首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A highly efficient method of regenerating fertile, phenotypically normal plants from shoot apex cultures of T. aestivum was developed. The hypodermal layer (L2) of the vegetative apex containing germ line precursor cells could be located with bright field microscopy and targeted for microinjection. Fluorescently labelled dextrans were used as markers to develop a microinjection procedure which did not disrupt nuclear or cytoplasmic structure. This procedure was used to inject plasmid DNA into L2 cells. Capillary microinjection did not shear the plasmid DNA and delivery of DNA was confirmed by polymerase chain reaction analysis of DNA isolated from injected apices. The significance of these findings in relation to the development of cereal transformation systems will be discussed.  相似文献   

2.
[目的]构建携带锚定序列的真核表达载体,研究T7噬菌体识别、包裹和转运真核表达载体进入细胞实现蛋白表达的可行性,为DNA疫苗研发建立新的技术平台.[方法]本研究通过重叠延伸PCR方法获得候选锚定序列并插入真核表达载体;建立荧光定量PCR方法比较T7噬菌体识别、包裹真核表达载体的效率;激光共聚焦显微镜观察T7噬菌体转运真...  相似文献   

3.
Optimal DNA vaccine efficacy requires circumventing several obstacles, including low immunogenicity, a need for adjuvant, and the costs of purifying injection grade plasmid DNA. Bacterial delivery of plasmid DNA may provide an efficient and low-cost alternative to plasmid purification and injection. Also, the bacterial vector may exhibit potential as an immune adjuvant in vivo. Thus, we elected to examine the use of cell-wall-deficient Listeria monocytogenes as a DNA delivery vehicle in vitro. First, the D-alanine-deficient (Deltadal-dat) L. monocytogenes strain DP-L3506, which undergoes autolysis inside eukaryotic host cells in the absence of D-alanine, was transformed with a plasmid encoding green fluorescent protein (GFP) under control of the CMV promoter (pAM-EGFP). Then COS-7 and MC57G cell lines were infected with the transformed DP-L3506 at various multiplicities of infection (MOI) in the presence or absence of D-alanine. Subsequent GFP expression was observed in both cell lines by 24 h post-infection with DP-L3506(pAM-EGFP). Notably, no GFP positive cells were observed when D-alanine was omitted. Although transfection efficiency initially increased as a result of D-alanine supplementation, high concentration or long-term supplementation led to sustained bacterial growth that killed the infected host cells, resulting in fewer GFP-expressing cells. Thus, efficient DNA delivery by transformed bacteria must balance bacterial invasion and survival with target cell health and survival.  相似文献   

4.
Cai X  Dong C  Dong H  Wang G  Pauletti GM  Pan X  Wen H  Mehl I  Li Y  Shi D 《Biomacromolecules》2012,13(4):1024-1034
A dual stimulus-responsive mPEG-SS-PLL(15)-glutaraldehyde star (mPEG-SS-PLL(15)-star) catiomer is developed and biologically evaluated. The catiomer system combines redox-sensitive removal of an external PEG shell with acid-induced escape from the endosomal compartment. The design rationale for PEG shell removal is to augment intracellular uptake of mPEG-SS-PLL(15)-star/DNA complexes in the presence of tumor-relevant glutathione (GSH) concentration, while the acid-induced dissociation is to accelerate the release of genetic payload following successful internalization into targeted cells. Size alterations of complexes in the presence of 10 mM GSH suggest stimulus-induced shedding of external PEG layers under redox conditions that intracellularly present in the tumor microenvironment. Dynamic laser light scattering experiments under endosomal pH conditions show rapid destabilization of mPEG-SS-PLL(15)-star/DNA complexes that is followed by facilitating efficient release of encapsulated DNA, as demonstrated by agarose gel electrophoresis. Biological efficacy assessment using pEGFP-C1 plasmid DNA encoding green fluorescence protein and pGL-3 plasmid DNA encoding luciferase as reporter genes indicate comparable transfection efficiency of 293T cells of the catiomer with a conventional polyethyleneimine (bPEI-25k)-based gene delivery system. These experimental results show that mPEG-SS-PLL(15)-star represents a promising design for future nonviral gene delivery applications with high DNA binding ability, low cytotoxicity, and high transfection efficiency.  相似文献   

