首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
IL-23, a clinically novel cytokine, targets CD4(+) T cells. Recent IL-1Ra(-/-) mouse studies have demonstrated that IL-23 indirectly stimulates the differentiation of osteoclast precursors by enhancing IL-17 release from CD4(+) T cells. IL-17, in turn, stimulates osteoclastogenesis in osteoclast precursor cells. In this study, we found that IL-23 up-regulates receptor activator of NF-kappaB ligand expression by CD4(+) T cells, and thus contributes to osteoclastogenesis. This indirect pathway is mediated by NF-kappaB and STAT3. We have also demonstrated that IL-23 can influence osteoclastogenesis positively under the special conditions in the IL-1-dominant milieu of IL-1Ra(-/-) mice. We propose that IL-23-enhanced osteoclastogenesis is mediated mainly by CD4(+) T cells. The results of this study show that IL-23 is a promising therapeutic target for the treatment of arthritis-associated bone destruction.  相似文献   

2.
Yago T  Nanke Y  Kawamoto M  Yamanaka H  Kotake S 《Cytokine》2012,59(2):252-257
Tacrolimus (FK506, Prograf?) is an orally available, T cell specific and anti-inflammatory agent that has been proposed as a therapeutic drug in rheumatoid arthritis (RA) patients. It has been known that T cells have a critical role in the pathogenesis of RA. Recent studies suggest that Th17 cells, which mainly produce IL-17, are involved in many autoimmune inflammatory disease including RA. The present study was undertaken to assess the effect of tacrolimus on IL-17-induced human osteoclastogenesis and human Th17 differentiation. Human CD14(+) monocytes were cultured in the presence of macrophage-colony stimulating factor (M-CSF) and IL-17. From day 4, tacrolimus was added to these cultures. Osteoclasts were immunohistologically stained for vitronectin receptor 10days later. IL-17 production from activated T cells stimulated with IL-23 was measured by enzyme-linked immunosorbent assay (ELISA). Th17 differentiation from na?ve T cells was assayed by flow cytometry. Tacrolimus potently inhibited IL-17-induced osteoclastogenesis from human monocytes and osteoclast activation. Addition of tacrolimus also reduced production of IL-17 in human activated T cells stimulated with IL-23. Interestingly, the population of human IL-17(+)IFN-γ(-) CD4 T cells or IL-17(+)TNF-α(+) CD4 T cells were decreased by adding of tacrolimus. The present study demonstrates that the inhibitory effect of tacrolimus on IL-17-induced osteoclastogenesis from human monocytes. Tacrolimus also inhibited expression of IL-17 or TNF-α by reducing the proportion of Th17, suggesting that therapeutic effect on Th17-associated disease such as RA, inflammatory bowel disease, multiple sclerosis, psoriasis, or allograft rejection.  相似文献   

3.
IL-23 stimulates the differentiation and function of the Th17 subset of CD4(+) T cells and plays a critical role in chronic inflammation. The IL-23 receptor-encoding gene is also an inflammatory disease susceptibility gene. IL-23 shares a common subunit with IL-12, a T cell-dependent osteoclast formation inhibitor, and we found that IL-23 also dose-dependently inhibited osteoclastogenesis in a CD4(+) T lymphocyte-dependent manner. When sufficiently enriched, gammadelta T cells also mediated IL-23 inhibition. Like IL-12, IL-23 acted synergistically with IL-18 to block osteoclastogenesis but, unlike IL-12, IL-23 action depended on T cell GM-CSF production. IL-23 did not mediate IL-12 action although IL-12 induced its expression. Male mice lacking IL-23 (IL-23p19(-/-)) had approximately 30% lower bone mineral density and tibial trabecular bone mass (bone volume (BV)/total volume (TV)) than wild-type littermates at 12 wk and 40% lower BV/TV at 26 wk of age; male heterozygotes also had lower bone mass. Female IL-23p19(-/-) mice also had reduced BV/TV. IL-23p19(-/-) mice had no detectable osteoclast defect in trabecular bone but IL-23p19(-/-) had thinner growth plate hypertrophic and primary spongiosa zones (and, in females, less cartilage remnants) compared with wild type. This suggests increased osteoclast action at and below the growth plate, leading to reduced amounts of mature trabecular bone. Thus, IL-23 inhibits osteoclast formation indirectly via T cells in vitro. Under nonpathological conditions (unlike inflammatory conditions), IL-23 favors higher bone mass in long bones by limiting resorption of immature bone forming below the growth plate.  相似文献   

