首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Until now, defining characters of hystricognath rodents have been the subplacenta and the lobulation of the main chorioallantoic placenta. However, recent studies have revealed hystricognaths without marked lobulation, which is a plesiomorphic condition of the group. The question thus arises whether the subplacenta of these taxa is structurally homologous to that of other hystricognaths. Therefore, subplacental morphology and ontogeny were investigated in Octodon and Petromus by conventional light and electron microscopy, and the stem species pattern of Hystricognathi was reconstructed by applying MacClade. The subplacentae of both species share important similarities with other hystricognaths. The organ develops early in gestation but degenerates towards term. It consists of folded layers of cellular and syncytial trophoblast, the latter enclosing maternal blood lacunae and electron-dense particles. Root-like syncytial outgrowths (syncytial streamers) and extraplacental trophoblast cells occur at the lateral and basal borders of the organ. Maternal vascularisation by blood lacunae within the subplacental syncytiotrophoblast is acquired early but lost during mid-gestation. Vascularisation by fetal vessels is established later. Fetomaternal exchange via blood circulation inside the subplacenta is unlikely to occur, since periods of maternal and fetal vascularisation show little overlap. In conclusion, the subplacentae of both species are regarded as homologous to other hystricognaths, comprising 18 character conditions that belong to their stem species pattern. Thus, the systematic unity of the group can be confirmed.  相似文献   

2.
The degu Octodon degus is one of the very few members of caviomorph or hystricognath Rodentia that possesses a simply arranged chorioallantoic placenta without advanced lobulation. Therefore this species was used as a model to study regional development and growth processes of the placenta, based on the examination of 20 individuals by light and electron microscopy as well as by using markers for proliferation, trophoblast and endometrial stroma. The results were interpreted by comparison with other hystricognaths in the light of their evolutionary history. It was found that trophoblast derived from the trophospongium is essential for extension of the placenta including the labyrinth: extensive proliferation is restricted to trophoblast cells at the outer margin of the placenta and along internally directed, finger-tip like protrusions of fetal mesenchyme towards the labyrinth. This kind of placental development is regarded as part of the stem species pattern of hystricognaths, evolved more than 40 million years ago. It is indicated for the first time that the replenishment of the syncytiotrophoblast is similar to corresponding processes in the human placenta. In conclusion, the degu is a useful model for placental growth dynamics, particularly because of its simply arranged placental architecture, and may also serve as an animal model in comparison to human pregnancies.  相似文献   

3.

Background  

Hystricognath rodents have a lobed placenta, comprising labyrinthine exchange areas and interlobular trophoblast. These correspond to the labyrinthine and spongy zones of other rodent placentae. Beneath them, however, is a structure unique to hystricognath rodents called the subplacenta. We here describe the subplacenta of the red-rumped agouti and examine the possible functional correlates of this structure.  相似文献   

4.
This study examined the placentation in the degu, the origin of the extrasubplacental trophoblast (EST) (extravillous trophoblast in human), and the activity of Na+/K+ ATPase in the placental barrier during different gestational ages, as part of a wider effort to understand the reproductive biology of this species. Fifteen degus at the first stage of gestation, midgestation and at term of pregnancy were studied. At day 27 of gestation, the subplacenta is formed under the wall of the central excavation. Simultaneously, the outermost trophoblast of the ectoplacental cone differentiated into secondary trophoblast giant cells that lie on the outside of the placenta, forming an interface with the maternal cells in the decidua. These giant cells immunostained positive for cytokeratin (CK) and placental lactogen (hPL) until term. During this period, the EST merged from the subplacenta to the decidua and immunostained negative for CK, but at term, immunostained for CK and hPL in the maternal vessels. The vascular mesenchyme of the central excavation invaded the chorioallantoic placenta during this period, forming two fetal lobules of labyrinthine-fine syncytium, the zone of the placental barrier. The activity of Na+/K+ ATPase in the placental barrier was constant during the gestational period. The residual syncytium at the periphery of the placental disc and between the lobules was not invaded by fetal mesenchyme and formed the marginal and interlobular labyrinthine syncytium that immunostained first for CK, and later for hPL, as in the labyrinthine fine syncytium. The presence of intracytoplasmic electron-dense material in the interlobular labyrinthine syncytium suggested a secretory process in these cells that are bathed in maternal blood. Placentas obtained from vaginal births presented a large, single lobe, absence of the subplacenta, and a reduced interlobular labyrinthine syncytium. At day 27, the inverted visceral yolk sac is observed and its columnar epithelium immunostained for CK and hPL. This suggests that the yolk sac is an early secretory organ. The epithelium of the parietal yolk sac covers the placenta. The origin of the EST in the degu placenta and its migration to maternal vessels allows us to present this animal model for the study of pregnancy pathologies related to alterations in the migration of the extravillous trophoblast.  相似文献   

