首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main goal of this work was to study the dynamics and biochemical composition of extracellular polysaccharides (ECPS), a fraction of the extracellular polymeric substances (EPS) produced during the development of a microphytobenthic biofilm in a European intertidal mudflat (Marennes-Oléron Bay, France) during winter. Microphytobenthic biomass was surveyed during four consecutive emersion periods to confirm the biofilm growth. Bacteria abundance was also checked considering the importance of heterotrophic bacteria observed by various authors in the dynamics of EPS. Various colorimetric assays, coupled to biochemical chromatographic analysis, were used to characterize the three main fractions of extracted EPS: colloidal, bound, and residual. The monosaccharide distribution of colloidal ECPS highlighted their role of carbon source for bacteria (>50% of glucose) even if no increase of colloidal carbohydrate amounts was observed during the tidal exposure. Bound ECPS were composed of deoxy or specific sugars (30% rhamnose) and uronic acids (18% galacturonic acid). Their levels and dynamics could be correlated to the development of the microphytobenthic biofilm, enhancing the stabilization of the sediment or increasing binding forces accordingly. Residual fractions, containing refractory bound ECPS and other internal polymeric substances, were composed of various carbohydrates. The high ratio of glucose in these fractions (18% to 43%) was interesting, as it was once attributed to colloidal sugars due to poor extraction procedures. Finally, the presence of inositol (15%) was significant since no author has highlighted it before, knowing that inositol is a major growth factor for heterotrophic bacteria.  相似文献   

2.
For many years mushrooms have been consumed and appreciated by their nutritional value, and medicinal properties. The traditional mushroom cultivation takes too long and the macrofungi biotechnology has not been explored in its full potential yet. The goal of this work was to observe if different carbon sources could improve the yield and diversify fungi nutrient composition in submerged culture.Pleurotus pulmonarius mycelia and exopolysacharide productions were evaluated using glucose, galactose, xylose and arabinose. The mycelia yield varied depending on the culture medium, and galactose showed to be the best carbon source to produce EPS. Samples that showed the highest protein contents were grown with xylose (19.44%) and arabinose (26.05%). Furthermore, the biomass cultivated with these carbohydrates and with galactose showed five essential amino acids. All cultured biomass showed low lipid contents (∼1%), being composed mainly of unsaturated fatty acids. All EPS fractions showed as main structures glucans and mannogalactans.  相似文献   

3.
Arthrospira platensis is a cyanobacterium known for its nutritional value and secondary metabolites. Extracellular polymeric substances (EPS) are an important trait of most cyanobacteria, including A. platensis. Here, we extracted and analysed different fractions of EPS from a locally isolated strain of A. platensis. Three different fractions of EPS were distinguished. These were EPS released into the medium (REPS), EPS loosely bound to the organism (LEPS) and EPS tightly bound to the organism (TEPS), which were extracted by different procedures. The LEPS fraction was smaller than the other two fractions. The EPS of A. platensis exhibited high diversity. Total protein and carbohydrate content was determined in each of these fractions. The largest amount of total carbohydrates and total proteins was in the TEPS fraction. Eight sugar moieties were detected and analysed in all EPS fractions using HPAE-PAD. Fructose, mannose and ribose were rare sugar residues in all fractions of EPS. With the exception of fructose, all sugars tested for were detected in TEPS. The amount of sugars detected was significantly higher in TEPS compared with the two other fractions, especially for galactose, xylose and glucose. The EPS were localized by confocal laser scanning microscopy (CLSM) after staining with different fluorescent dyes and it was found that A. platensis possessed a thick and smooth layer of EPS around the spiral trichomes.  相似文献   