4.
IL-12, like IL-18, was shown to potently inhibit osteoclast formation in cultures of cocultures of murine osteoblast and spleen cells, as well as in adult spleen cells treated with M-CSF and receptor activator of NF-kappaB ligand (RANKL). Neither IL-12 nor IL-18 was able to inhibit RANKL-induced osteoclast formation in cultured RAW264.7 cells, demonstrating that IL-12, like IL-18, was unable to act directly on osteoclastic precursors. IL-12, like IL-18, was found to act by T cells, since depletion of T cells from the adult spleen cell cultures ablated the inhibitory action of IL-12 and addition of either CD4 or CD8 T cells from C57BL/6 mice to RANKL-stimulated RAW264.7 cultures permitted IL-12 or IL-18 to be inhibitory. Additionally, IL-12 was still able to inhibit osteoclast formation in cocultures with osteoblasts and spleen cells from either GM-CSF R(-/-) mice or IFN-gamma R(-/-) mice, indicating that neither GM-CSF nor IFN-gamma was mediating osteoclast inhibition in these cultures. Combined, IL-18 and IL-12 synergistically inhibited osteoclast formation at concentrations 20- to 1000-fold less, respectively, than when added individually. A candidate inhibitor could not be demonstrated using neutralizing Abs to IL-4, IL-10, or IL-13 or from mRNA expression profiles among known cytokine inhibitors of osteoclastogenesis in response to IL-12 and IL-18 treatment, although the unknown inhibitory molecule was determined to be secreted from T cells.  相似文献   

5.
Retinoic acid is the active vitamin A derivative and is well-known to have diverse immunomodulatory actions. In this study, we investigated the impact of all-trans retinoic acid (ATRA), a biologic key metabolite of vitamin A, on the development of arthritis and the pathophysiologic mechanisms by which ATRA might have antiarthritic effects in animal model of rheumatoid arthritis (RA; collagen-induced arthritis [CIA] in DBA/1J mice). We showed that treatment with ATRA markedly suppressed the clinical and histologic signs of arthritis in the CIA mice. It reduced the expression of IL-17 in the arthritic joints. Interestingly, Foxp3(+) regulatory T cells were markedly increased and IL-17-producing CD4(+) T cells (Th17 cells) were decreased in the spleens of ATRA-treated mice. In vitro treatment with ATRA induced the expression of Foxp3 and repressed the IL-17 expression in the CD4(+) T cells in mice. ATRA suppressed the production of total IgG and IgG2a in splenocytes that were stimulated by LPS. It also reduced serum levels of total IgG and IgG2 anti-collagen Abs and germinal center formation in CIA mice. In addition, the ATRA-treated mice showed decreased osteoclast formation in arthritic joints. Moreover, ATRA downregulated the expression of receptor activator of NF-κB ligand, the leading player of osteoclastogenesis, in the CD4(+) T cells and fibroblast-like synoviocytes from patients with RA. Furthermore, ATRA prevented both human monocytes and mice bone marrow-derived monocytes/macrophage cells from differentiating into osteoclasts. These data suggest ATRA might be an effective treatment modality for RA patients.  相似文献   