5.
This study examined the placentation in the degu, the origin of the extrasubplacental trophoblast (EST) (extravillous trophoblast in human), and the activity of Na+/K+ ATPase in the placental barrier during different gestational ages, as part of a wider effort to understand the reproductive biology of this species. Fifteen degus at the first stage of gestation, midgestation and at term of pregnancy were studied. At day 27 of gestation, the subplacenta is formed under the wall of the central excavation. Simultaneously, the outermost trophoblast of the ectoplacental cone differentiated into secondary trophoblast giant cells that lie on the outside of the placenta, forming an interface with the maternal cells in the decidua. These giant cells immunostained positive for cytokeratin (CK) and placental lactogen (hPL) until term. During this period, the EST merged from the subplacenta to the decidua and immunostained negative for CK, but at term, immunostained for CK and hPL in the maternal vessels. The vascular mesenchyme of the central excavation invaded the chorioallantoic placenta during this period, forming two fetal lobules of labyrinthine-fine syncytium, the zone of the placental barrier. The activity of Na+/K+ ATPase in the placental barrier was constant during the gestational period. The residual syncytium at the periphery of the placental disc and between the lobules was not invaded by fetal mesenchyme and formed the marginal and interlobular labyrinthine syncytium that immunostained first for CK, and later for hPL, as in the labyrinthine fine syncytium. The presence of intracytoplasmic electron-dense material in the interlobular labyrinthine syncytium suggested a secretory process in these cells that are bathed in maternal blood. Placentas obtained from vaginal births presented a large, single lobe, absence of the subplacenta, and a reduced interlobular labyrinthine syncytium. At day 27, the inverted visceral yolk sac is observed and its columnar epithelium immunostained for CK and hPL. This suggests that the yolk sac is an early secretory organ. The epithelium of the parietal yolk sac covers the placenta. The origin of the EST in the degu placenta and its migration to maternal vessels allows us to present this animal model for the study of pregnancy pathologies related to alterations in the migration of the extravillous trophoblast.  相似文献   

6.
The structure of the placental labyrinth, interlobular or "coarse" syncytium, visceral (splanchnopleuric) yolk sac, giant cells and subplacenta of the chinchilla was studied with the electron microscope. The fine structure of the interhemal membrane of the placental labyrinth was found to be hemomonochorial, consisting of a single layer of syncytial trophoblast. In this respect, the placental labyrinth was similar to that of another caviomorph rodent, the guinea pig. The labyrinthine trophoblast had pinocytotic vesicles as well as larger vaculoes and multivesicular bodies. The interlobular syncytium contained granular endoplasmic reticulum, and in one case from early in gestation there were intracisternal granules in the ER. The visceral endodermal cells of the inverted yolk sac placenta had a well-developed system of apical vesicles and tubules as well as larger cytoplasmic vacuoles. Their appearance was similar to that of endodermal cells found in other rodents which are known to absorb proteins and other substances from the uterine lumen. Towards term the giant cells were often vacuolated and contained large deposits of glycogen as well as lipid droplets. The syncytial trophoblast of the subplacenta contained numerous moderately electron-dense granules which may be secretory in function; cytotrophoblastic cells lacked these granules. The subplacental syncytium often surrounded spaces or lacunae which contained an electron-dense granular material.  相似文献   