4.
Microbial Extracellular Polymeric Substances (EPS) in Fresh Water Sediments   总被引:1,自引:0,他引:1  
Microbially produced extracellular polymeric substances (EPS) have been linked with many important ecological functions in natural sediments; yet, most information has been derived from marine systems. The present paper is the first comprehensive study on EPS (i.e., carbohydrates and proteins) dynamics in riverine sediments addressing spatial (six reservoirs and four groyne fields across three European rivers), temporal (all seasons in 2003–2005), and vertical (over a 50-cm sediment depth transect) pattern. The variation in hydrodynamic regime found in the reservoirs and groyne fields was reflected in the biomass and composition of the benthic microorganisms that produce EPS. The microphytobenthic communities consisted mainly of diatoms and a higher algal biomass (up to 248 μg g−1 dry weight, DW) seemed to be indicative for higher amounts of secreted colloidal carbohydrates. Consequently, the model proposed by Underwood and Smith (1998) for the relation chlorophyll–colloidal carbohydrates was also applicable for upper riverine sediment layers. The close relation between algal biomass and bacterial cell counts (108–109 cells g−1 DW) supports the idea of bacterial use of the secreted EPS. However, the data also suggest a contribution to the EPS pool through bacterial secretion of proteins/extracellular enzymes and possibly carbohydrates. Over depth, the relationships between microorganisms and EPS became increasingly decoupled along with increasing ratios of bound (refractory) to colloidal (labile) EPS. These data suggest fresh production of polymeric substances in upper sediment layers and mainly accumulation of refractory, biodegraded material in deeper layers. The high contents of EPS colloidal and bound carbohydrates (0.1–1.8 and 1.3–6.7 mg g−1 DW, respectively) and EPS proteins (0.4–12.9 mg g−1 DW) at the freshwater study sites might indicate an important role in sediment ecology.  相似文献   

5.
Diatoms and their associated extracellular polymeric substances (EPS) are major constituents of the microalgal assemblages present within sea ice. Yields and chemical composition of soluble and cell‐associated polysaccharides produced by three sea‐ice diatoms, Synedropsis sp., Fragilariopsis curta, and F. cylindrus, were compared. Colloidal carbohydrates (CC) contained heteropolysaccharides rich in mannose, xylose, galactose, and glucose. Synedropsis sp. CC consisted mainly of carbohydrates <8 kDa size, with relatively soluble EPS, compared to high proportions of less‐soluble EPS produced by both Fragilariopsis spp. F. curta colloidal EPS contained high concentrations of amino sugars (AS). Both Fragilariopsis species had high yields of hot bicarbonate (HB) soluble EPS, rich in xylose, mannose, galactose, and fucose (and AS in F. cylindrus). All species had frustule‐associated EPS rich in glucose–mannose. Nutrient limitation resulted in declines in EPS yields and in glucose content of all EPS fractions. Significant similarities between EPS fractions from cultures and different components of natural EPS from Antarctic sea ice were found. Increased salinity (52) reduced growth, but increased yields of EPS in Fragilariopsis cylindrus. Ice formation was inhibited byF. cylindrus, EPS, and by enhanced EPS content (additional xanthan gum) down to ?12°C, with growth rate reduced in the presence of xanthan. Differences in the production and composition of EPS between Synedropsis sp. and Fragilariopsis spp., and the association between EPS, freezing and cell survival, supports the hypothesis that EPS production is a strategy to assist polar ice diatoms to survive the cold and saline conditions present in sea ice.  相似文献   

6.
Bacteria and algae release exopolymeric substances (EPS) that perform a wide range of important functions in aquatic and terrestrial systems. In this study we measured EPS in sediments at nine littoral sites around a shallow oligotrophic basin, and tested whether the concentration and composition of EPS was related to sediment characteristics. The concentrations of both loosely bound (colloidal) and tightly bound (capsular) EPS carbohydrates ranged up to ~800 µg glucose equiv. cm–2 and were well within the range of concentrations reported from marine intertidal flats, where EPS play an important role in stabilizing sediments, affecting nutrient exchanges between sediments and the water column, feeding benthic invertebrates, and sequestering and increasing the transfer of contaminants to food webs. Proteins were an important component of the EPS in these littoral sediments, with protein:carbohydrate ratios of ~0.4. In summer, the concentrations of most EPS fractions were positively related (P < 0.05) to the porewater and organic matter content of the sediments. Capsular EPS concentrations were lower in the fall, with a simultaneous increase in colloidal proteins but not in colloidal carbohydrates. This suggests that the carbohydrates in this colloidal EPS may be more labile than the proteins. Our results suggest that exopolymeric substances could be an important, but neglected, component of littoral sediments in lakes.  相似文献   