6.
The formation of bone resorbing osteoclasts in vivo is orchestrated by cells of the osteoblast lineage such as periodontal ligament fibroblasts that provide the proper signals to osteoclast precursors. Although the requirement of cell–cell interactions is widely acknowledged, it is unknown whether these interactions influence the expression of genes required for osteoclastogenesis and the ultimate formation of osteoclasts. In the present study we investigated the effect of cell–cell interaction on the mRNA expression of adhesion molecules and molecules involved in osteoclast formation in cultures of peripheral blood mononuclear cells (PBMCs) and human primary periodontal ligament fibroblasts, both as solitary cultures and in co‐culture. We further analyzed the formation of multinucleated, tartrate resistant acid phosphatase (TRACP) positive cells and assessed their bone resorbing abilities. Interestingly, gene expression of intercellular adhesion molecule‐1 (ICAM‐1) and of osteoclastogenesis‐related genes (RANKL, RANK, TNF‐α, and IL‐1β) was highly up‐regulated in the co‐cultures compared to mono‐cultures and the 5–10‐fold up‐regulation reflected a synergistic increase due to direct cell–cell interaction. This induction strongly overpowered the effects of known osteoclastogenesis inducers 1,25(OH)2VitD3 and dexamethasone. In case of indirect cell–cell contact mRNA expression was not altered, indicating that heterotypic adhesion is required for the increase in gene expression. In addition, the number of osteoclast‐like cells that were formed in co‐culture with periodontal ligament fibroblasts was significantly augmented compared to mono‐cultures. Our data indicate that cell–cell adhesion between osteoclast precursors and periodontal ligament fibroblasts significantly modulates the cellular response which favors the expression of osteoclast differentiation genes and the ultimate formation of osteoclasts. J. Cell. Physiol. 222: 565–573, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
8.
In the present study, the authors compared the interleukin 17 (IL-17 expression of human naive and phenotypically defined memory T cells as well as its regulation by cAMP pathway. Our data showed that IL-17 mRNA was highly expressed in memory human peripheral CD8(+)45RO+T cells and CD4(+)45RO+T cells when peripheral blood mononuclear cells were first stimulated with ionomycin/PMA. IL-17 expression in memory CD8(+)T cells required accessory signals since culture of ionomycin/PMA-activated CD8(+)45RO+T cells alone did not result to IL-17 expression. In contrast, memory CD4(+)T cell population seems to be more independent. IL-17 and interferon gamma(IFN-gamma) mRNA were both inhibited in the presence of PGE2 or the cAMP analogue (dibutyryl-cAMP), while the anti-inflammatory cytokine IL-10 was highly increased. In contrast, naive CD45RA+T cells were unable to express IL-17 whatever the culture conditions. Naive CD4(+)and CD8(+)T cells were sensitive to the PKA regulatory pathway since they represent a significant source of IL-10 when PBMC were first cultured with ionomycin/PMA in the presence of either PGE2 or db-cAMP. The authors showed that naive cells are highly dependent to their microenvironment, since culture of ionomycin/PMA-activated CD45RA+T cells alone did not result in detectable levels of cytokines even in the presence of PGE2. Results also showed that PGE2 induced quite the same levels of intracellular cAMP in naive and memory cells suggesting that these cell populations are equally sensitive to PGE2. However, we suggest that PGE2 may be more efficient in blocking both IL-17 and IFN-gamma expression in already primed memory T cells, rather than in suppressing naive T cells that could represent a significant source of IL-10. Data suggest that PKA activation pathway plays a critical role in the regulation of cytokine profiles and consequently the functional properties of both human naive and memory CD4(+) and CD8(+)T cells during the immune and inflammatory processes.  相似文献   

9.
Breast cancers commonly cause osteolytic metastases in bone, a process that is dependent upon osteoclast-mediated bone resorption, but the mechanism responsible for tumor-mediated osteoclast activation has not yet been clarified. In the present study we utilized a well-known human breast cancer cell line (MDA-231) in order to assess its capability to influence osteoclastogenesis in human bone marrow cultures and bone resorption in fully differentiated osteoclasts. We demonstrated that conditioned medium (CM) harvested from MDA-231 increased the formation of multinucleated TRAP-positive cells in bone marrow cultures. Bone resorption activity of fully differentiated human osteoclasts and of osteoclast-like cell lines, from giant cell tumors of bone (GCT), was highly increased by the presence of MDA-231 CM. Moreover, while MDA-231 by themselves did not produce IL-6 tumor cell, CM increased the secretion of IL-6 by primary human osteoclasts and GCT cell lines compared to untreated controls. These data suggest that MDA-231 produce osteoclastic activating factor(s) that increase both osteoclast formation in bone marrow culture and bone resorption activity by mature cells. Moreover, breast cancer cells stimulate IL-6 secretion by osteoclasts that is one of the factors known to supports osteoclastogenesis.  相似文献   

