共查询到20条相似文献,搜索用时 0 毫秒
1.
Weichao Huang Carolina Río Bártulos Peter G. Kroth 《The Journal of eukaryotic microbiology》2016,63(4):536-546
Diatoms are unicellular photoautotrophic algae, which can be found in any aquatic habitat. The main storage carbohydrate of diatoms is chrysolaminarin, a nonlinear β‐glucan, consisting of a linear 1,3‐β‐chain with 1,6‐β‐branches, which is stored in cytoplasmic vacuoles. The metabolic pathways of chrysolaminarin synthesis in diatoms are poorly investigated, therefore we studied two potential 1,6‐β‐transglycosylases (TGS) of the diatom Phaeodactylum tricornutum which are similar to yeast Kre6 proteins and which potentially are involved in the branching of 1,3‐β‐glucan chains by adding d ‐glucose as 1,6‐side chains. We genetically fused the full‐length diatom TGS proteins to GFP and expressed these constructs in P. tricornutum, demonstrating that the enzymes are apparently located in the vacuoles, which indicates that branching of chrysolaminarin may occur in these organelles. Furthermore, we demonstrated the functionality of the diatom enzymes by expressing TGS1 and 2 proteins in yeast, which resulted in a partial complementation of growth deficiencies of a transglycosylase‐deficient ?kre6 yeast strain. 相似文献
2.
高等植物种子成熟过程中贮存大量的贮藏蛋白质作为种子发芽和初期生长的重要营养来源。根据溶解性不同,种子贮藏蛋白质可分为白蛋白、球蛋白、醇溶蛋白和谷蛋白4类。在种子胚发育过程中,醇溶蛋白在粗面内质网合成后形成蛋白质聚集体,直接出芽形成蛋白体并贮存其中。白蛋白、球蛋白和谷蛋白在粗面内质网以分子量较大的前体形式合成后,根据各自的分选信号进入特定的运输囊泡,经由受体依赖型运输/聚集体形式运输转运至蛋白质贮藏型液泡中,然后经过液泡加工酶等的剪切转换为成熟型贮藏蛋白质并贮存其中。蛋白质的合成、分选、转运和加工等过程影响种子蛋白质的品质及含量。该文对种子贮藏蛋白质的分类和运输、加工以及这些过程对种子蛋白质品质和含量的影响进行了概述。 相似文献
3.
Carolina Gabriela Ocampo Jorge Fabricio Lareu Vanesa Soledad Marin Viegas Silvina Mangano Andreas Loos Herta Steinkellner Silvana Petruccelli 《Plant biotechnology journal》2016,14(12):2265-2275
Plant‐based platforms are extensively used for the expression of recombinant proteins, including monoclonal antibodies. However, to harness the approach effectively and leverage it to its full potential, a better understanding of intracellular processes that affect protein properties is required. In this work, we examined vacuolar (vac) targeting and deposition of the monoclonal antibody (Ab) 14D9 in Nicotiana benthamiana leaves. Two distinct vacuolar targeting signals (KISIA and NIFRGF) were C‐terminal fused to the heavy chain of 14D9 (vac‐Abs) and compared with secreted and ER‐retained variants (sec‐Ab, ER‐Ab, respectively). Accumulation of ER‐ and vac‐Abs was 10‐ to 15‐fold higher than sec‐Ab. N‐glycan profiling revealed the predominant presence of plant typical complex fucosylated and xylosylated GnGnXF structures on sec‐Ab while vac‐Abs carried mainly oligomannosidic (Man 7‐9) next to GnGnXF forms. Paucimannosidic glycans (commonly assigned as typical vacuolar) were not detected. Confocal microscopy analysis using RFP fusions showed that sec‐Ab‐RFP localized in the apoplast while vac‐Abs‐RFP were exclusively detected in the central vacuole. The data suggest that vac‐Abs reached the vacuole by two different pathways: direct transport from the ER bypassing the Golgi (Ab molecules containing Man structures) and trafficking through the Golgi (for Ab molecules containing complex N‐glycans). Importantly, vac‐Abs were correctly assembled and functionally active. Collectively, we show that the central vacuole is an appropriate compartment for the efficient production of Abs with appropriate post‐translational modifications, but also point to a reconsideration of current concepts in plant glycan processing. 相似文献
4.