7.
Sediment stability is a critical component for the understanding of cohesive sediment dynamics. Traditionally, physico-chemical sediment conditions have been regarded as most important drivers of sediment stability. However, over the last decade, the stabilization of sediment by biological activity, particularly the influence of highly hydrated matrices of extracellular polymeric substances (EPS) has been given increasing attention. However, most studies have focused on the sediment/water interface and, usually, of marine systems. The present study exploits current knowledge of EPS dynamics from marine systems and applies it to freshwater habitats, also considering a wide range of biological and physico-chemical variables. Natural sediments were taken from a freshwater site with high levels of heavy metal pollution (Lauffen reservoir, River Neckar, Germany). Vertical profiles from the flocculent surface layer to depth of 50 cm within the sediment were investigated, monthly, over the course of year. Tubificidae and Chironomidae larvae constituted the majority of the macrofauna. Despite the turbidity of the water column, a highly diverse and abundant microphytobenthic community of diatoms (11-82 microg g(-1) DW) was found at the sediment surface closely associated with high numbers of bacteria (10(9) cells g(-1) DW). The concentrations of all EPS moieties were remarkably high (0.1-0.5, 1.7-3.8, 0.9-5.2 mg g(-1) DW, for colloidal and bound carbohydrates and proteins, respectively) and levels were comparable to those determined in intertidal studies. The microalgal and bacterial biomass both showed strong correlations with the colloidal and bound EPS carbohydrate fractions. The data suggested that the present macrofauna as well as the metabolic activities of microalgae and bacteria interact with sedimentological factors to influence the properties of the sediment by binding fine-grained sediment, changing water content and enhancing the organic content through secretion products. The colloidal and bound EPS moieties showed strong correlation with the critical shear stress for erosion over sediment depth. It is suggested that the cohesive strength of the sediment was controlled by a high number of active adsorption sites and higher charge densities in fine grained sediments. The EPS network may significantly enhance this by embedding particles and permeating the void space but also in offering additional ionic binding sites and cross-linkages.  相似文献   

8.
Dynamics in the production of extracellular polymeric substances (EPS) were investigated for the benthic diatoms Cylindrotheca closterium (Ehrenberg) and Nitzschia sp. The effect of growth phase and light:dark conditions were examined using axenic cultures. Two EPS fractions were distinguished. Soluble EPS was recovered from the culture supernatant and represented polysaccharides that were only loosely associated with the cells. Bound EPS was extracted from the cells using warm (30° C) water and was more closely associated with the diatom aggregates. Concentrations of EPS exceeded internal concentrations of sugar throughout growth, indicating that EPS production is important in these organisms. Soluble and bound EPS revealed distinct differences in daily dynamics during the course of growth. Soluble EPS was produced continuously once cultures entered the stationary phase. During the stationary phase, chl a‐normalized EPS production rates equaled 6.4 and 3.4 d ? 1 for C. closterium and Nitzschia sp., respectively. In contrast, production of bound EPS occurred only in the light and was highest during the exponential phase. Up to 90% of the attached EPS that was produced in the light was degraded during the subsequent dark period. The monosaccharide distribution of EPS was constant during the course of the experiment. The soluble EPS consisted of high amounts of galactose and glucuronic acid, relative to rhamnose, glucose, xylose/mannose, and galacturonic acid. In contrast, glucose was the dominant monosaccharide present in the bound EPS. These differences suggest that the production of the two distinct EPS fractions is under different metabolic controls and probably serves different cellular functions.  相似文献   