10.
γδ T cells are considered to be innate lymphocytes that play an important role in host defense against tumors and infections. We recently reported that IL-18 markedly amplified γδ T cell responses to zoledronate (ZOL)/IL-2. In an extension of this finding, we analyzed the mechanism underlying the IL-18-mediated expansion of γδ T cells. After incubation of PBMCs with ZOL/IL-2/IL-18, the majority of the cells expressed γδ TCR, and the rest mostly exhibited CD56(bright)CD11c(+) under the conditions used in this study. CD56(bright)CD11c(+) cells were derived from a culture of CD56(int)CD11c(+) cells and CD14(+) cells in the presence of IL-2 and IL-18 without the addition of ZOL. They expressed IL-18Rs, HLA-DR, CD25, CD80, CD83, CD86, and CD11a/CD18. In addition, they produced IFN-γ, TNF-α, but not IL-12, when treated with IL-2/IL-18, and they exerted cytotoxicity against K562 cells, thus exhibiting characteristics of both NK cells and dendritic cells. Incubation of purified γδ T cells with CD56(bright)CD11c(+) cells in the presence of ZOL/IL-2/IL-18 resulted in the formation of massive cell clusters and led to the marked expansion of γδ T cells. However, both conventional CD56(-/int)CD11c(high) dendritic cells induced by GM-CSF/IL-4 and CD56(+)CD11c(-) NK cells failed to support the expansion of γδ T cells. These results strongly suggest that CD56(bright)CD11c(+) cells play a key role in the IL-18-mediated proliferation of γδ T cells.  相似文献   

11.
Differentiation of CD8(+) T cells at the tumor site toward effector and memory stages may represent a key step for the efficacy of antitumor response developing naturally or induced through immunotherapy. To address this issue, CD8(+) T lymphocytes from tumor-invaded (n = 142) and tumor-free (n = 42) lymph nodes removed from the same nodal basin of melanoma patients were analyzed for the expression of CCR7, CD45RA, perforin, and granzyme B. By hierarchical cluster analysis, CD8(+) T cells from all tumor-free lymph nodes and from 56% of the tumor-invaded lymph node samples fell in the same cluster, characterized mainly by CCR7(+) CD45RA(+/-) cytotoxic factor(-) cells. The remaining three clusters contained only samples from tumor-invaded lymph nodes and showed a progressive shift of the CD8(+) T cell population toward CCR7(-) CD45RA(-/+) perforin(+) granzyme B(+) differentiation stages. Distinct CD8(+) T cell maturation stages, as defined by CCR7 vs CD45RA and by functional assays, were identified even in melanoma- or viral Ag-specific T cells from invaded lymph nodes by HLA tetramer analysis. Culture for 7 days of CCR7(+) perforin(-) CD8(+) T cells from tumor-invaded lymph nodes with IL-2 or IL-15, but not IL-7, promoted, mainly in CCR7(+)CD45RA(-) cells, proliferation coupled to differentiation to the CCR7(-) perforin(+) stage and acquisition of melanoma Ag-specific effector functions. Taken together, these results indicate that CD8(+) T cells differentiated toward CCR7(-) cytotoxic factor(+) stages are present in tumor-invaded, but not in tumor-free, lymph nodes of a relevant fraction of melanoma patients and suggest that cytokines such as IL-2 and IL-15 may be exploited to promote Ag-independent maturation of anti-tumor CD8(+) T cells.  相似文献   