5.
Non-viral vectors are promising vehicles for gene therapy but delivery of plasmid DNA to post-mitotic cells is challenging as nuclear entry is particularly inefficient. We have developed and evaluated a hybrid mRNA/DNA system designed to bypass the nuclear barrier to transfection and facilitate cytoplasmic gene expression. This system, based on co-delivery of mRNA(A64) encoding for T7 RNA polymerase (T7 RNAP) with a T7-driven plasmid, produced between 10- and 2200-fold higher gene expression in primary dorsal root ganglion neuronal (DRGN) cultures isolated from Sprague–Dawley rats compared to a cytomegalovirus (CMV)-driven plasmid, and 30-fold greater expression than the enhanced T7-based autogene plasmid pR011. Cell-free assays and in vitro transfections highlighted the versatility of this system with small quantities of T7 RNAP mRNA required to mediate expression at levels that were significantly greater than with the T7-driven plasmid alone or supplemented with T7 RNAP protein. We have also characterized a number of parameters, such as mRNA structure, intracellular stability and persistence of each nucleic acid component that represent important factors in determining the transfection efficiency of this hybrid expression system. The results from this study demonstrate that co-delivery of mRNA is a promising strategy to yield increased expression with plasmid DNA, and represents an important step towards improving the capability of non-viral vectors to mediate efficient gene transfer in cell types, such as in DRGN, where the nuclear membrane is a significant barrier to transfection.  相似文献   

6.
Electroporation has been considered one of the most efficient non-viral based methods to deliver genes regardless of frequently observed high cell mortality. In this study we used a microporation technique to optimise the delivery of plasmid DNA encoding green fluorescence protein (GFP) to human bone marrow mesenchymal stem cells (BM-MSC). Using resuspension buffer (RB) and as low as 1.5 × 105 cells and 1 μg of DNA, we achieved 40% of cells expressing the transgene, with cell recovery and cell viabilities of 85% and 90%, respectively. An increase in DNA amount did not significantly increase the number of transfected cells but clearly reduced cell recovery. A face-centered composite design was used to unveil the conditions giving rise to optimal plasmid delivery efficiencies when using a sucrose based microporation buffer (SBB). The BM-MSC proliferation kinetics were mainly affected by the presence of plasmid and not due to the microporation process itself although no effect was observed on their immunophenotypic characteristics and differentiative potential. Based on the data shown herein microporation demonstrated to be a reliable and efficient method to genetically modify hard-to-transfect cells giving rise to the highest levels of cell survival reported so far along with superior gene delivery efficiencies.  相似文献   

7.
Bacterial ghosts are an efficient delivery system for DNA vaccines   总被引:4,自引:0,他引:4  
Mass implementation of DNA vaccines is hindered by the requirement of high plasmid dosages and poor immunogenicity. We evaluated the capacity of Mannheimia haemolytica ghosts as delivery system for DNA vaccines. In vitro studies showed that bacterial ghosts loaded with a plasmid carrying the green fluorescent protein-encoding gene (pEGFP-N1) are efficiently taken up by APC, thereby leading to high transfection rates (52-60%). Vaccination studies demonstrated that ghost-mediated delivery by intradermal or i.m. route of a eukaryotic expression plasmid containing the gene coding for beta-galactosidase under the control of the CMV immediate early gene promoter (pCMVbeta) stimulates more efficient Ag-specific humoral and cellular (CD4(+) and CD8(+)) immune responses than naked DNA in BALB/c mice. The use of ghosts also allows modulating the major Th response from a mixed Th1/Th2 to a more dominant Th2 pattern. Intravenous immunization with dendritic cells loaded ex vivo with pCMVbeta-containing ghosts also resulted in the elicitation of beta-galactosidase-specific responses. This suggests that dendritic cells play an important role in the stimulation of immune responses when bacterial ghosts are used as a DNA delivery system. Bacterial ghosts not only target the DNA vaccine construct to APC, but also provide a strong danger signal, acting as natural adjuvants, thereby promoting efficient maturation and activation of dendritic cells. Thus, bacterial ghosts constitute a promising technology platform for the development of more efficient DNA vaccines.  相似文献   