7.
The aim of this paper is to reconstruct the evolution of chorioallantoic placental characters in Rodentia. The analysis is based on pre-existing hypotheses of rodent relationships and the tracing of character evolution. Data on 64 rodent species of 49 genera are derived from the literature. New results refer to the hystricognath species Petromus typicus A. Smith, 1831 and Octodon degus (Molina, 1782). This comprehensive analysis confirms that the stem species pattern of Rodentia is characterised by a haemochorial placenta which is divided horizontally. Inside the placental labyrinth, fetal vessels and their trophoblastic external border build up a network through which the maternal blood flows. The trophoblastic tissue is one-layered, syncytial and possess a considerable surface extension. Within Rodentia, evolutionary transformations occurred on the macroscopic as well as the fine structural level. The results suggest that the stem species of Hystricognathi underwent transformations only on the macroscopic level, i.e., forming a ring-shaped arrangement of placental regions with centrally situated maternal arteries and the acquisition of a subplacenta. By contrast, in Muridae the chorioallantoic placenta shows derived features only in regard to the fine structure of the labyrinth, i.e. the interhaemal membrane is modified in composition, and the fetal capillary endothelium is fenestrated. Geomyoidea underwent transformations on both levels. Macroscopically, their placenta is modified into a hillock shape. Microscopically, the interhaemal membrane is formed by the cytotrophoblast. In addition to the mentioned transformations, some aspects of other fetal membrane differentiation in Rodentia are briefly discussed.  相似文献   

8.
Oestrogen synthesis by the early embryo in vitro was studied with tissue from pigs, sheep, cows, roe deer, ferrets, cats, rabbits and a plains viscacha. Definitive evidence for aromatase activity and oestrogen synthesis in preimplantation trophoblast was obtained for the pig with the formation of oestrone, oestradiol-17 beta and oestradiol-17 alpha from 3H-labelled androstenedione and dehydroepiandrosterone. Aromatase activity was appreciably lower in all other species studied, and labelled oestrogens were recovered only from incubations of allantochorionic tissue of roe deer, recovered shortly after implantation, and from pooled samples of early embryonic tissue of cows. High aromatase activity in preimplantation trophoblast of pigs was associated with the maternal recognition of pregnancy and the occurrence of superficial implantation in this species.  相似文献   

9.
《Epigenetics》2013,8(1):24-29
Recent years have seen considerable advances in our understanding of early mammalian development leading up to the establishment of the first cell lineages, with important implications for the behaviour of stem cells derived from the early embryo. Dramatic new insights have also propelled the field of epigenetics with the identification of 5-hydroxymethylcytosine as an additional base modification and the pervasiveness of asymmetrical non-CG DNA methylation specifically in ES cells. Prompted by our findings on the role of DNA methylation in cell lineage commitment, this review highlights recent insights into the genetic-epigenetic intersection in the establishment of the placental trophoblast lineage that is essential for embryo implantation, nutrition and survival. The unique trophoblast epigenotype is instrumental for normal trophoblast differentiation and placental function, and consequently trophoblast is particularly susceptible to regrogramming failures.  相似文献   

10.

Background  

The guinea pig is an attractive model for human pregnancy and placentation, mainly because of its haemomonochorial placental type, but is rather small in size. Therefore, to better understand the impact of body mass, we studied placental development in the capybara which has a body mass around 50 kg and a gestation period of around 150 days. We paid attention to the development of the lobulated arrangement of the placenta, the growth of the labyrinth in the course of gestation, the differentiation of the subplacenta, and the pattern of invasion by extraplacental trophoblast.  相似文献   

11.
12.
The effect of leptin on mouse trophoblast cell invasion   总被引:7,自引:0,他引:7  
The hormone leptin is produced by adipose tissue and can function as a signal of nutritional status to the reproductive system. The expression of leptin receptor and, in some species, leptin, in the placenta suggests a role for leptin in placental development, but this role has not been elucidated. Leptin is required at the time of embryo implantation in the leptin-deficient ob/ ob mouse and has been shown to upregulate expression of matrix metalloproteinases (MMPs), enzymes involved in trophoblast invasion, in cultured human trophoblast cells. This led us to the hypothesis that leptin promotes the invasiveness of trophoblast cells crucial to placental development. We found that leptin stimulated mouse trophoblast cell invasion through a matrigel-coated insert on Day 10, but not Day 18 of pregnancy. Optimal stimulation occurred at a concentration of 50 ng/ml leptin, similar to the peak plasma leptin concentration during pregnancy in the mouse. Leptin treatment did not stimulate proliferation of mouse trophoblast cells in primary culture. Leptin stimulation of invasion was prevented by 25 muM GM6001, an inhibitor of MMP activity. Our results suggest that leptin may play a role in the establishment of the placenta during early pregnancy and that this function is dependent on MMP activity. This effect of leptin may represent one mechanism by which body condition affects placental development.  相似文献   

