首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epilepsy is a common neurological disorder that occurs more frequently in children than in adults. The extent that prolonged seizure activity, i.e. status epilepticus (SE), and repeated, brief seizures affect neuronal structure and function in both the immature and mature brain has been the subject of increasing clinical and experimental research. Earlier studies suggest that seizure-induced effects in the immature brain compared with the adult brain are different. This is manifested as differences in neuronal vulnerability, cellular and synaptic reorganization and regenerative processes. The focus of this review is first to give a short overview of currently used experimental models of epilepsy in immature rats, and then discuss more thoroughly seizure-induced acute and sub-acute cellular and molecular alterations, highlight the contribution of inflammatory-like reactions and intracellular cytoskeleton to the insult, and reveal changes in the structure and function of inhibitory GABA(A) and excitatory glutamate receptors. The role of seizure-activated reparative, plastic processes, synaptic remodelling, neurogenesis as well as the long-term consequences of seizures are briefly outlined. The main emphasis is put on studies carried out in experimental animals, and the focus of interest is the hippocampus, the brain area of great vulnerability in epilepsy. In vitro studies are discussed only to limited extent. Collectively, recent studies suggest that the deleterious effects of seizures may not solely be a consequence of neuronal damage and loss per se, but could be due to the fact that seizures interfere with the highly regulated developmental processes in the immature brain.  相似文献   

2.
Estrogens and the skeleton: cellular and molecular mechanisms   总被引:1,自引:0,他引:1  
Postmenopausal women lose bone mineral density and this loss can be prevented by estrogen administration. Although the skeletal effects of estrogens have been regarded previously as indirect, estrogen receptors have been discovered in cultured human osteoblasts and related cell lines. The UMR106 cell line derived from a rat osteogenic osteosarcoma is such an osteoblast model. We have shown direct effects of estradiol (E) on these cells in vitro, inhibiting growth and stimulating alkaline phosphatase activity (AP) corrected for cell number. This response was maximal at E conc. of 10(-10) M in serum and Phenol Red free medium, was metabolite specific and cell cycle-dependent. These cells contain high affinity binding sites with a Kd of 0.5 nM. Estrogen receptors were detected by the monoclonal antibody H-222 on Western blot after initial immunoprecipitation to concentrate the proteins. E treatment increased several enzymes including creatine kinase and LDH isoenzymes along with increments in intracellular transferrin. Transforming growth factor-beta is secreted by these cells. Secretion of this peptide was stimulated by E. TGF-beta mediated the transient growth inhibition associated with E treatment. Insulin like growth factors (IGF) are also secreted by these cells with IGF-II concentrations in the culture medium being eight times higher than IGF-I levels. E treatment increased the concentrations of both IGFs in the culture medium after a 3 day incubation. Exposure of E treated cells manifested a mitogenic response and reduced AP, indicating that E induced receptors for IGFs. These findings establish direct effects of E on osteoblastic cells in vitro and demonstrate responses to E at many levels. These osteoblast responses in vitro suggest an important role for sex steroids in the development and function of the osteoblast lineage.  相似文献   

3.
4.
The skin is the largest organ of the body that produces a flexible and self-repairing barrier and protects the body from most common potentially harmful physical, environmental, and biological insults. Solar ultraviolet (UV) radiation is one of the major environmental insults to the skin and causes multi-tiered cellular and molecular events eventually leading to skin cancer. The past decade has seen a surge in the incidence of skin cancer due to changes in life style patterns that have led to a significant increase in the amount of UV radiation that people receive. Reducing excessive exposure to UV radiation is desirable; nevertheless this approach is not easy to implement. Therefore, there is an urgent need to develop novel strategies to reduce the adverse biological effects of UV radiation on the skin. A wide variety of natural agents have been reported to possess substantial skin photoprotective effects. Numerous preclinical and clinical studies have elucidated that natural agents act by several cellular and molecular mechanisms to delay or prevent skin cancer. In this review article, we have summarized and discussed some of the selected natural agents for skin photoprotection.  相似文献   

