首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cancer stem cells (CSCs) are believed to play an important role in tumor growth and recurrence. These cells exhibit self-renewal and proliferation properties. CSCs also exhibit significant drug resistance compared with normal tumor cells. Finding new treatments that target CSCs could significantly enhance the effect of chemotherapy and improve patient survival. Notch signaling is known to regulate the development of the lungs by controlling the cell-fate determination of normal stem cells. In this study, we isolated CSCs from the human lung adenocarcinoma cell line A549. CD133 was used as a stem cell marker for fluorescence-activated cell sorting (FACS). We compared the expression of Notch signaling in both CD133+ and CD133− cells and blocked Notch signaling using the γ-secretase inhibitor DAPT (GSI-IX). The effect of combining GSI and cisplatin (CDDP) was also examined in these two types of cells. We observed that both CD133+ and CD133− cells proliferated at similar rates, but the cells exhibited distinctive differences in cell cycle progression. Few CD133+ cells were observed in the G2/M phase, and there were half as many cells in S phase compared with the CD133− cells. Furthermore, CD133+ cells exhibited significant resistance to chemotherapy when treated with CDDP. The expression of Notch signaling pathway members, such as Notch1, Notch2 and Hes1, was lower in CD133+ cells. GSI slightly inhibited the proliferation of both cell types and exhibited little effect on the cell cycle. The inhibitory effects of DPP on these two types of cells were enhanced when combined with GSI. Interestingly, this effect was especially significant in CD133+ cells, suggesting that Notch pathway blockade may be a useful CSC-targeted therapy in lung cancer.  相似文献   

3.
Endometrial cancer is one of the most common gynecological malignancies in Japan, where the disease shows an increasing morbidity. However, surgical therapy remains the treatment of choice for endometrial cancers that tend to be insensitive to radiation therapy and chemotherapy. Therefore, novel therapeutic strategies are required. The Notch signaling pathway regulates embryogenesis and cellular development, but deregulated Notch signaling may contribute to tumorigenesis in several cancers. Moreover, γ-secretase inhibitors have been shown to be potent inhibitors of the Notch signaling pathway; they suppress cellular proliferation and induce apoptosis in several cancer cells. In the present study, we investigated the effect of N-[N-(3, 5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester (DAPT, γ-secretase inhibitor) on the cell proliferation and apoptosis in Ishikawa endometrial cancer cells. Real-time PCR detected mRNA derived from NOTCH1 and HES1, which are target genes of the Notch signaling pathway, in Ishikawa endometrial cancer cells. After blocking Notch signaling, cellular proliferation decreased, accompanied by increased expression of p21 mRNA and decreased expression of the cyclin A protein. Furthermore, blockade of Notch signaling induced apoptosis. These results suggest that the Notch signaling pathway may be involved in cell proliferation through cell cycle regulation and apoptosis in Ishikawa endometrial cancer cells. Inhibition of the Notch signaling pathway by γ-secretase inhibitors is expected to be a potential target of novel therapeutic strategies for endometrial cancer.  相似文献   

4.
The Notch3 signaling pathway is thought to play a critical role in cancer development, as evidenced by the Notch3 amplification and rearrangement observed in human cancers. However, the molecular mechanism by which Notch3 signaling contributes to tumorigenesis is largely unknown. In an effort to identify the molecular modulators of the Notch3 signaling pathway, we screened for Notch3-intracellular domain (N3-ICD) interacting proteins using a human proteome microarray. Pathway analysis of the Notch3 interactome demonstrated that ubiquitin C was the molecular hub of the top functional network, suggesting the involvement of ubiquitination in modulating Notch3 signaling. Thereby, we focused on functional characterization of an E3 ubiquitin-protein ligase, WWP2, a top candidate in the Notch3 interactome list. Co-immunoprecipitation experiments showed that WWP2 interacted with N3-ICD but not with intracellular domains from other Notch receptors. Wild-type WWP2 but not ligase-deficient mutant WWP2 increases mono-ubiquitination of the membrane-tethered Notch3 fragment, therefore attenuating Notch3 pathway activity in cancer cells and leading to cell cycle arrest. The mono-ubiquitination by WWP2 may target an endosomal/lysosomal degradation fate for Notch3 as suggested by the fact that the process could be suppressed by the endosomal/lysosomal inhibitor. Analysis of The Cancer Genome Atlas dataset showed that the majority of ovarian carcinomas harbored homozygous or heterozygous deletions in WWP2 locus, and there was an inverse correlation in the expression levels between WWP2 and Notch3 in ovarian carcinomas. Furthermore, ectopic expression of WWP2 decreased tumor development in a mouse xenograft model and suppressed the Notch3-induced phenotypes including increase in cancer stem cell-like cell population and platinum resistance. Taken together, our results provide evidence that WWP2 serves as a tumor suppressor by negatively regulating Notch3 signaling in ovarian cancer.  相似文献   