13.
Successful somatic cloned animal production has been reported in various domesticated species, including cattle; however, it is associated with a high rate of pregnancy failure. The low cloning yield could possibly arise from either an abnormal and/or poorly developed placenta. In comparison to control cows, fewer placentomes were found in somatic cell nuclear recipient (NT) cows at day 60 of gestation, suggesting a retardation of fetal/placental growth in these animals. NT cows not only had fewer numbers of chorionic villi but also had poorly developed caruncles. Macroscopic examination revealed atypical development of the placentome in terms of shape and size. Histological disruption of chorionic villi and caruncular septum was found in NT cows. Of particular interest was that the expression of genes, as well as proteins in the placentome, was disparate between NT and artificially inseminated cows, especially placental lactogen (PL) and pregnancy-associated glycoprotein (PAG). In contrast, prolactin-related protein-1 (PRP-1) signals were comparable across cows, including NT cows carrying immotile fetuses. The expression of extracellular matrix degrading molecule, heparanase (HPA), in NT cows was divergent from that of control cows. Microarray data suggest that gene expression was disorientated in early stages of implantation in NT cows, but this was eliminated with progression of gestation. These findings strongly support a delay in trophoblast development during early stages of placentation in NT cows, and suggest that placental specific proteins, including PLs, PAGs, and HPA, are key indicators for the aberration of gestation and placental function in cows.  相似文献   

14.
Genes regulating embryonic and fetal survival   总被引:4,自引:0,他引:4  
Cross JC 《Theriogenology》2001,55(1):193-207
Embryonic mortality in both farm animals and humans occurs most frequently during the first few weeks after conception. It can be attributed to abnormalities in the earliest developmental processes during embryogenesis that include implantation, maternal recognition of pregnancy, and formation of the placenta and cardiovascular system. The molecular mechanisms that are essential for all of these early processes are being elucidated at a rapid pace using transgenic and gene knockout approaches in mice. Two important general conclusions have emerged from this work. First, placental defects can occur by a number of different molecular mechanisms and can result from defects in the development or function of its trophoblast, mesenchymal or vascular components. Second, placental and cardiovascular functions are intimately linked. Cells of the placenta, for example, produce hormones that have profound effects on maternal and fetal cardiac and vascular function. In addition, development of the two is linked mechanistically through the use of some genes that are essential for development of both. Understanding the molecular basis of these processes should help to address the major limits to the success of embryo transfer, IVF and embryo cloning practices in livestock species.  相似文献   

15.
Genetic insights into trophoblast differentiation and placental morphogenesis   总被引:12,自引:0,他引:12  
The placenta is comprised of an inner vascular network covered by an outer epithelium, called trophoblast, all designed to promote the delivery of nutrients to the fetus. Several specialized trophoblast cell subtypes arise during development to promote this function, including cells that invade the uterus to promote maternal blood flow to the implantation site, and other cells that fuse into a syncytium, expand and fold to increase the surface area for efficient transport. Mutation of many genes in mice results in embryonic mortality or fetal growth restriction due to defects in placental development. Several important principles about placental development have emerged from these studies. First, distinct molecular pathways regulate the differentiation of the various trophoblast cell subtypes. Second, trophoblast proliferation, differentiation and morphogenesis are highly regulated by interactions with adjacent cell types. Finally, the specific classes of mutant phenotypes observed in the placenta of knockout mice resemble those seen in humans that are associated with preeclampsia and intrauterine growth restriction.  相似文献   

16.
Mammalian embryos have an intimate relationship with their mothers, particularly with the placental vasculature from which embryos obtain nutrients essential for growth. It is an interesting vascular bed because maternal vessel number and diameter change dramatically during gestation and, in rodents and primates, the terminal blood space becomes lined by placental trophoblast cells rather than endothelial cells. Molecular genetic studies in mice aimed at identifying potential regulators of these processes have been hampered by lack of understanding of the anatomy of the vascular spaces in the placenta and the general nature of maternal-fetal vascular interactions. To address this problem, we examined the anatomy of the mouse placenta by preparing plastic vascular casts and serial histological sections of implantation sites from embryonic day (E) 10.5 to term. We found that each radial artery carrying maternal blood into the uterus branched into 5-10 dilated spiral arteries located within the metrial triangle, populated by uterine natural killer (uNK) cells, and the decidua basalis. The endothelial-lined spiral arteries converged together at the trophoblast giant cell layer and emptied into a few straight, trophoblast-lined "canals" that carried maternal blood to the base of the placenta. Maternal blood then percolated back through the intervillous space of the labyrinth toward the maternal side of the placenta in a direction that is countercurrent to the direction of the fetal capillary blood flow. Trophoblast cells were found invading the uterus in two patterns. Large cells that expressed the trophoblast giant cell-specific gene Plf (encoding Proliferin) invaded during the early postimplantation period in a pattern tightly associated with spiral arteries. These peri/endovascular trophoblast were detected only approximately 150-300 microm upstream of the main giant cell layer. A second type of widespread interstitial invasion in the decidua basalis by glycogen trophoblast cells was detected after E12.5. These cells did not express Plf, but rather expressed the spongiotrophoblast-specific gene Tpbp. Dilation of the spiral arteries was obvious between E10.5 and E14.5 and was associated with a lack of elastic lamina and smooth muscle cells. These features were apparent even in the metrial triangle, a site far away from the invading trophoblast cells. By contrast, the transition from endothelium-lined artery to trophoblast-lined (hemochorial) blood space was associated with trophoblast giant cells. Moreover, the shaping of the maternal blood spaces within the labyrinth was dependent on chorioallantoic morphogenesis and therefore disrupted in Gcm1 mutants. These studies provide important insights into how the fetoplacental unit interacts with the maternal intrauterine vascular system during pregnancy in mice.  相似文献   