5.
6.
7.
Neuronal plasticity and cellular immunity: shared molecular mechanisms   总被引:10,自引:0,他引:10  
It is becoming evident that neurons express an unusual number of molecules that were originally thought to be specific to immune functions. One such molecule, class I major histocompatibility complex, is required in the activity-dependent refinement and plasticity of connections in the developing and adult central nervous system, demonstrating that molecules can perform critical roles in both systems. Recent studies reveal striking parallels between cellular signaling mechanisms in the immune and nervous systems that may provide unexpected insights into the development, function, and diseases of both systems.  相似文献   

8.
Acid-base regulation in fishes: cellular and molecular mechanisms   总被引:6,自引:0,他引:6  
The mechanisms underlying acid-base transfers across the branchial epithelium of fishes have been studied for more than 70 years. These animals are able to compensate for changes to internal pH following a wide range of acid-base challenges, and the gill epithelium is the primary site of acid-base transfers to the water. This paper reviews recent molecular, immunohistochemical, and functional studies that have begun to define the protein transporters involved in the acid-base relevant ion transfers. Both Na(+)/H(+) exchange (NHE) and vacuolar-type H(+)-ATPase transport H(+) from the fish to the environment. While NHEs have been thought to carry out this function mainly in seawater-adapted animals, these proteins have now been localized to mitochondrial-rich cells in the gill epithelium of both fresh and saltwater-adapted fishes. NHEs have been found in the gill epithelium of elasmobranchs, teleosts, and an agnathan. In several species, apical isoforms (NHE2 and NHE3) appear to be up-regulated following acidosis. In freshwater teleosts, H(+)-ATPase drives H(+) excretion and is indirectly coupled to Na(+) uptake (via Na(+) channels). It has been localized to respiratory pavement cells and chloride cells of the gill epithelium. In the marine elasmobranch, both branchial NHE and H(+)-ATPase have been identified, suggesting that a combination of these mechanisms may be utilized by marine elasmobranchs for acid-base regulation. An apically located Cl(-)/HCO(3)(-) anion exchanger in chloride cells may be responsible for base excretion in fresh and seawater-adapted fishes. While only a few species have been examined to date, new molecular approaches applied to a wider range of fishes will continue to improve our understanding of the roles of the various gill membrane transport processes in acid-base balance.  相似文献   

9.
Marked cellular and molecular changes may occur in breast cancers following treatment of postmenopausal breast cancer patients with aromatase inhibitors. Neoadjuvant protocols, in which treatment is given with the primary tumour still within the breast, are particularly illuminating. In Edinburgh, we have shown that 3 months treatment with either anastrozole, exemestane or letrozole produces pathological responses in the majority of oestrogen receptor (ER)-rich tumours (39/59) as manifested by reduced cellularity/increased fibrosis. Changes in histological grading may also take place, most notably a reduction in mitotic figures. This probably reflects an influence on proliferation as most tumours (82%) show a marked decrease in the proliferation marker, Ki67. These effects are generally more dramatic than seen with tamoxifen given in the same setting. Differences between aromatase inhibitors and tamoxifen are also apparent in changes in steroid hormone expression. Thus, immuno-staining for progesterone receptor (PgR) is reduced in almost all cases by aromatase inhibitors, becoming undetectable in many. This contrasts with effects of tamoxifen in which the most common change on PgR is to increase expression. Changes in proliferation occur rapidly following the onset of exposure to aromatase inhibitors. Thus, neoadjuvant studies with letrozole in which tumour was sampled before and after 14 days and 3 months treatment show that decreased expression of Ki67 occur at 14 days and, in many cases, the effect is greater at 14 days than 3 months. These early changes precede evidence of clinical response but do not predict for it. However, this study design has allowed RNA analysis of sequential biopsies taken during the neoadjuvant therapy. Based on clustering techniques, it has been possible to subdivide tumours into groups showing distinct patterns of molecular changes. These changes in tumour gene expression may allow definition of tumour cohorts with differing sensitivity to aromatase inhibitors and permit early recognition of response and resistance.  相似文献   

