-synuclein oligomers are more toxic if generated in the presence of DHA in dopaminergic neuronal cell lines, suggesting that these species might be important in the neurodegenerative process associated with PD.  相似文献   

18.
Exposure to mustard gas causes inflammatory lung diseases including acute respiratory distress syndrome (ARDS). A defect in the lung surfactant system has been implicated as a cause of ARDS. A major component of lung surfactant is dipalmitoyl phosphatidylcholine (DPPC) and the major pathway for its synthesis is the cytidine diphosphocholine (CDP-choline) pathway. It is not known whether the ARDS induced by mustard gas is mediated by its direct effects on some of the enzymes in the CDP-choline pathway. In the present study we investigated whether mustard gas exposure modulates the activity of cholinephosphotransferase (CPT) the terminal enzyme by CDP-choline pathway. Adult guinea pigs were intratracheally infused with single doses of 2-chloroethyl ethyl sulfide (CEES) (0.5 mg/kg b.wt. in ethanol). Control animals were injected with vehicles only. The animals were sacrificed at different time and the lungs were removed after perfusion with physiological saline. CPT activity increased steadily up to 4 h and then decreased at 6 h and stabilized at 7 days in both mitochondria and microsomes. To determine the dose-dependent effect of CEES on CPT activity we varied the doses of CEES (0.5-6.0 mg/kg b.wt.) and sacrificed the animals at 1 h and 4 h. CPT activity showed a dose-dependent increase of up to 2.0 mg/kg b.wt. of CEES in both mitochondria and microsomes then decreased at 4.0 mg/kg b.wt. For further studies we used a fixed single dose of CEES (2.0 mg/kg b.wt.) and fixed exposure time (7 days). Lung injury was determined by measuring the leakage of iodinated-bovine serum albumin into lung tissue and expressed as the permeability index. CEES exposure (2.0 mg/kg b.wt. for 7 days) caused a significant decrease of both CPT gene expression (approximately 1.7-fold) and activity (approximately 1.5-fold) in the lung. This decrease in CPT activity was not associated with any mutation of the CPT gene. Previously we reported that CEES infusion increased the production of ceramides which are known to modulate PC synthesis. To determine whether ceramides affect microsomal CPT activity the lung microsomal fraction was incubated with different concentrations of C(2)-ceramide prior to CPT assay. CPT activity decreased significantly with increasing dose and time. The present study indicates that CEES causes lung injury and significantly decreases CPT gene expression and activity. This decrease in CPT activity was not associated with any mutation of the CPT gene is probably mediated by accumulation of ceramides. CEES induced ceramide accumulation may thus play an important role in the development of ARDS by modulating CPT enzyme.  相似文献   

19.
Fibrillar inclusions of intraneuronal α-synuclein can be detected in certain brain areas from patients with Parkinson’s disease (PD) and other disorders with Lewy body pathology. These insoluble protein aggregates do not themselves appear to have a prominent neurotoxic effect, whereas various α-synuclein oligomers appear harmful. Although it is incompletely known how the prefibrillar species may be pathogenic, they have been detected both within and on the outside of exosomes and other extracellular vesicles (EVs), suggesting that such structures may mediate toxic α-synuclein propagation between neurons. Vesicular transfer of α-synuclein may thereby contribute to the hierarchical spreading of pathology seen in the PD brain. Although the regulation of α-synuclein release via EVs is not understood, data suggest that it may involve other PD-related molecules, such as LRRK2 and ATP13A2. Moreover, new evidence indicates that CNS-derived EVs in plasma have the potential to serve as biomarkers for diagnostic purposes. In a recent study, levels of α-synuclein were found to be increased in L1CAM-positive vesicles isolated from plasma of PD patients compared to healthy controls, and follow-up studies will reveal whether α-synuclein in EVs could be developed as a future disease biomarker. Preferentially, toxic prefibrillar α-synuclein oligomers should then be targeted as a biomarker—as evidence suggests that they reflect the disease process more closely than total α-synuclein content. In such studies, it will be essential to adopt stringent EV isolation protocols in order to avoid contamination from the abundant pool of free plasma α-synuclein in different aggregational states.  相似文献   

20.
A common finding in many neurodegenerative diseases is the presence of inclusion bodies made of aggregated proteins in neurons of affected brain regions. In Parkinson's disease, the inclusion bodies are referred to as Lewy bodies and their main component is α-synuclein. Although many studies have suggested that inclusion bodies may be cell protective, it is still not clear whether Lewy bodies promote or inhibit dopaminergic cell death in Parkinson's disease. Synphilin-1 interacts with α-synuclein and is present in Lewy bodies. Accumulation of ubiquitylated synphilin-1 leads to massive formation of inclusion bodies, which resemble Lewy bodies by their ability to recruit α-synuclein. We have recently isolated an isoform of synphilin-1, synphilin-1A, that spontaneously aggregates in cells, and is present in detergent-insoluble fractions of brain protein samples from α-synucleinopathy patients. Synphilin-1A displays marked neuronal toxicity and, upon proteasome inhibition, accumulates into ubiquitylated inclusions with concomitant reduction of its intrinsic toxicity. The fact that α-synuclein interacts with synphilin-1A, and is recruited to synphilin-1A inclusion bodies in neurons together with synphilin-1, further indicates that synphilin-1A cell model is relevant for research on Parkinson's disease. Synphilin-1A cell model may help provide important insights regarding the role of inclusion bodies in Parkinson's disease and other neurodegenerative disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号