8.
Ji W  Panus D  Palumbo RN  Tang R  Wang C 《Biomacromolecules》2011,12(12):4373-4385
Poly(2-aminoethyl methacrylate) (PAEM) homopolymers with defined chain length and narrow molecular weight distribution were synthesized using atom transfer radical polymerization (ATRP), and a comprehensive study was conducted to evaluate the colloidal properties of PAEM/plasmid DNA polyplexes, the uptake and subcellular trafficking of polyplexes in antigen-presenting dendritic cells (DCs), and the biological performance of PAEM as a potential DNA vaccine carrier. PAEM of different chain length (45, 75, and 150 repeating units) showed varying strength in condensing plasmid DNA into narrowly dispersed nanoparticles with very low cytotoxicity. Longer polymer chain length resulted in higher levels of overall cellular uptake and nuclear uptake of plasmid DNA, but shorter polymer chains favored intracellular and intranuclear release of free plasmid from the polyplexes. Despite its simple chemical structure, PAEM transfected DCs very efficiently in vitro in media with or without serum and led to phenotypic maturation of DCs. When a model antigen-encoding ovalbumin plasmid was used, transfected DCs stimulated the activation of na?ve CD8(+) T cells to produce high levels of interferon-γ. The efficiency of transfection, DC maturation, and CD8(+) T cell activation showed varying degrees of polymer chain-length dependence. These structurally defined cationic polymers may have much potential as efficient DNA vaccine carriers and immunostimulatory adjuvants. They may also serve as a model material system for elucidating structural and intracellular mechanisms of polymer-mediated DNA vaccine delivery.  相似文献   

9.
The limited access to the nuclear compartment may constitute one of the major barriers after bacteria-mediated expression plasmid DNA delivery to eukaryotic cells. Alternatively, a self-destructing Listeria monocytogenes strain was used to release translation-competent mRNA directly into the cytosol of epithelial cells, macrophages and human dendritic cells. Enhanced green fluorescent protein (EGFP)-encoding mRNA, adapted for translation in mammalian cells by linking an IRES element to the 5'-end of the egfp coding sequence, was produced by T7 RNA polymerase in the carrier bacteria upon entry into the cytosol where the mRNA is efficiently released from the lysed bacteria and immediately translated in eukaryotic host cells. Besides the much earlier expression of EGFP being detectable already 4 h after infection, the number of EGFP expressing mammalian cells obtained with this novel RNA delivery technique is comparable to or - especially in phagocytic cells - even higher than that obtained with the expression plasmid DNA delivery strategy. Accordingly, bacteria-mediated delivery of ovalbumin-encoding mRNA to macrophages resulted in efficient antigen processing and presentation in vitro indicating that this approach may also be adapted for the in vivo delivery of antigen-encoding mRNA leading to a more efficient immune response when applied to vaccine development.  相似文献   

10.
Gene therapy depends on safe and efficient gene delivery. The skin is an attractive target for gene delivery because of its accessibility. Recently, in vivo electroporation has been shown to enhance expression after injection of plasmid DNA. In this study, we examined the use of electroporation to deliver plasmid DNA to cells of the skin in order to demonstrate that localized delivery can result in increased serum concentrations of a specific protein. Intradermal injection of a plasmid encoding luciferase resulted in low levels of expression. However, when injection was combined with electroporation, expression was significantly increased. When performing this procedure with a plasmid encoding interleukin-12, the induced serum concentrations of gamma-interferon were as much as 10 fold higher when electroporation was used. The results presented here demonstrate that electroporation can be used to augment the efficiency of direct injection of plasmid DNA to skin.  相似文献   