9.
Capek P  Hríbalová V 《Phytochemistry》2004,65(13):1983-1992
A water-soluble polysaccharide complex (A) composed of galactose (17.9%), 3-O-methyl-galactose (3.0%), glucose (15.5%), mannose (8.3%), arabinose (30.4%), xylose (7.6%), fucose (2.6%), rhamnose (6.7%), and uronic acids (8.0%) has been isolated from the aerial parts of sage (Salvia officinalis L.) by cold water extraction. It showed a broad molecular-mass distribution pattern (Mw approximately 2000-93,000) with a predominance of polymers with Mw< 10,000. Ion-exchange chromatography of A afforded six polymeric fractions (A1-A6) in which arabinogalactans associated with galacturonan and/or rhamnogalacturonan backbones prevail. Sage polysaccharides were examined for their immunomodulatory activity in the comitogenic thymocyte test which is interpreted as being an in vitro correlate of adjuvant activity. The acidic polysaccharide fractions A2, A3 and A4 exhibited the highest mitogenic and comitogenic activities of all fractions tested, and relatively high SI(comit)/SI(mit) ratios approximately 3 indicate potential adjuvant properties of these polysaccharides.  相似文献   

10.
The effect of wheat root exudates on the exopolysaccharide (EPS) composition and the lipopolysaccharide (LPS) profile of Azospirillum brasilense Cd under saline stress was studied. EPS of A. brasilense Cd was composed of glucose (47%), mannose (3%), xylose (4%), fucose (28%), rhamnose (6%), arabinose (1%) and galactose (11%). Under saline stress, A. brasilense produced a totally different EPS, composed mainly of galactose. Root exudates induced changes in A. brasilense EPS composition only under normal conditions, consisting of higher amounts of arabinose and xylose compared with EPS of bacteria grown without root exudates. No changes were induced by root exudates when A. brasilense was grown under saline stress. Additionally, root exudates induced changes in the LPS profile, both under normal and stress conditions.  相似文献   

11.
Xu F  Geng ZC  Sun JX  Liu CF  Ren JL  Sun RC  Fowler P  Baird MS 《Carbohydrate research》2006,341(12):2073-2082
Sequential three-stage treatments with 80% EtOH containing 0.2% NaOH, 2.5% H2O2-0.2% EDTA containing 1.5% NaOH and 2.5% H2O2-0.2% TAED containing 1.0% NaOH at 75 degrees C for 3h released 8.0% and 10.4%, 79.1% and 77.0% and 12.9% and 12.5% of the original hemicelluloses from perennial grass and cocksfoot grass, respectively. It was found that the four alkaline peroxide-soluble hemicellulosic fractions contained higher amounts of xylose (33.4-38.2%), uronic acids (9.3-15.3%) and rhamnose (3.0-3.9%), but were lower in glucose (25.1-28.3%), galactose (13.3-15.3%) and mannose (0.4-1.5%) than those of the two alkaline EtOH-soluble hemicellulosic fractions in which glucose (32.9-36.0%), xylose (20.1-22.6%), arabinose (14.1-21.4%), galactose (16.6-19.9%), mannose (4.1-9.9%) and uronic acids (3.4-7.4%) were the major sugar components. 13C NMR spectroscopy confirmed that all the six hemicellulosic fractions were composed of galactoarabinoxylans, 4-O-methylglucuronoarabinoxylans and beta-glucan. In addition, the studies showed that the four alkaline peroxide-soluble hemicellulosic fractions were more linear and acidic and had larger molecular weights (Mw, 28,400-38,650 g mol(-1)) than those of the two alkaline EtOH-soluble hemicellulosic fractions (Mw, 16,460-17,420 g mol(-1)).  相似文献   