17.
Thrichomys apereoides, a caviomorph rodent species common in a highly endemic area for Chagas disease in Brazil, may act as reservoir of the parasite. However, no information is available concerning its sibling species Thrichomys pachyurus, found in the Pantanal region, where Trypanosoma cruzi is found only in the enzootic cycle. We followed up the cross infection of these cryptic species with two isolates derived from naturally infected T. pachyurus and Thrichomys apereoides laurentius. No regional co-adaptation between Thrichomys species and the regional isolates were noticed. However, significant differences in the outcome of the infection were observed. T. a. laurentius was more resistant than T. pachyurus, as expressed by lower parasitemia and less histopathological damage. The routine biochemical markers used for laboratory rodents were unsuitable for follow up of infection in Thrichomys spp, since they did not correlate with the histopathological findings or allowed the kinetic follow-up of tissue colonization by the parasite.  相似文献   

18.
19.
The preimplantation embryo floats freely within the oviduct and is capable of developing into a blastocyst independently of the maternal reproductive tract. While establishment of the trophoblast lineage is dependent on expression of developmental regulatory genes, further differentiation leading to blastocyst implantation in the uterus requires external cues emanating from the microenvironment. Recent studies suggest that trophoblast differentiation requires intracellular signaling initiated by uterine-derived growth factors and integrin-binding components of the extracellular matrix. The progression of trophoblast development from the early blastocyst stage through the onset of implantation appears to be largely independent of new gene expression. Instead, extrinsic signals direct the sequential trafficking of cell surface receptors to orchestrate the developmental program that initiates blastocyst implantation. The dependence on external cues could coordinate embryonic activities with the developing uterine endometrium. Biochemical events that regulate trophoblast adhesion to fibronectin are presented to illustrate a developmental strategy employed by the peri-implantation blastocyst.  相似文献   

20.
For implantation and placentation to occur, mouse embryo trophoblast cells must penetrate the uterine stroma to make contact with maternal blood vessels. A major component of the uterine epithelial basement membrane and underlying stromal matrix with which they interact is the extracellular matrix protein laminin. We have identified integrin alpha 7 beta 1 as a major receptor for trophoblast-laminin interactions during implantation and yolk sac placenta formation. It is first expressed by trophectoderm cells of the late blastocyst and by all trophectoderm descendants in the early postimplantation embryo through E8.5, then disappears except in cells at the interface between the allantois and the ectoplacental plate. Integrin alpha 7 expression is a general characteristic of the early differentiation stages of rodent trophoblast, given that two different cultured trophoblast cell lines also express this integrin. Trophoblast cells interact with at least three different laminin isoforms (laminins 1, 2/4, and 10/11) in the blastocyst and in the uterus at the time of implantation. Outgrowth assays using function-blocking antibodies show that alpha 7 beta 1 is the major trophoblast receptor for laminin 1 and a functional receptor for laminins 2/4 and 10/11. When trophoblast cells are cultured on substrates of these three laminins, they attach and spread on all three, but show decreased proliferation on laminin 1. These results show that the alpha 7 beta 1 integrin is expressed by trophoblast cells and acts as receptor for several isoforms of laminin during implantation. These interactions are not only important for trophoblast adhesion and spreading but may also play a role in regulating trophectoderm proliferation and differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号