11.
Cell penetrating peptides are useful tools for intracellular delivery of nucleic acids. Delivery of plasmid DNA, a large nucleic acid, poses a challenge for peptide mediated transport. The paper investigates and compares efficacy of five novel peptide designs for complexation of plasmid DNA and subsequent delivery into cells. The peptides were designed to contain reported DNA condensing agents and basic cell penetrating sequences, octa‐arginine (R8) and CHK6HC coupled to cell penetration accelerating peptides such as Bax inhibitory mutant peptide (KLPVM) and a peptide derived from the Kaposi fibroblast growth factor (kFGF) membrane translocating sequence. A tryptophan rich peptide, an analogue of Pep‐3, flanked with CH3 on either ends was also a part of the study. The peptides were analysed for plasmid DNA complexation, protection of peptide–plasmid DNA complexes against DNase I, serum components and competitive ligands by simple agarose gel electrophoresis techniques. Hemolysis of rat red blood corpuscles (RBCs) in the presence of the peptides was used as a measure of peptide cytotoxicity. Plasmid DNA delivery through the designed peptides was evaluated in two cell lines, human cervical cancer cell line (HeLa) and (NIH/3 T3) mouse embryonic fibroblasts via expression of the secreted alkaline phosphatase (SEAP) reporter gene. The importance of hydrophobic sequences in addition to cationic sequences in peptides for non‐covalent plasmid DNA complexation and delivery has been illustrated. An alternative to the employment of fatty acid moieties for enhanced gene transfer has been proposed. Comparison of peptides for plasmid DNA complexation and delivery of peptide–plasmid DNA complexes to cells estimated by expression of a reporter gene, SEAP. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
以He1a细胞的总RNA为模板,用RT—PCR方法扩增sTNFR1全编码区基因片段,构建含有目的片段的T载体克隆及真核表达载体pcDNA3.1(-)重组质粒亚克隆,将重组质粒和脂质体共同转染NIH3T3细胞系,G418筛选稳定转染细胞株.经核苷酸序列测序和酶切鉴定,成功构建了pcDNA3.1(-)-sTNFR1真核表达质粒,脂质体法建立了高效表达sTNFRI的稳定转染细胞系,并经RT—PCR和Western Blotting鉴定.人sTNFR1基因能在NIH3T3细胞系中稳定表达,为今后的研究打下了基础.  相似文献   

13.
目的:构建含Ubc9的逆转录病毒表达载体,筛选建立携带该基因的高滴度产毒细胞系,深入研究SUMO化修饰的作用。方法:聚合酶链反应(PCR)扩增获取目的基因Ubc9,定向插入逆转录病毒表达载体pMSCVneo,形成重组质粒pMSCV-Ubc9;脂质体法将pMSCV-Ubc9转染逆转录病毒包装细胞PT67;G418筛选产毒细胞克隆,扩大培养产毒细胞克隆,收获病毒感染NIH3T3细胞。结果:限制性酶切和测序鉴定证实Ubc9正确插入逆转录病毒表达载体。G418筛选获得稳定产毒的抗性细胞克隆,收获病毒能有效感染NIH3T3细胞。结论:携带Ubc9基因的重组逆转录病毒表达载体pMSCV-Ubc9构建成功,转染PT67细胞后包装出重组逆转录病毒,进而筛选获得了能转录表达Ubc9的产毒细胞系PT67-Ubc9。  相似文献   

14.
A pH-sensitive polymer that enhances cationic lipid-mediated gene transfer.   总被引:3,自引:0,他引:3  
The efficient release of nonviral gene carriers from endosomes is an important step for the successful delivery of DNA into the cell nucleus. A synthetic pH-sensitive anionic polymer, poly(propylacrylic acid) (PPAA), was designed to aid in endosomal escape of nonviral vectors and improve the transfection efficiencies with these vectors. Transfection of NIH3T3 fibroblasts with ternary physical mixtures of the cationic lipid DOTAP, pCMVbeta plasmid DNA, and PPAA showed marked enhancement of both gene expression levels and fraction of cells transfected compared to binary control mixtures of DOTAP and DNA. PPAA also significantly improved the serum-stability of DOTAP/DNA vectors. The DOTAP/DNA/PPAA vectors maintained high levels of transfection in media containing up to 50% serum. The striking enhancement of transfection efficiency with cationic lipid/DNA/PPAA mixtures, along with the enhanced serum-stability, suggests that PPAA may provide significant improvements for the in vivo intracellular delivery of drugs such as DNA, oligonucleotides, proteins, and peptides.  相似文献   

