首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Influence of protein restriction on immune functions in NZB mice.   总被引:2,自引:0,他引:2  
The influence of a low protein (6%) diet on the immunologic function of NZB mice was investigated. The low protein intake was associated with decreased weight gain in both male and female NZB mice. The mice fed the low protein diet did not develop splenomegaly, which generally occurs by 7 to 10 months of age in NZB mice fed a normal amount of protein. Further, 7- to 10-month-old NZB mice fed the low protein(6%) diet, maintained: 1) more vigorous antibody production to sheep red blood cells; 2) greater capacity to produce graft-vs-host reactions, and 3) more vigorous cell-mediated "killer" cell immunity after immunization against DBA/2 mastocytoma cells than did NZB mice on a normal (22%) protein diet. The decrease of PHA and Con A response which normally occurs with aging in NZB mice was abrogated to some degree by protein restriction. However, response to LPS, which also declines with age in NZB mice, did not appear to be influenced by diet.  相似文献   

3.
The present study reports for the first time the influence of dietary restriction to mother of suckling animals in reducing incidence of virally induced leukaemia. A delay in the carcinogenic process was also noted in the offsprings maintained on dietary restriction during suckling.  相似文献   

4.
We compared the effects of calorie restriction (CR) and cyclophosphamide (CTX) on the progression of lupus nephritis and immunological changes in NZB/NZW F1 mice. Ad libitum (AL)/CTX and CR delayed onset of proteinuria and significantly decreased serum levels of anti-dsDNA, anti-histone, and circulating immune complex antibodies. CTX and CR prevented the increase in and activation of B cells, the decline in CD8(+) T cells, and maintained a higher proportion of na?ve CD4(+) and CD8(+) cells. MHC class I antigen and LFA-1 expression on CD8(+) T cells and MHC class II antigen on B cells were also decreased. AL/CTX and CR prevented the increase in production of IL-10 and up-regulated IL-2 production in T cells ex vivo. We concluded that both CR and CTX can delay the onset of autoimmune disease, in part by maintaining higher numbers of na?ve T cells and the immune responsiveness of T cells and decreasing the proportion of B cells.  相似文献   

5.
Autoimmune NZB and NZB/W mice display early abnormalities in thymus histology, T cell development, and mature T cell function. Abnormalities in the subcapsular/medullary thymic epithelium (TE) can also be inferred from the early disappearance of thymulin from NZB. It has also been reported that NZB thymic epithelial cells do not grow in culture conditions that support the growth of these cells from other strains of mice. In order to study the contribution of TE to the abnormal T cell development and function in NZB and NZB/W mice, we have devised a culture system which supports the growth of TE cells from these mice. The method involves the use of culture vessels coated with extracellular matrix produced by a rat thymic epithelial cell line. TEA3A1, and selective low-calcium, low-serum medium. In addition TEA3A1 cells have been used as an antigen to generate monoclonal antibodies specific for subcapsular/medullary TE. These antibodies, as well as others already available, have been used to show that the culture conditions described here select for cells displaying subcapsular/medullary TE markers, whereas markers for cortical TE and macrophages are absent.  相似文献   

6.
Unlike calorie restriction, exercise fails to extend maximum life span, but the mechanisms that explain this disparate effect are unknown. We used a 24-wk protocol of treadmill running, weight matching, and pair feeding to compare the effects of exercise and calorie restriction on biomarkers related to aging. This study consisted of young controls, an ad libitum-fed sedentary group, two groups that were weight matched by exercise or 9% calorie restriction, and two groups that were weight matched by 9% calorie restriction + exercise or 18% calorie restriction. After 24 wk, ad libitum-fed sedentary mice were the heaviest and fattest. When weight-matched groups were compared, mice that exercised were leaner than calorie-restricted mice. Ad libitum-fed exercise mice tended to have lower serum IGF-1 than fully-fed controls, but no difference in fasting insulin. Mice that underwent 9% calorie restriction or 9% calorie restriction + exercise, had lower insulin levels; the lowest concentrations of serum insulin and IGF-1 were observed in 18% calorie-restricted mice. Exercise resulted in elevated levels of tissue heat shock proteins, but did not accelerate the accumulation of oxidative damage. Thus, failure of exercise to slow aging in previous studies is not likely the result of increased accrual of oxidative damage and may instead be due to an inability to fully mimic the hormonal and/or metabolic response to calorie restriction.  相似文献   