10.
Fertilization in mammals occurs via a series of well-defined events in the secluded environment of the female reproductive tract. The mode of selection of the fertilizing spermatozoon nevertheless remains unknown. As has become evident during in vitro fertilization by sperm microinjection into the oocyte, abnormal spermatozoa can successfully fertilize oocytes. Under these extreme conditions, post-fertilization events, early embryonic development and implantation are significantly compromised indicating that the contribution of spermatozoa extends beyond sperm penetration. Microscopic identification of normal spermatozoa is a well-standardized procedure but insights into the mechanisms that lead to aberrant sperm differentiation and into the subcellular nature of sperm abnormalities have only recently begun to be obtained. The spermatozoon is the result of a complex development in which spermatid organelles give rise to various structural components with characteristic functions. Similar to other differentiated cells, the spermatozoon has a specific pathology that is most clearly identified by ultrastructural evaluation coupled with immunocytochemistry and molecular techniques. This multidisciplinary approach allows the precise characterization of sperm abnormalities, including structural, molecular and functional aspects. We summarize here studies of the physiopathology of spermiogenesis in two abnormal sperm phenotypes of infertile men: dysplasia of the fibrous sheath and acephalic spermatozoa/abnormal head-tail attachment. The characterization of the abnormalities of the tail cytoskeleton and centrioles has uncovered aspects of the subcellular basis of pathological spermiogenesis, has suggested experimental approaches to explore the nature of these anomalies and has opened the way for genetic studies that will ultimately lead to the design of the therapeutic tools of the future.  相似文献   

11.
12.
Immune regulation by helminth parasites: cellular and molecular mechanisms   总被引:1,自引:0,他引:1  
Immunology was founded by studying the body's response to infectious microorganisms, and yet microbial prokaryotes only tell half the story of the immune system. Eukaryotic pathogens--protozoa, helminths, fungi and ectoparasites--have all been powerful selective forces for immune evolution. Often, as with lethal protozoal parasites, the focus has been on acute infections and the inflammatory responses they evoke. Long-lived parasites such as the helminths, however, are more remarkable for their ability to downregulate host immunity, protecting themselves from elimination and minimizing severe pathology in the host.  相似文献   

13.
Using an immunohistochemistry technique, combined with light and electron microscopy,in vitro development of various cell elements in organotypic hippocampal rat slice culture were studied. It was shown that hippocampal neurons preserve their normal structure and function for a month of culturing. Astrocytes are activated and fulfill a protective function, and microglial cells show typical dynamics of the development in culture. After experimental hypoxia, progressive neuronal degradation and death, as well as microglial activation, are observed. The prospects for using hippocampal slice culture as a model system for studying cellular and molecular mechanisms of brain damage of different etiology are discussed.  相似文献   