5.
Notch信号传导通路是影响细胞命运决定的重要通路之一,相邻细胞间通过Notch受体传递信号可以调节包括干细胞在内的多种细胞的分化、增殖和凋亡,影响器官形成和形态发生.Notch信号传导通路中某些分子的基因突变与多种疾病的发生发展有关.在深入研究Notch信号传导通路的基础上,以其作为靶点设计药物,对于治疗包括肿瘤、CADASIL等遗传性疾病在内的相关疾病,或发展干细胞医疗技术治疗阿尔茨海默症(Alzheimer!sdisease,AD)、帕金森病、糖尿病等细胞组织功能减退或受损性疾病具有重要的科学意义和应用价值.  相似文献   

6.
Notch: a key regulator of tumor angiogenesis and metastasis   总被引:1,自引:0,他引:1  
The Notch signaling pathway is critical for many developmental processes including physiologic angiogenesis. Notch is also implicated in having a key role in tumor angiogenesis. Preclinical and clinical experience with anti-angiogenic strategies indicates that they may be limited by tumor resistance and recurrence, which has led to the search for alternative angiogenic treatment strategies. Significant progress has been made in shedding light on the complex mechanisms by which Notch signaling can influence tumor growth by disrupting vasculature in an array of tumor models (Ridgway et al., 2006). These results have led to the consideration of Notch as an attractive target to block tumor angiogenesis and inhibit growth. However, studies of inhibition of Notch signaling in different tumor models have uncovered similarly variable results, and some unexpected adverse effects. The ability of Notch to function in a context-dependent manner as a determinant of cell fate, a tumor suppressor, and an oncogene may partially explain the complexity in interpreted the role of Notch signaling inhibitors in preclinical tumor studies. In addition, Notch may also play an important role in metastasis via its direct effects on the vasculature and by modulation of epithelial-mesenchymal transition in tumor cells. Here we present a current understanding of Notch signaling in tumor angiogenesis, and discuss recent work on the role of Notch in tumor metastatic progression.  相似文献   

7.
8.
Bone morphogenetic proteins (BMPs) regulate cell fate during development and mediate cancer progression. In this study, we investigated the role of BMP4 in proliferation, anoikis resistance, metastatic migration, and drug resistance of breast cancer cells. We utilized breast cancer cell lines and clinical samples representing different subtypes to understand the functional effect of BMP4 on breast cancer. The BMP pathway was inhibited with the small molecule inhibitor LDN193189 hydrochloride (LDN). BMP4 signaling enhanced the expression of stem cell genes CD44, ALDH1A3, anti-apoptotic gene BCL2 and promoted anoikis resistance in MDA-MB-231 breast cancer cells. BMP4 enhanced self-renewal and chemoresistance in MDA-MB-231 by upregulating Notch signaling while LDN treatment abrogated anoikis resistance and proliferation of anoikis resistant breast cancer cells in the osteogenic microenvironment. Conversely, BMP4 downregulated proliferation, colony-forming ability, and suppressed anoikis resistance in MCF7 and SkBR3 cells, while LDN treatment promoted tumor spheroid formation and growth. These findings indicate that BMP4 has a context-dependent role in breast cancer. Further, our data with MDA-MB-231 cells representing triple-negative breast cancer suggest that BMP inhibition might impair its metastatic spread and colonization.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00649-9.  相似文献   

9.
The Notch signaling pathway is conserved in vertebrates and invertebrates and is involved in many developmental processes. Notch receptors and ligands are expressed on the cell surface enabling interactions between adjacent cells upon receptor-ligand binding. Notch signaling molecules have an important well-documented role in vascular development, differentiation, proliferation, apoptosis and tumorigenesis. Recently, several groups have identified the importance of Notch signaling in tumor angiogenesis. Notch activity increases specifically in tumor endothelium and in various tumors types and, in some studies, Notch signaling suppresses angiogenic processes. Because the Notch signaling pathway can mediate communication between various cell types in the tumor microenvironment, interactions between tumor cells and endothelial cells might promote angiogenesis, therefore targeting the Notch pathway might provide a novel strategy for anti-angiogenic therapies. Here, we discuss recent insights of Notch signaling in tumor angiogenesis.  相似文献   