Silke Niemes Mathias Labs David Scheuring Falco Krueger Markus Langhans Barbara Jesenofsky David G. Robinson Peter Pimpl 《The Plant journal : for cell and molecular biology》2010,62(4):601-614
Transport of soluble cargo molecules to the lytic vacuole of plants requires vacuolar sorting receptors (VSRs) to divert transport of vacuolar cargo from the default secretory route to the cell surface. Just as important is the trafficking of the VSRs themselves, a process that encompasses anterograde transport of receptor–ligand complexes from a donor compartment, dissociation of these complexes upon arrival at the target compartment, and recycling of the receptor back to the donor compartment for a further round of ligand transport. We have previously shown that retromer‐mediated recycling of the plant VSR BP80 starts at the trans‐Golgi network (TGN). Here we demonstrate that inhibition of retromer function by either RNAi knockdown of sorting nexins (SNXs) or co‐expression of mutants of SNX1/2a specifically inhibits the ER export of VSRs as well as soluble vacuolar cargo molecules, but does not influence cargo molecules destined for the COPII‐mediated transport route. Retention of soluble cargo despite ongoing COPII‐mediated bulk flow can only be explained by an interaction with membrane‐bound proteins. Therefore, we examined whether VSRs are capable of binding their ligands in the lumen of the ER by expressing ER‐anchored VSR derivatives. These experiments resulted in drastic accumulation of soluble vacuolar cargo molecules in the ER. This demonstrates that the ER, rather than the TGN, is the location of the initial VSR–ligand interaction. It also implies that the retromer‐mediated recycling route for the VSRs leads from the TGN back to the ER. 相似文献
5.
Sally W. Rogers Buhyum Youn John C. Rogers ChulHee Kang 《Acta Crystallographica. Section D, Structural Biology》2004,60(11):2028-2030
Vacuolar sorting receptor (VSR) proteins bind soluble protein ligands in a sequence‐specific manner and target them to the lytic vacuole in plant cells. A VSR from Arabidopsis thaliana, AtBP80b, has been successfully purified after heterologous expression in Drosophila S2 cells. The AtBP80b protein (560 amino acids) was crystallized by the hanging‐drop method with a PEG 400‐based precipitant. Preliminary X‐ray diffraction studies of an AtBP80b crystal showed that it belongs to the cubic space group P213 (or P4232) and has unit‐cell parameters a = b = c = 145.9 Å. Crystals of the VSR diffract beyond 2.5 Å resolution. 相似文献
6.
植物种子贮藏蛋白质及其细胞内转运与加工 总被引:1,自引:0,他引:1
高等植物种子成熟过程中贮存大量的贮藏蛋白质作为种子发芽和初期生长的重要营养来源。根据溶解性不同, 种子贮藏蛋白质可分为白蛋白、球蛋白、醇溶蛋白和谷蛋白4类。在种子胚发育过程中, 醇溶蛋白在粗面内质网合成后形成蛋白质聚集体, 直接出芽形成蛋白体并贮存其中。白蛋白、球蛋白和谷蛋白在粗面内质网以分子量较大的前体形式合成后, 根据各自的分选信号进入特定的运输囊泡, 经由受体依赖型运输/聚集体形式运输转运至蛋白质贮藏型液泡中, 然后经过液泡加工酶等的剪切转换为成熟型贮藏蛋白质并贮存其中。蛋白质的合成、分选、转运和加工等过程影响种子蛋白质的品质及含量。该文对种子贮藏蛋白质的分类和运输、加工以及这些过程对种子蛋白质品质和含量的影响进行了概述。 相似文献
7.
Jinbo Shen Yu Ding Caiji Gao Enrique Rojo Liwen Jiang 《The Plant journal : for cell and molecular biology》2014,80(6):977-992
Vacuolar sorting receptors (VSRs) in Arabidopsis mediate the sorting of soluble proteins to vacuoles in the secretory pathway. The VSRs are post‐translationally modified by the attachment of N‐glycans, but the functional significance of such a modification remains unknown. Here we have studied the role(s) of glycosylation in the stability, trafficking and vacuolar protein transport of AtVSR1 in Arabidopsis protoplasts. AtVSR1 harbors three complex‐type N‐glycans, which are located in the N‐terminal ‘PA domain’, the central region and the C‐terminal epidermal growth factor repeat domain, respectively. We have demonstrated that: (i) the N‐glycans do not affect the targeting of AtVSR1 to pre‐vacuolar compartments (PVCs) and its vacuolar degradation; and (ii) N‐glycosylation alters the binding affinity of AtVSR1 to cargo proteins and affects the transport of cargo into the vacuole. Hence, N‐glycosylation of AtVSR1 plays a critical role in its function as a VSR in plants. 相似文献
8.