12.
Enzyme activities in activated sludge flocs   总被引:9,自引:0,他引:9  
This study quantified the activities of enzymes in extracellular polymeric substances (EPS) and in pellets. Seven commonly adopted extraction schemes were utilized to extract from aerobic flocs the contained EPS, which were further categorized into loosely bound (LB) and tightly bound (TB) fractions. Ultrasonication effectively extracted the EPS from sludge flocs. Enzyme assay tests showed that the protease activity was localized mainly on the pellets, α-amylase and α-glucosidase activities were largely bound with LB-EPS, and few protease, α-amylase, or α-glucosidase activities were associated with the TB-EPS fraction. There exists no correlation between the biochemical compositions of EPS and the distribution of enzyme activities in the sludge matrix. The 44–65% of α-amylase and 59–100% of α-glucosidase activities noted with the LB-EPS indicate heterogeneous hydrolysis patterns in the sludge flocs with proteins and carbohydrates.  相似文献   

13.
Experiments were performed to evaluate short-term changes in sediment extracellular carbohydrates for a multispecific assemblage of benthic diatoms in relation to physiological status, endogenous migratory rhythms, and environmental conditions. For this purpose, a mesocosm was used, which simulated both tidal and dark: light alternating cycles under controlled conditions. Scanning electronic microscopy in combination with picture analyses indicated that natural diatom migration patterns were reproduced in the mesocosm. Two EPS fractions were operationally separated in colloidal carbohydrate measurements: alcohol-soluble EPS (termed “soluble EPS”) and alcohol-insoluble EPS (termed “bound EPS”). Microphytobenthic biomass followed a logistic-type curve and converged toward a maximal value termed the “biotic capacity of the local environment.” Both EPS fractions showed oscillations with production during photosynthetic periods and sharp decreases during night immersion periods. Productions of both EPS fractions increased with Chl a production during light periods suggesting a light dependence in relation to migratory patterns. The decreases in both EPS fractions, which occurred during night immersion periods suggest that carbohydrate hydrolysis and/or washaway affected both EPS fractions similarly in benthic environments. Our results confirm the theory according to which the two distinct fractions are under different metabolic controls. No change in soluble EPS release was obtained during the transition from logarithmic to stationary phase. On the other hand, a metabolism modification of microalgae, probably related to ammonium depletion, occurred when cells entered the stationary phase, since there was a high enhancement in bound EPS production. Mesocosm results can serve as a system of reference useful to characterize biofilm development in field investigations and to revisit the effective implication of each EPS fraction in sediment stability.  相似文献   

14.
《Geomicrobiology journal》2013,30(5):463-478

Intertidal sediments are important areas that separate the land from the sea and form natural coastal defenses. They are known as highly productive ecosystems, fueling the coastal food web. It is also conceived that microphytobenthos contribute to the stability of intertidal sediments by increasing the erosion threshold and that they are major players in coastal morphodynamics. Depending on the sedimentary composition of intertidal flats, different types of microphytobenthos colonize the sediment surface. Fine sand sediment is often colonized by cyanobacteria, prokaryotic algae, which form dense and rigid microbial mats. Mudflats on the other hand are characterized by the development of thin biofilms of epipelic diatoms. Both groups of phototrophic microorganisms excrete extracellular polymeric substances (EPS), but they do so in different ways and for different reasons. Two operationally defined fractions, water- and EDTA-extractable EPS, have been obtained from intertidal diatom biofilms and from cultures. They differ in composition and their production seems to be under different metabolic control. Water-extractable EPS are considered to be closely associated with the diatoms and are rich in neutral sugars, notably glucose. These EPS show a dynamic relationship with the microphytobenthic biomass. EDTA-extractable EPS are tightly bound to the sediment, probably through bridging by divalent ions. This material is rich in uronic acids and other acid sugars and is weakly related to chlorophyll. These EPS have been conceived to be a major factor in the structuring and diagenesis of coastal sediments and essential for increasing the sediment erosion threshold. However, this relationship is now questioned.  相似文献   