10.
Malignant gliomas are locally aggressive, highly vascular tumors that have a dismal prognosis, and present therapies provide little improvement in the disease course and outcome. Many types of malignancies, including glioblastoma, originate from a population of cancer stem cells (CSCs) that are able to initiate and maintain tumors. Although CSCs only represent a small fraction of cells within a tumor, their high tumor-initiating capacity and therapeutic resistance drives tumorigenesis. Therefore, it is imperative to identify pathways associated with CSCs to devise strategies to selectively target them. In this study, we describe a novel relationship between glioblastoma CSCs and the Notch pathway, which involves the constitutive activation of STAT3 and NF-κB signaling. Glioma CSCs were isolated and maintained in vitro using an adherent culture system, and the biological properties were compared with the traditional cultures of CSCs grown as multicellular spheres under nonadherent culture conditions. Interestingly, both adherent and spheroid glioma CSCs show constitutive activation of the STAT3/NF-κB signaling pathway and up-regulation of STAT3- and NF-κB-dependent genes. Gene expression profiling also identified components of the Notch pathway as being deregulated in glioma CSCs, and the deregulated expression of these genes was sensitive to treatment with STAT3 and NF-κB inhibitors. This finding is particularly important because Notch signaling appears to play a key role in CSCs in a variety of cancers and controls cell fate determination, survival, proliferation, and the maintenance of stem cells. The constitutive activation of STAT3 and NF-κB signaling pathways that leads to the regulation of Notch pathway genes in glioma CSCs identifies novel therapeutic targets for the treatment of glioma.  相似文献   

11.
12.
Notch signaling involves the processes that govern cell proliferation, cell fate decision, cell differentiation and stem cell maintenance. Due to its fundamental role in stem cells, it has been speculated during the recent years that Notch family may have critical functions in cancer stem cells or cancer cells with a stem cell phenotype, therefore playing an important role in the process of oncogenesis. In this study, expression of Notch family in KYSE70, KYSE140 and KYSE450 squamous esophageal cancer cell lines and virus transformed squamous esophageal epithelial cell line Het-1A was examined by quantitative RT-PCR. Compared to the Het-1A cells, higher levels of Nocth1 and Notch3 expression in the cancer cell lines were identified. Due to the finding that NOTCH3 mainly mediates squamous cell differentiation, NOTCH1 expression was further studied in these cell lines. By Western blot analyses, the KYSE70 cell line which derived from a poorly differentiated tumor highly expressed Notch1, and the Notch1 expression in this cell line was hypoxia inducible, while the KYSE450 cell line which derived from a well differentiated tumor was always negative for Notch1, even in hypoxia. Additional studies demonstrated that the KYSE70 cell line was more 5-FU resistant than the KYSE450 cell line and such 5-FU resistance is correlated to Notch1 expression verified by Notch1 knockdown experiments. In clinical samples, Notch1 protein expression was detected in the basal cells of human esophagus epithelia, and its expression in squamous cell carcinomas was significantly associated with higher pathological grade and shorter overall survival. We conclude that Notch1 expression is associated with cell aggressiveness and 5-FU drug resistance in human esophageal squamous cell carcinoma cell lines in vitro and is significantly associated with a poor survival in human esophageal squamous cell carcinomas.  相似文献   

13.
Notch signaling in cancer   总被引:3,自引:0,他引:3  
The evolutionarily conserved developmental pathway driven by Notch receptors and ligands has acquired multiple post-natal homeostatic functions in vertebrates. Potential roles in human physiology and pathology are being studied by an increasingly large number of investigators. While the canonical Notch signaling pathway is deceptively simple, the consequences of Notch activation on cell fate are complex and context-dependent. The manner in which other signaling pathways cross-talk with Notch signaling appears to be extraordinarily complex. Recent observations have demonstrated the importance of endocytosis, multiple ubiquitin ligases, non-visual beta-arrestins and hypoxia in modulating Notch signaling. Structural biology is shedding light on the molecular mechanisms whereby Notch interacts with its nuclear partners. Genomics is slowly unraveling the puzzle of Notch target genes in several systems. At the same time, interest in modulating Notch signaling for medical purposes has dramatically increased. Over the last few years we have learned much about Notch signaling in cancer, immune disorders, neurological disorders and most recently, stroke. The role of Notch signaling in normal and transformed stem cells is under intense investigation. Some Notch-modulating drugs are already in clinical trials, and others at various stages of development. This review will focus on the most recent findings on Notch signaling in cancer and discuss their potential clinical implications.  相似文献   