12.
Upon adoptive transfer into histocompatible mice, naive CD8(+) T cells stimulated ex vivo by TCR+IL-4 turn into long-lived functional memory cells. The liver contains a large number of so formed memory CD8(+) T cells, referred to as liver memory T cells (T(lm)) in the form of cell clusters. The CD62L(low) expression and nonlymphoid tissue distribution of T(lm) cells are similar to effector memory (T(em)) cells, yet their deficient cytotoxicity and IFN-γ inducibility are unlike T(em) cells. Adoptive transfer of admixtures of TCR+IL-4-activated Vβ8(+) and Vβ5(+) CD8(+) T cells into congenic hosts reveals T(lm) clusters that are composed of all Vβ5(+) or Vβ8(+), not mixed Vβ5(+)/Vβ8(+) cells, indicating that T(lm) clusters are formed by clonal expansion. Clonally expanded CD8(+) T cell clusters are also seen in the liver of Listeria monocytogenes-immune mice. T(lm) clusters closely associate with hepatic stellate cells and their formation is IL-15/IL-15R-dependent. CD62L(low) T(LM) cells can home to the liver and secondary lymphoid tissues, remain CD62L(low), or acquire central memory (T(cm))-characteristic CD62L(hi) expression. Our findings show the liver as a major site of CD8(+) memory T cell growth and that T(lm) cells contribute to the pool of peripheral memory cells. These previously unappreciated T(lm) characteristics indicate the inadequacy of the current T(em)/T(cm) classification scheme and help ongoing efforts aimed at establishing a unifying memory T cell development pathway. Lastly, our finding of T(lm) clusters suggests caution against interpreting focal lymphocyte infiltration in clinical settings as pathology and not normal physiology.  相似文献   

13.
Foxp3(+)CD4(+) regulatory T (Treg) cells inhibit immune responses and temper inflammation. IL-17(+)CD4(+) T (Th17) cells mediate inflammation of autoimmune diseases. A small population of IL-17(+)Foxp3(+)CD4(+) T cells has been observed in peripheral blood in healthy human beings. However, the biology of IL-17(+)Foxp3(+)CD4(+) T cells remains poorly understood in humans. We investigated their phenotype, cytokine profile, generation, and pathological relevance in patients with ulcerative colitis. We observed that high levels of IL-17(+)Foxp3(+)CD4(+) T cells were selectively accumulated in the colitic microenvironment and associated colon carcinoma. The phenotype and cytokine profile of IL-17(+)Foxp3(+)CD4(+) T cells was overlapping with Th17 and Treg cells. Myeloid APCs, IL-2, and TGF-β are essential for their induction from memory CCR6(+) T cells or Treg cells. IL-17(+)Foxp3(+)CD4(+) T cells functionally suppressed T cell activation and stimulated inflammatory cytokine production in the colitic tissues. Our data indicate that IL-17(+)Foxp3(+) cells may be "inflammatory" Treg cells in the pathological microenvironments. These cells may contribute to the pathogenesis of ulcerative colitis through inducing inflammatory cytokines and inhibiting local T cell immunity, and in turn may mechanistically link human chronic inflammation to tumor development. Our data therefore challenge commonly held beliefs of the anti-inflammatory role of Treg cells and suggest a more complex Treg cell biology, at least in the context of human chronic inflammation and associated carcinoma.  相似文献   