7.
8.
Calorie restriction (CR) in microorganisms such as budding and fission yeasts has a robust and well-documented impact on longevity. In order to efficiently utilize the limited energy during CR, these organisms shift from primarily fermentative metabolism to mitochondrial respiration. Respiration activates certain conserved longevity factors such as sirtuins and is associated with widespread physiological changes that contribute to increased survival. However, the importance of respiration during CR-mediated longevity has remained controversial. The emergence of several novel metabolically distinct microbial models for longevity has enabled CR to be studied from new perspectives. The majority of CR and life span studies have been conducted in the primarily fermentative Crabtree-positive yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, but studies in primarily respiratory Crabtree-negative yeast and obligate aerobes can offer complementary insight into the more complex mammalian response to CR. Not only are microorganisms helping characterize a conserved cellular mechanism for CR-mediated longevity, but they can also directly impact mammalian metabolism as part of the natural gut flora. Here, we discuss the contributions of microorganisms to our knowledge of CR and longevity at the level of both the cell and the organism.  相似文献   

9.
Autoimmune haemolytic disease in NZB mice   总被引:2,自引:0,他引:2  
  相似文献   

10.
11.
There is a body of literature in animal models that has suggested the development of emphysema following severe calorie restriction. This has led to the notion of "nutritional emphysema" that might have relevance in COPD patients. There have been few studies, however, that have looked closely at both the mechanics and lung structure in the same animals. In the present work, we examined lung mechanics and histological changes in two strains of mice that have substantial differences in alveolar size, the C57BL/6 and C3H/HeJ strains. We quantified the dynamic elastance and resistance at 2.5 Hz, the quasistatic pressure volume curve, and the alveolar chord lengths in lungs inflated to a lung capacity at 25-30 cm H(2)O. We found that after 2 or 3 wk of calorie restriction to 1/3 their normal diet, the lungs became stiffer with increased resistance. In addition, the lung capacity was also decreased. These mechanical changes were reversed after 2 wk on a normal ad libitum diet. Histology of the postmortem fixed lungs showed no changes in the mean alveolar chord lengths with calorie restriction. Although the baseline mechanics and alveolar size were quantitatively different in the two strains, both strains showed similar qualitative changes during the starvation and refeeding periods. Thus, in two strains of mice with genetically determined differences in alveolar size, neither the mechanics nor the histology show any evidence of emphysema-like changes with this severe caloric insult.  相似文献   

12.
Caloric restriction (CR) is known to extend the life span in different species from yeast to mammals. In this report, a simple organism silkworm (Bombyx mori) was used to study the effect of moderate CR on the growth and development processes of insects. Here we show that an extension of life span upon moderate CR was observed in the silkworm. The total protein level in the 5th instar larvae hemolymph appeared to decline significantly under CR. SDS‐PAGE analysis showed that the influence of CR was sex‐dependent. The CR effects on female animals were much more significant than on the males. The MALDI‐TOF MS study identified 16 proteins that expressed differentially among six groups of the male or female larvae fed at different time frequencies. Four of them, storage protein 1 (SP1), arylphorin (SP2), imaginal disk growth factor (IDGF), and 30‐kDa lipoprotein, showed significant differences. It was demonstrated that these four proteins were up‐regulated when the larvae were over‐fed and down‐regulated when the larvae were less‐fed. © 2009 Wiley Periodicals, Inc.  相似文献   

13.
We analyzed the mechanism of spontaneous B cell activation in lupus mice by using anticlass-II antibody in vitro. The in vitro culture of B cells from old NZB mice markedly produced Ig without any stimulation, while B cells from NZW mice did not. The addition of anticlass-II antibody (anti-Iad antibody) to the culture inhibited Ig production of NZB B cells in a concentration-dependent manner. On the other hand, the addition of anticlass-I antibody (anti-H-2Dd antibody) and anticlass-II antibody with different specificity (anti-Iak) gave no effect on the Ig production of NZB B cells. When mitomycin C-treated B cells were added to in vitro culture of responder B cells as a stimulator, Ig production of responder B cells was enhanced in a concentration-dependent manner. However, the enhancing effect of the stimulator B cells was abrogated by the pretreatment with anticlass-II antibody. The stimulator B-cell activity to NZB B cells was marked in NZB B cells, moderate in NZB/W F1 B cells, and weak in NZW B cells. Furthermore, the stimulator B-cell activity with regard to NZB B cells was marked in old female NZB B cells, moderate in old male NZB B cells, and weak in young NZB B cells. The expression of class II antigens on the surface of old female NZB B cells was significantly higher than that of old male NZB and young NZB B cells. These results suggest that in lupus mice the spontaneous B-cell activation is induced by an abnormal B-B cell interaction mediated by class II antigens.  相似文献   