15.
We prepared stable homogeneous suspensions with layered double hydroxide (LDH) nanoparticles for in vitro gene delivery tests. The viability of HEK 293T cells in the presence of LDH nanoparticles at different concentrations was investigated. This revealed 50% cell viability at 500 microg/mL of LDH nanoparticles that is much higher than 50-100 microg/mL used for the delivery tests. The supercoiled pEF-eGFP plasmid (ca. 6100 base pairs) was mixed with LDH nanoparticle suspensions for anion exchange at a weight ratio of DNA/LDH between 1:25 and 1:100. In vitro experiments show that GFP expression in HEK 293T cells starts in the first day, reaches the maximum levels by the second day and continues in the third day. The GFP expression generally increases with the increase in DNA loading in DNA-LDH nanohybrids. However, the delivery efficiency with LDH nanoparticles as the agent is low. For example, the relative efficiency is 7%-15% of that of the commercial agent FuGENE 6. Three to 6% of total cells expressed GFP in an amount detectable by the FACS cytometry 2 days after transfection at 1 microg/mL of plasmid DNA with 25 microg/mL of LDH nanomaterial. The lower delivery efficiency could be attributed to the aggregation of LDH nanoparticles caused by the long-chain plasmid DNA.  相似文献   

16.
Polyplexes of high stability resulting from the condensation of a plasmid DNA by a cationic polymer are widely used to develop polymer-based gene delivery systems. However, the plasmid must be released from its vector once inside the cells for an efficient expression of the exogenous gene in the cell nucleus. We have designed a disulfide-containing cationic polymer termed poly[Lys-(AEDTP)] which allowed for the formation of polyplexes and the release of the plasmid in a reductive medium. The amino groups of polylysine were substituted with 3-(2-aminoethyldithio)propionyl residues in order to have each amino group of poly[Lys-(AEDTP)] interacting with a phosphate DNA linked to the polymer backbone via a disulfide bond. As evidenced by agarose gel electrophoresis and ethidium bromide/pDNA fluorescence restoration, poly[Lys-(AEDTP)] polyplexes were decondensed and the plasmid released upon treatment with either dithiothreitol, glutathione in the presence of glutathione reductase, or the thioredoxin reductase. Electron microscopy showed that polyplexes exhibiting spherical particles of a mean size at about 100 nm were decondensed in the presence of glutathione and exhibited filamentous aggregates. Finally, we found that the transfection of 293T7 and HepG2 cells was 10- and 50-fold more efficient with poly[Lys-(AEDTP)] polyplexes, respectively, than with poly[Lys] polyplexes. These results indicate that disulfide-containing cationic polymers must be borne in mind for developing polymer-base gene delivery systems.  相似文献   

17.
Biodegradable cross-linked poly(beta-amino ester) (CLPAE) was synthesized by Michael addition of pentaerythritol triacrylate and N,N-dimethylethylenediamine and modified with aminohexanoic acid and lysine to CLPAE-Ahx and CLPAE-Lys, respectively, for a gene delivery system. They could self-assemble with plasmid DNA, forming nanosized polyplexes, and CLPAE-Ahx polyplex released plasmid DNA slowly during a week through stepwise degradation. The polymers showed minimal cytotoxicity on 293 cells due to their biodegradability and biocompatibility. Transfection efficiencies of CLPAE-Ahx and CLPAE-Lys were comparable to that of PEI in 293 cells and C2C12 cells. Additionally, high transfection of CLPAE-Ahx on primary rat aorta vascular smooth muscle cells (SMC) and primary mouse embryonic fibroblast cells (MEF) shows a potential for a gene delivery system on primary cells, restenosis treatment of human SMC, and MEF cell function research. In conclusion, CLPAE-Ahx could be used as a nontoxic and highly efficient gene delivery system.  相似文献   