14.
CD4+ and CD8+ T cells do not develop significant lymphokine-activated killer (LAK) activity when PBL are cultured with IL-2 or even when they are activated with a T cell stimulus such as OKT3 mAb. The possibility that a T cell regulatory mechanism prevents the development of LAK activity by CD4+ or CD8+ cells in OKT3 mAb and IL-2 cultures was tested by depleting CD8+ or CD4+ cells from PBL before stimulation with OKT3 and IL-2. Under these conditions, the remaining CD4+ and CD8+ cells were able to generate non-MHC-restricted lysis of NK-resistant tumor targets. Our data suggested that a regulatory signal was present in the culture to prevent the development of lytic function by T cells. T cells removed from the PBL cultures were, upon culture with IL-2, able to generate high LAK activity, suggesting that inhibition of the CD4+ or CD8+ T cell-mediated LAK activity was an active ongoing process, which blocked the lysis at the level of the activated cell and not the precursor cell. Mixing experiments demonstrated that the CD4+ or the CD8+ cells isolated from the PBL cultures were able to inhibit the development of lytic function in the CD4-depleted and CD8-depleted cultures. Transforming growth factor-beta (TGF-beta) has been shown to block LAK activity of NK cells in IL-2-stimulated cultures. When TGF-beta was added to CD4(+)- or CD8(+)-depleted cultures, it also inhibited LAK activity of T cells in a dose-dependent fashion, without interfering with T cell growth. Lytic activity returned to activated levels when TGF-beta was removed from the culture medium, thereby demonstrating the reversibility of TGF-beta inhibition.  相似文献   

15.
16.
Estrogen deficiency arising with the menopause promotes marked acceleration of bone resorption, which can be restored by hormone replacement therapy. The inhibitory effects of estrogen seem to involve indirect cytokine- mediated effects via supporting bone marrow cells, but direct estrogen-receptor mediated effects on the bone-resorbing osteoclasts have also been proposed. Little information is available on whether estrogens modulate human osteoclastogenesis or merely inhibit the functional activity of osteoclasts. To clarify whether estrogens directly modulate osteoclastic activities human CD14+ monocytes were cultured in the presence of M-CSF and RANKL to induce osteoclast differentiation. Addition of 0.1-10 nM 17beta-estradiol to differentiating osteoclasts resulted in a dose-dependent reduction in tartrate resistant acid phosphatase (TRACP) activity reaching 60% at 0.1 nM. In addition, 17beta-estradiol inhibited bone resorption, as measured by the release of the C-terminal crosslinked telopeptide (CTX), by 60% at 0.1 nM, but had no effect on the overall cell viability. In contrast to the results obtained with differentiating osteoclasts, addition of 17beta-estradiol (0.001-10 nM) to mature osteoclasts did not affect bone resorption or TRACP activity. We investigated expression of the estrogen receptors, using immunocytochemistry and Western blotting. We found that ER-alpha is expressed in osteoclast precursors, whereas ER- beta is expressed at all stages, indicating that the inhibitory effect of estrogen on osteoclastogenesis is mediated by ER-alpha for the major part. In conclusion, these results suggest that the in vivo effects of estrogen are mediated by reduction of osteoclastogenesis rather than direct inhibition of the resorptive activity of mature osteoclasts.  相似文献   

17.
GM-CSF is a potent proinflammatory cytokine that plays a pathogenic role in the CNS inflammatory disease experimental autoimmune encephalomyelitis. As IL-27 alleviates experimental autoimmune encephalomyelitis, we hypothesized that IL-27 suppresses GM-CSF expression by T cells. We found that IL-27 suppressed GM-CSF expression in CD4(+) and CD8(+) T cells in splenocyte and purified T cell cultures. IL-27 suppressed GM-CSF in Th1, but not Th17, cells. IL-27 also suppressed GM-CSF expression by human T cells in nonpolarized and Th1- but not Th17-polarized PBMC cultures. In vivo, IL-27p28 deficiency resulted in increased GM-CSF expression by CNS-infiltrating T cells during Toxoplasma gondii infection. Although in vitro suppression of GM-CSF by IL-27 was independent of IL-2 suppression, IL-10 upregulation, or SOCS3 signaling, we observed that IL-27-driven suppression of GM-CSF was STAT1 dependent. Our findings demonstrate that IL-27 is a robust negative regulator of GM-CSF expression in T cells, which likely inhibits T cell pathogenicity in CNS inflammation.  相似文献   