14.
Highly purified C-type particles from milk of NZB mice were ineffective in the transfer of Coombs positive hemolytic anemia and cryoglobulinemia to neonatal BALB/cHeA and NZC/B1 mice. Injection of neonatal NZB mice with these particles did not change the frequency or time of onset of these phenomena. Antinuclear antibodies were found in all injected animals in the same frequencies as in the control groups.  相似文献   

15.
The presence of hyperdiploidy was studied in New Zealand black (NZB) mice and the progeny of NZB X DBA/2 crosses and backcrosses. Hyperdiploidy was observed in the spleens of a majority of NZB mice but not in DBA/2 mice at 1 year of age. In crosses of NZB with the DBA/2 strain, hyperploidy was observed only in backcrosses to NZB. Hyperdiploidy appeared to be determined by a recessivley inherited trait and was not related to the presence of other immunological abnormalities, including splenomegaly, hypergammaglobulinemia, and spontaneous antibodies cytotoxic for T cells and reactive with single-stranded DNA. Abnormal cells were not present in Concanavalin A-stimulated 48-h spleen cultures. There was no difference in the in vitro sister chromatid exchange rate between the autoimmune NZB strain and the non-autoimmune DBA/2 strain. Identification of NZB chromosomes by banding analysis showed that chromosomes 15 and 17 were frequently present in more than two copies in hyperdiploid spleen cells. NZB chromsomes also had reduced C-banding in an autosomal pair. These studies indicate that chromosomal abnormalities which occur in NZB mice may be useful as genetic and cytogenetic markers.  相似文献   

16.
Calorie restriction (CR) increases average and maximum lifespan and exhibits an apparent beneficial impact on age‐related diseases. Several studies have shown that CR initiated either in middle or old age could improve ischemic tolerance and rejuvenate the aging heart; however, the data are not uniform when initiated in young. The accurate time to initiate CR providing maximum benefits for cardiac remodeling and function during aging remains unclear. Thus, whether a similar degree of CR initiated in mice of different ages could exert a similar effect on myocardial protection was investigated in this study. C57BL/6 mice were subjected to a calorically restricted diet (40% less than the ad libitum diet) for 3 months initiated in 3, 12, and 19 months. It was found that CR significantly reversed the aging phenotypes of middle‐aged and old mice including cardiac remodeling (cardiomyocyte hypertrophy and cardiac fibrosis), inflammation, mitochondrial damage, telomere shortening, as well as senescence‐associated markers but accelerated in young mice. Furthermore, whole‐genome microarray demonstrated that the AMP‐activated protein kinase (AMPK)–Forkhead box subgroup ‘O’ (FOXO) pathway might be a major contributor to contrasting regulation by CR initiated in different ages; thus, increased autophagy was seen in middle‐aged and old mice but decreased in young mice. Together, the findings demonstrated promising myocardial protection by 40% CR should be initiated in middle or old age that may have vital implications for the practical nutritional regimen.  相似文献   

17.
Weight control by exercise and dietary calorie restriction (DCR) has been associated with reduced cancer risk, but the underlying mechanisms are not well understood. This study was designed to compare the effects of weight loss by increasing physical activity or decreasing calorie intake on tumor promoter-induced Ras-MAPK and PI3K-Akt pathways. SENCAR mice were randomly assigned to one of the following five groups: ad libitum-fed sedentary control, ad libitum-fed exercise (AL+Exe), exercise but pair-fed at the amount as controls (PF+Exe), 20% DCR, and 20% DCR plus exercise (DCR+Exe). After 10 weeks, body weight and body fat significantly decreased in the groups of DCR, DCR+Exe, and PF+Exe when compared with the controls. AL+Exe did not induce weight loss due to, at least in part, increased food intake. Plasma IGF-1 levels reduced significantly in DCR and DCR+Exe but not PF+Exe. The protein H-Ras and activated Ras-GTP significantly decreased in TPA-induced skin tissues of DCR-fed mice but not exercised mice. PI3K protein, phosphoserine Akt, and p42/p44-MAPK were reduced, however, in both DCR and PF+Exe groups. Immunohistochemistry demonstrated that the significantly reduced H-Ras occurred in subcutaneous fat cells, while the reduced PI3K and PCNA took place only in the epidermis. Plasma leptin decreased in PF+Exe, DCR, and DCR+Exe, while the caspase-3 activity increased in DCR+Exe only. Genomic microarray analysis further indicated that the expression of 34 genes relevant to PI3K and 31 genes to the MAPK pathway were significantly regulated by either DCR or PF+Exe treatments. The reduced PI3K in PF+Exe mice was partially reversed by IGF-1 treatment. The overall results of this study demonstrated that DCR abrogated both Ras and PI3K signaling, which might inhibit TPA-induced proliferation and anti-apoptosis. Selective inhibition of PI3K by PF+Exe but not AL+Exe seems more attributable to the magnitude of the caloric deficit and/or body fat loss than diet versus exercise comparison.  相似文献   