15.
Hot water-soluble polysaccharides were extracted from field colonies and suspension cultures of Nostoc commune Vaucher, Nostoc flagelliforme Berkeley et Curtis, and Nostoc sphaeroides Kützing. Excreted extracellular polymeric substances (EPS) were isolated from the media in which the suspension cultures were grown. The main monosaccharides of the field colony polysaccharides from the three species were glucose, xylose, and galactose, with an approximate ratio of 2:1:1. Mannose was also present, but the levels varied among the species, and arabinose appeared only in N. flagelliforme. The compositions of the cellular polysaccharides and EPS from suspension cultures were more complicated than those of the field samples and varied among the different species. The polysaccharides from the cultures of N. flagelliforme had a relatively simple composition consisting of mannose, galactose, glucose, and glucuronic acid, but no xylose, as was found in the field colony polysaccharides. The polysaccharides from cultures of N. sphaeroides contained glucose (the major component), rhamnose, fucose, xylose, mannose, and galactose. These same sugars were present in the polysaccharides from cultures of N. commune, with xylose as the major component. Combined nitrogen in the media had no qualitative influence on the compositions of the cellular polysaccharides but affected those of the EPS of N. commune and N. flagelliforme. The EPS of N. sphaeroides had a very low total carbohydrate content and thus was not considered to be polysaccharide in nature. The field colony polysaccharides could be separated by anion exchange chromatography into neutral and acidic fractions having similar sugar compositions. Preliminary linkage analysis showed that 1) xylose, glucose, and galactose were 1→4 linked, 2) mannose, galactose, and xylose occurred as terminal residues, and 3) branch points occurred in glucose as 1→3,4 and 1→3,6 linkages and in xylose as a 1→3,4 linkage. The polymer preparations from field colonies had higher kinematic viscosities than those from correspondingsuspension cultures. The high viscosities of the polymers suggested that they might be suitable for industrial uses.  相似文献   

16.
Twenty streptomycete strains were isolated from marine sediment samples collected from Nabq area, Sharm El-Sheikh, Red Sea Coast, Egypt. Four of them produce exopolysaccharides (EPS) showing marked in vitro antitumor activities. Morphological and cultural characteristics of the most significant strain (No. 3) were shown. Moreover, the sequence of this strain showed similarity with Streptomyces carpaticus. The results reveal that EPS produced by Streptomyces carpaticus No. 3 had high cytotoxicity reaching 51.7% and 59.1% against human tumor cells of breast and colon lines respectively. A chemical analysis of EPS indicated that the composing monosaccharides were galactouronic acid, glucose, xylose, galactose, mannose, and fructose with relative ratio of 3:1:1:2:2:1 respectively, with an average molecular weight (Mw) 1.180 × 105?g/mol and of a number average molecular weight (Mn) 1.052 × 105?g/mol. Also the EPS contained uronic acid (0.5072%) and monosaccharide sulphates (21.753%).  相似文献   

17.
An algal extracellular biopolymer (over 8.5 × 105 Da) composed of carbohydrates (52%) and protein (∼13%) has been isolated from a red alga Rhodella grisea growing in natural conditions by concentration of water medium, alcohol precipitation, dialysis and freeze-drying. This mucilagineous biopolymer contained xylose and its 3-O- and 4-O-methyl derivatives (∼63%), galactose (∼12%), glucuronic acid (11-12%), glucose (∼5%), rhamnose (∼4%), fucose (∼3-4%) and low content of others accompaning sugars. When tested on the citric acid-induced cough and reactivity of airways smooth muscle in vivo in the test system guinea pigs, this biopolymer assigned a significant cough suppressing effect. The reactivity of airways smooth muscle was not affected indicating that expectoration effect was not suppressed by biopolymer application, which is important from the pharmacological point of view.  相似文献   