14.
Notch signaling pathway regulates a wide variety of cellular processes during development and it also plays a crucial role in human diseases. This important link is firmly established in cancer, since a rare T-ALL-associated genetic lesion has been initially reported to result in deletion of Notch1 ectodomain and constitutive activation of its intracellular region. Interestingly, the cellular response to Notch signaling can be extremely variable depending on the cell type and activation context. Notch signaling triggers signals implicated in promoting carcinogenesis and autoimmune diseases, whereas it can also sustain responses that are critical to suppress carcinogenesis and to negatively regulate immune response. However, Notch signaling induces all these effects via an apparently simple signal transduction pathway, diversified into a complex network along evolution from Drosophila to mammals. Indeed, an explanation of this paradox comes from a number of evidences accumulated during the last few years, which dissected the intrinsic canonical and non-canonical components of the Notch pathway as well as several modulatory extrinsic signaling events. The identification of these signals has shed light onto the mechanisms whereby Notch and other pathways collaborate to induce a particular cellular phenotype. In this article, we review the role of Notch signaling in cells as diverse as T lymphocytes and epithelial cells of the epidermis, with the main focus on understanding the mechanisms of Notch versatility.  相似文献   

15.
Notch signaling in leukemias and lymphomas   总被引:1,自引:0,他引:1  
Aberrant Notch activation is linked to cancer since 1991 when mammalian Notch1 was first identified as part of the translocation t(7;9) in a subset of human T-cell acute lymphoblastic leukemias (T-ALL). Since then oncogenic Notch signaling has been found in many solid and hematopoietic neoplasms. Depending on tumor type Notch interferes with differentiation, proliferation, survival, cell-cycle progression, angiogenesis, and possibly self-renewal. In hematopoietic neoplasms, recent findings indicate an important role of Notch for T-ALL induction and progression and the pathogenesis of human T- and B-cell-derived lymphomas. Notch signaling has been identified as a potential new therapeutic target in these hematopoietic neoplasms. This review will focus on the most recent findings on Notch signaling in leukemias and lymphomas and its potential role in the maintenance of malignant stem cells.  相似文献   

16.
17.
The Notch pathway in prostate development and cancer   总被引:4,自引:0,他引:4  
Abstract The Notch family of transmembrane receptors are important mediators of cell fate determination. Accordingly, Notch signaling is intimately involved in the development of numerous tissues. Recent findings have highlighted a critical role for Notch signaling in normal prostate development. Notch signaling is required for embryonic and postnatal prostatic growth and development, for proper cell lineage specification within the prostate, as well as for adult prostate maintenance and regeneration following castration and hormone replacement. Evidence for Notch as a regulator of prostate cancer development, progression, and metastasis has also emerged. This review summarizes our current understanding of the role of Notch pathway elements, including members of the Jagged, Delta-like, hairy/enhancer-of-split, and hairy/enhancer-of-split related with YRPW motif families, in prostate development and tumorigenesis. Data supporting Notch pathway elements as oncogenes and tumor suppressors in prostate tumors, as well as data implicating Notch receptors and ligands as potential markers of normal prostate stem/progenitor cells and prostate cancer stem/initiating cells, are also presented.  相似文献   

18.
19.
20.
Among many factors of causing castration-resistant prostate cancer (CRPC) progression, a growing number of evidences have shown androgen receptors play a critical role. Therefore, blocking androgen receptor remains a therapeutic goal of CRPC. However, resistance to androgen receptor inhibitors, for example, enzalutamide, limits therapeutic efficacy for many patients. In this study, to develop an enzalutamide-resistant cell model for molecular mechanism investigation of enzalutamide-resistance, we continuously treated C4-2B cells with multiplied concentrations of enzalutamide. The IC50 of resistant cells was identified as 14.7705 µM, and the resistance index was calculated as 12.4. In addition, we verified the resistance of resistant cells through experiments in vivo and found the genes in androgen receptor signaling pathway (androgen receptor, Jagged1, Notch1) and those in androgen receptor alternative signaling pathways behaved the opposite. For some of the former, their mRNA and protein expression reduced markedly while for the latter, for example, CXCR7, AKT, STAT3, FOXP3, they rose dramatically in the expression level of protein and mRNA. More importantly, the tumor volume, tumor wet weight, PSA and VEGF secretion level, positive staining rate of Ki67 nuclei in resistant strain heterogeneous tumor treated with enzalutamide were significantly higher than those of maternal cell heterogeneous tumor treated with enzalutamide, whereas no obvious difference was detected between resistant strain heterogeneous tumor treated with enzalutamide and those of the resistant strain treated with reference drug. Finally, we identified 654 differentially expression genes and 2 compounds (atracurium besilate, methotrexates) associated with the amelioration of enzalutamide-resistance. Overall, we successfully established an enzalutamide-resistance cell model and screened out some resistance genes and candidate small molecule drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号