18.
How congenital defects causing genome instability can result in the pleiotropic symptoms reminiscent of aging but in a segmental and accelerated fashion remains largely unknown. Most segmental progerias are associated with accelerated fibroblast senescence, suggesting that cellular senescence is a likely contributing mechanism. Contrary to expectations, neither accelerated senescence nor acute oxidative stress hypersensitivity was detected in primary fibroblast or erythroblast cultures from multiple progeroid mouse models for defects in the nucleotide excision DNA repair pathway, which share premature aging features including postnatal growth retardation, cerebellar ataxia, and death before weaning. Instead, we report a prominent phenotypic overlap with long-lived dwarfism and calorie restriction during postnatal development (2 wk of age), including reduced size, reduced body temperature, hypoglycemia, and perturbation of the growth hormone/insulin-like growth factor 1 neuroendocrine axis. These symptoms were also present at 2 wk of age in a novel progeroid nucleotide excision repair-deficient mouse model (XPDG602D/R722W/XPA−/−) that survived weaning with high penetrance. However, despite persistent cachectic dwarfism, blood glucose and serum insulin-like growth factor 1 levels returned to normal by 10 wk, with hypoglycemia reappearing near premature death at 5 mo of age. These data strongly suggest changes in energy metabolism as part of an adaptive response during the stressful period of postnatal growth. Interestingly, a similar perturbation of the postnatal growth axis was not detected in another progeroid mouse model, the double-strand DNA break repair deficient Ku80−/− mouse. Specific (but not all) types of genome instability may thus engage a conserved response to stress that evolved to cope with environmental pressures such as food shortage.  相似文献   

19.
The effect of dietary dehydroisoandrosterone (DHA) on several immunological abnormalities associated with the development of systemic lupus erythematosus in New Zealand Black/New Zealand White F1 (NZB/W) female mice was examined. Despite the extraordinary benefits in prolonged survival and decreased synthesis of antibodies to double-stranded DNA obtained by adding DHA (0.4% w/v) to the diet fed to these mice (Lucas et al. (1985) J. Clin. Invest. 75, 2091-2093), remarkably small changes in the chemistry and function of the immune system were detected. DHA prevented the increases in spleen mass and in peritoneal cell number which occur with age in NZB/W female mice, but did not prevent the development of hypergammaglobulinemia. DHA did not affect peritoneal macrophage functions as measured by the phagocytosis of opsonized and non-opsonized sheep erythrocytes, or the zymosan-stimulated release of PGE2, 6-ketoPGF1 alpha, TXB2 and LTC4. In spleen, DHA delayed the loss of T-cell mitogenic responses until 5.5 months of age, but did not alter the spleen lymphocyte population.  相似文献   

20.
We investigated the effects of pulsed magnetic stimulation on tumor development processes and immune functions in mice. A circular coil (inner diameter = 15 mm, outer diameter = 75 mm) was used in the experiments. Stimulus conditions were pulse width = 238 micros, peak magnetic field = 0.25 T (at the center of the coil), frequency = 25 pulses/s, 1,000 pulses/sample/day and magnetically induced eddy currents in mice = 0.79-1.54 A/m(2). In an animal study, B16-BL6 melanoma model mice were exposed to the pulsed magnetic stimulation for 16 days from the day of injection of cancer cells. A tumor growth study revealed a significant tumor weight decrease in the stimulated group (54% of the sham group). In a cellular study, B16-BL6 cells were also exposed to the magnetic field (1,000 pulses/sample, and eddy currents at the bottom of the dish = 2.36-2.90 A/m(2)); however, the magnetically induced eddy currents had no effect on cell viabilities. Cytokine production in mouse spleens was measured to analyze the immunomodulatory effect after the pulsed magnetic stimulation. tumor necrosis factor (TNF-alpha) production in mouse spleens was significantly activated after the exposure of the stimulus condition described above. These results showed the first evidence of the anti-tumor effect and immunomodulatory effects brought about by the application of repetitive magnetic stimulation and also suggested the possible relationship between anti-tumor effects and the increase of TNF-alpha levels caused by pulsed magnetic stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号