18.
The influence of seagrass Zostera marina on sediment characteristics was examined in two contrasting sediments, one organic-rich and one organic-poor. The presence of plants leads to reduced sediment redox potential in both sediment types compared to bare sediment with the largest effects in the organic-poor sediment. Z. marina stimulated the sulfate reduction rates in organic-poor sediment with ∼50% and higher pools of dissolved organic carbon (DOC) were found. In contrast, sulfate reduction rates were lower in vegetated compared to bare sites in the organic-rich sediment. Despite a low contribution of dissolved carbohydrate (DCHO) to the DOC pool (<5%), the seagrass vegetation was responsible for an increase of ∼50% in DCHO pools with a peak in the root zone suggesting that Z. marina supplied DCHO to the pore waters. The Z. marina meadows also enhanced the contribution of particulate carbohydrate (PCHO) to sedimentary particulate organic carbon (POC) pools by 6-14% compared to bare sediment. Although the PCHO pools were higher in organic-rich than organic-poor sediments, the analyses of carbohydrate composition revealed that three groups of neutral sugars including glucose, galactose and mannose+xylose were the major compounds of PCHO and contributed with >60% to sedimentary carbohydrate pools at both sites. Only glucose showed depletion with depth in the vegetated sediments, whereas the percentage of ribose and rhamnose increased indicating a selective degradation of labile carbohydrates in the meadows. Galactose and mannose+xylose appeared to represent a refractory part of carbohydrate that remained after degradation of the more labile components. The sugar content was rather constant with depth at the bare organic-rich sediment indicating that only recalcitrant carbohydrate pools were buried. There was less difference in the PCHO composition profiles between vegetated and bare organic-poor sediments.  相似文献   

19.
Sun YC  Wen JL  Xu F  Sun RC 《Bioresource technology》2011,102(10):5947-5951
Three organosolv and three alkaline hemicellulosic fractions were prepared from lignocellulosic biomass of the fast-growing shrub Tamarix austromongolica (Tamarix Linn.). Sugar analysis revealed that the organosolv-soluble fractions contained a higher content of glucose (33.7-6.5%) and arabinose (14.8-5.6%), and a lower content of xylose (62.2-54.8%) than the hemicellulosic fractions isolated with aqueous alkali solutions. A relatively high concentration of alkali resulted in a decreasing trend of the xylose/4-O-methyl-d-glucuronic acid ratio in the alkali-soluble fractions. The results of NMR analysis supported a major substituted structure based on a linear polymer of β-(1 → 4)-linked d-xylopyranosyl residues, having ramifications of α-l-arabinofuranose and 4-O-methyl-d-glucuronic acid residues monosubstituted at O-3 and O-2, respectively. Thermogravimetric analysis revealed that one step of major mass loss occurred between 200-400 °C, as hemicelluloses devolatilized with total volatile yield of about 55%. It was found that organosolv-soluble fractions are more highly ramified, and showed a higher thermal stability than the alkali-soluble fractions.  相似文献   

20.
The aim of this study was to characterize the extracellular polysaccharides (EPS) released by a freshwater Thalassiosira sp. (Bacillariophyceae) and evaluate their degradation by heterotrophic microbial populations from the same habitat of Thalassiosira sp., a tropical eutrophic reservoir. The EPS were purified by anion exchange column chromatography, the monosaccharide composition was determined by GC, and the linkages of the monosaccharides by GC‐MS. The EPS is a mannose‐rich heteropolysaccharide composed of two different acidic fractions. Both of these fractions are composed of mannose, rhamnose, fucose, xylose, galactose, glucose, glucuronic acid, and N‐acetyl glucosamine but with different proportions. N‐acetyl galactosamine occurs only in fraction 1 and galacturonic acid only in fraction 2. We monitored the concentrations of the monosaccharides in the EPS during its degradation using pulse amperometric detection in an HPLC. The decay patterns of the monosaccharides were varied and the deoxy sugars, fucose and rhamnose, were degraded at a slower rate than the other components, increasing their relative concentrations and the hydrophobic feature of the EPS. The possibility of a selective degradation, which enhances the stickiness of the EPS, promoting transparent exopolymeric particles and aggregate formation, is discussed based on the literature data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号