14.
15.
Biochemical and cellular mechanisms of low-dose effects   总被引:1,自引:0,他引:1  
Low-dose irradiation is usually considered to be rather ineffective in producing biologically relevant effects. Yet, individual radiation absorption events within cell nuclei or whole cells interact stochastically with subcellular structures due to the multiple ionizations along primary or secondary particle tracks, depending on ionization density. Whereas radiation effects are usually seen in the context of structure and function of DNA, other cellular effects, perhaps influencing DNA by secondary biochemical mechanisms, also warrant attention. Thus, previous work from this laboratory with bone marrow that was obtained from whole-body exposed mice, has shown that single or few instantaneous radiation absorption events per cell from gamma-rays produce an acute and temporary partial inhibition of the enzyme thymidine kinase; the effect appears within about 1 h after the event, reaches its maximum at approximately 4 h and disappears completely within another 6 h. This pattern of enzyme inhibition is fully concordant with the pattern of inhibition of uptake of tritiated thymidine or 125I-labelled deoxyuridine into the DNA; also concordant is a temporary increase in the concentration of free thymidine in the blood serum of the exposed mice. The particular response of thymidine kinase was considered to relate to some, thus far unknown, repair systems and/or to a defence mechanism of the hit cells. In order to further elucidate the role of the acute and temporary partial inhibition of thymidine kinase in cellular metabolism, experiments were carried out in which mice were acutely exposed to 0.01 or 0.1 Gy and again exposed to the same dose at different times up to 12 h after the first exposure. At regular time intervals after the second exposure bone marrow cells were obtained and thymidine kinase activity was studied by various assays. The results indicate that the first acute irradiation conditioned the cells in such a way that the second acute irradiation produced either an enhanced inhibition and recovery of thymidine kinase activity, or no effect at all was seen, when the second irradiation was given between about 3 and 8 h after the first irradiation. From 8 to 12 h after the first irradiation the cells apparently resumed their original state, so that the second irradiation produced effects quite similar to those seen after a single irradiation in unconditioned cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
About 30 years ago, the discovery of the connection between UV radiation and the immune system triggered the field of photoimmunology. In that time, many aspects were studied, and a complex picture emerged. UV absorption results in multi-tiered molecular and cellular UV radiation-induced events, eventually affecting the immune system. The shorter wavelengths of the UV spectrum, i.e. UVB appear to be the most critical players for impairing immune reactions. This review summarizes and discusses UVB radiation-induced effects on the skin, considering the primary efferent molecular events following energy absorption of UVB radiation, ending with the various afferent cellular changes, such as induction of regulatory T cells.  相似文献   

17.
18.
Incretins, such as glucagon-like peptide-1 (GLP)-1, have been shown to elevate plasma insulin concentration. The purpose of this study is to investigate the cellular and molecular basis of the beneficial effects of GLP-1. Normal and diabetic male Wistar rats were treated with GLP-1 (50 ng/kg body weight) for 10 weeks. At the end of the experiment, pancreatic tissues were taken for immunohistochemistry, immunoelectron microscopy and real-time polymerase chain reaction studies. Samples of blood were retrieved from the animals for the measurement of enzymes and insulin. The results show that treatment of diabetic rats with GLP-1 caused significant (P?GLP-1 (10?12–10?6 M) induced significant (P?GLP-1-treated rats compared to controls. GLP-1 treatment induced significant (P?GLP-1-receptor genes in diabetic animals compared to controls. GLP-1 is present in pancreatic beta cells and significantly (P?GLP-1 is co-localized with insulin and seems to exert its beneficial effects by increasing cellular concentrations of endogenous antioxidant genes and other genes involved in the maintenance of pancreatic beta cell structure and function.  相似文献   

19.
Anoxic brain function: molecular mechanisms of metabolic depression   总被引:1,自引:0,他引:1  
S P Brooks  K B Storey 《FEBS letters》1988,232(1):214-216
  相似文献   

20.
Growth hormone (GH) release is under the direct control of hypothalamic releasing hormones, some being also produced peripherally. The role of these hypothalamic factors has been understood by in vitro studies together with such in vivo approaches as stalk sectioning. Secretion of GH is stimulated by GH-releasing hormone (GHRH) and ghrelin (acting via the GH secretagogue [GHS] receptor [GHSR]), and inhibited by somatostatin (SRIF). Other peptides/proteins influence GH secretion, at least in some species. The cellular mechanism by which the releasing hormones affect GH secretion from the somatotrope requires specific signal transduction systems (cAMP and/or calcium influx and/or mobilization of intracellular calcium) and/ or tyrosine kinase(s) and/or nitric oxide (NO)/cGMP. At the subcellular level, GH release (at least in response to GHS) is accomplished by the following. The GH-containing secretory granules are moved close to the cell surface. There is then transient fusion of the secretory granules with the fusion pores in the multiple secretory pits in the somatotrope cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号