18.
We examined the effects of IL-9 on human mast cell development from CD34(+) cord blood (CB) and peripheral blood cells in serum-deprived cultures. IL-9 apparently enhanced cell production under stimulation with stem cell factor (SCF) from CD34(+) CB cells. A great majority of the cultured cells grown with SCF + IL-9 became positive for tryptase at 4 wk. In methylcellulose cultures of CD34(+) CB cells, IL-9 increased both the number and size of mast cell colonies grown with SCF. Furthermore, SCF + IL-9 caused an exclusive expansion of mast cell colony-forming cells in a 2-wk liquid culture of CD34(+) CB cells, at a level markedly greater than for SCF alone. Clonal cell cultures and RT-PCR analysis showed that the targets of SCF + IL-9 were the CD34(+)CD38(+) CB cells rather than the CD34(+)CD38(-) CB cells. IL-9 neither augmented the SCF-dependent generation of progeny nor supported the survival of 6-wk-cultured mast cells. Moreover, there was no difference in the appearance of tryptase(+) cells and histamine content in the cultured cells between SCF and SCF + IL-9. The addition of IL-9 increased numbers of mast cell colonies grown with SCF from CD34(+) peripheral blood cells in children with or without asthma. It is of interest that mast cell progenitors of asthmatic patients responded to SCF + IL-9 to a greater extent than those of normal controls. Taken together, IL-9 appears to act as a potent enhancer for the SCF-dependent growth of mast cell progenitors in humans, particularly asthmatic patients.  相似文献   

19.
CD4 Th cells producing the proinflammatory cytokine IL-17 (Th17) have been implicated in a number of inflammatory arthritides including the spondyloarthritides. Th17 development is promoted by IL-23. Ankylosing spondylitis, the most common spondyloarthritis (SpA), is genetically associated with both HLA-B27 (B27) and IL-23R polymorphisms; however, the link remains unexplained. We have previously shown that B27 can form H chain dimers (termed B27(2)), which, unlike classical HLA-B27, bind the killer-cell Ig-like receptor KIR3DL2. In this article, we show that B27(2)-expressing APCs stimulate the survival, proliferation, and IL-17 production of KIR3DL2(+) CD4 T cells. KIR3DL2(+) CD4 T cells are expanded and enriched for IL-17 production in the blood and synovial fluid of patients with SpA. Despite KIR3DL2(+) cells comprising a mean of just 15% of CD4 T in the peripheral blood of SpA patients, this subset accounted for 70% of the observed increase in Th17 numbers in SpA patients compared with control subjects. TCR-stimulated peripheral blood KIR3DL2(+) CD4 T cell lines from SpA patients secreted 4-fold more IL-17 than KIR3DL2(+) lines from controls or KIR3DL2(-) CD4 T cells. Strikingly, KIR3DL2(+) CD4 T cells account for the majority of peripheral blood CD4 T cell IL-23R expression and produce more IL-17 in the presence of IL-23. Our findings link HLA-B27 with IL-17 production and suggest new therapeutic strategies in ankylosing spondylitis/SpA.  相似文献   

20.
Previous studies have shown that TGF-β acts cooperatively with IL-6 to elicit a high frequency of IL-17-secreting CD4(+) T cells (termed Th17) and an elevated CD8(+)IL-17(+) T cell population (termed Tc17). These CD8(+) cells fail to behave like most cytotoxic T lymphocytes that express IFN-γ and granzyme B, but they exhibit a noncytotoxic phenotype. Although a significant increase in the number of these Tc17 cells was found in tumors, their role and interaction with other cell types remain unclear. In this study, we demonstrate that the presence of CD4(+)CD25(-) T cells, but not the CD4(+)CD25(+) (regulatory T [Treg]) cell population, significantly reduced the elicitation of Tc17 cells, possibly as a result of the induction of apoptotic signals. Importantly, these signals may be derived from soluble mediators, and the addition of anti-IL-2 restored the reduction of Tc17 cells in the presence of CD4(+)CD25(-) T cells. Finally, the elicited Tc17 and Treg cells exhibited a close association in patients with head and neck cancer, indicating that the surrounding Treg cells might maintain the survival of the Tc17 cells. Taken together, these results reveal an intriguing mechanism in which Tc17 cells are controlled by a finely tuned collaboration between the different types of CD4(+) T cells in distinct tumor microenvironments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号