18.
Non-viral gene delivery is a safe and suitable alternative to viral vector-mediated delivery to overcome the immunogenicity and tumorigenesis associated with viral vectors. Using the novel, human-origin Hph-1 protein transduction domain that can facilitate the transduction of protein into cells, we developed a new strategy to deliver naked DNA in vitro and in vivo. The new DNA delivery system contains Hph-1-GAL4 DNA-binding domain (DBD) fusion protein and enhanced green fluorescent protein (EGFP) reporter plasmid that includes the five repeats of GAL4 upstream activating sequence (UAS). Hph-1-GAL4-DBD protein formed complex with plasmid DNA through the specific interaction between GAL4-DBD and UAS, and delivered into the cells via the Hph-1-PTD. The pEGFP DNA was successfully delivered by the Hph-1-GAL4 system, and the EGFP was effectively expressed in mammalian cells such as HeLa and Jurkat, as well as in Bright Yellow-2 (BY-2) plant cells. When 10 μg of pEGFP DNA was intranasally administered to mice using Hph-1-GAL4 protein, a high level of EGFP expression was detected throughout the lung tissue for 7 days. These results suggest that an Hph-1-PTD-mediated DNA delivery strategy may be an useful non-viral DNA delivery system for gene therapy and DNA vaccines.  相似文献   

19.
CD36作为重要的清道夫受体密切参与了巨噬细胞对氧化低密度脂蛋白的摄取作用,为了进一步研究CD36的功能,本文利用慢病毒介导的shRNA干扰技术,构建了CD36基因沉默巨噬细胞(J774A.1)株,并以此为模型分析了CD36在caveolin-1蛋白表达过程中的作用。首先,针对CD36基因序列设计合成5条shRNA片段,并构建得到pLKO.1-CD36-shRNA慢病毒干扰载体,测序鉴定后与psiCHECK-Ⅱ-CD36载体共转染入293T细胞中,筛选出有效的CD36-shRNA。将慢病毒干扰载体与病毒包装质粒共转染入293T细胞,包装得到慢病毒颗粒,之后感染J774A.1细胞,经嘌呤霉素筛选后得到CD36基因沉默稳转细胞株。Western blotting及激光共聚焦检测结果表明CD36基因沉默效率达90%,并且伴随着CD36的基因沉默,与之结合的DiI-oxLDL也随之大幅降低,证明构建成功具有良好生物学活性的CD36基因沉默细胞株。最后,抑制剂处理及oxLDL给药刺激实验结果表明,CD36的基因沉默能够显著降低JNK及ERK的磷酸化水平,进而抑制了caveolin-1的蛋白表达,表明CD36能够经由JNK及EKR信号传导调节caveolin-1的蛋白表达。  相似文献   

20.
Polyethylenimine (PEI) has been known as an efficient gene carrier with the highest cationiccharge potential.High transfection efficiency of PEI,along with its cytotoxicity,strongly depends on itsmolecular weight.To enhance its gene delivery efficiency and minimize cytotoxicity,we have synthesizedsmall cross-linked PEI with biodegradable linkages and evaluated their transfection efficiencies in vitro.Inthis study,branched PEI with a molecular weight of 800 Da was cross-linked by small diacrylate[1,4-butanediol diacrylate or ethyleneglycol dimethacrylate (EGDMA)] for 2-6 h.The efficiencies of thecross-linked PEI in in vitro transfection of plasmid DNA containing enhanced green fluorescent protein(EGFP) reporter gene were assessed in melanoma B 16F10 cell line and other cell lines.Flow cytometrywas used to quantify the cellular entry efficiency of plasmid and the transgene expression level.Thecytotoxicities of the cross-linked PEI in these cells were evaluated by MTT assay.EGDMA-PEI 800-4h,atypical cross-linked PEI reported here,mediated a more efficient expression of reporter gene than thecommercially available 25-kDa branched PEI control,and resulted in a 9-fold increase in gene deliveryin B16F10 cells and a 16-fold increase in 293T cells,while no cytotoxicity was found at the optimizedcondition for gene delivery.Furthermore,the transfection activity of polyplexes was preserved in thepresence of serum proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号