Ricin is synthesised as an ER-targeted precursor containing an enzymatic A chain and a galactose-binding B chain separated by a 12-amino acid linker propeptide. This internal propeptide is known to contain a sequence-specific vacuolar sorting signal whose functionality depends on the presence of an isoleucine residue. Conversion of this isoleucine to glycine completely abolished vacuolar targeting of proricin and led to its secretion. However, when this mutated signal was positioned at the C-terminus of a normally secreted reporter, vacuolar targeting of a significant fraction still occurred. Likewise, when the corrupted linker was C-terminally exposed within its natural context following the mature ricin A chain, and then co-expressed with ricin B chain, toxin heterodimers were still partially transported to tobacco cell vacuoles. By contrast, when placed at the N-terminus of the secreted reporter, or at the N-terminus of ricin B chain for co-expression with ricin A chain, the propeptide behaved most strikingly as a sequence-specific vacuolar targeting signal that, when mutated, resulted in complete secretion of the proteins. It would appear that the position of the linker peptide influences the specificity of its vacuolar targeting function. 相似文献
9.
David C Gershlick Carine De Marcos Lousa Lucy Farmer Jurgen Denecke 《Plant signaling & behavior》2014,9(10)
Transport of proteins via the secretory pathway is controlled by a combination of signal dependent cargo selection as well as unspecific bulk flow of membranes and aqueous lumen. Using the plant vacuolar sorting receptor as model for membrane spanning proteins, we have distinguished bulk flow from signal mediated protein targeting in biosynthetic and endocytic transport routes and investigated the influence of transmembrane domain length. More specifically, long transmembrane domains seem to prevent ER retention, either by stimulating export or preventing recycling from post ER compartments. Long transmembrane domains also seem to prevent endocytic bulk flow from the plasma membrane, but the presence of specific endocytosis signals overrules this in a dominant manner. 相似文献
10.
Zhang S Ren J Li H Zhang Q Armstrong JS Munn AL Yang H 《Traffic (Copenhagen, Denmark)》2004,5(12):1017-1030
The Niemann Pick C1 protein localizes to late endosomes and plays a key role in the intracellular transport of cholesterol in mammalian cells. Cholesterol and other lipids accumulate in a lysosomal or late endosomal compartment in cells lacking normal NPC1 function. Other than accumulation of lipids, defects in lysosomal retroendocytosis, sorting of a multifunctional receptor and endosomal movement have also been detected in NPC1 mutant cells. Ncr1p is an ortholog of NPC1 in the budding yeast Saccharomyces cerevisiae. In this study, we show that Ncr1p is a vacuolar membrane protein that transits through the biosynthetic vacuolar protein sorting pathway, and that it can be solubilized by Triton X-100 at 4 degrees C. Using well-established assays, we demonstrate that the absence of Ncr1p had no effect on fluid phase and receptor- mediated endocytosis, biosynthetic delivery to the vacuole, retrograde transport from endosome to Golgi and ubiquitin- and nonubiquitin-dependent multivesicular body sorting. We conclude that Ncr1p does not have an essential role in known endocytic transport pathways in yeast. 相似文献
11.
汉滩病毒(HTNV)的G1蛋白胞质区尾段包含保守的免疫受体酪氨酸活化基序(ITAM)样基序,该基序与许多重要的免疫受体胞质区ITAM基序同源性较高。为了研究HTNV的G1 ITAM样基序的免疫信号转导功能,首先人工合成了一段保守的酪氨酸残基磷酸化的G1 ITAM样基序多肽,应用体外蛋白激酶共沉淀实验,分别从Jur-kat细胞和Raji细胞裂解物中初筛到5~9种与该基序相互作用的磷酸化蛋白或激酶;然后通过突变体分析、体外磷酸化实验和体外激酶共沉淀-免疫印迹分析,进一步确证了G1 ITAM样基序在体外可以与Src家族蛋白酪氨酸激酶(PTK)Lyn、Fyn及其下游Syk家族激酶Syk、ZAP-70相互作用,而这种相互作用依赖于该基序中两个高度保守的酪氨酸残基的存在。上述研究表明,HTNV G1蛋白胞质区包含一个高度保守的功能性ITAM样基序,该基序在体外可以与TCR和BCR信号转导中关键的PTK相互作用,为进一步探讨HTNV G1蛋白ITAM样基序在肾综合征出血热(HFRS)免疫信号传递中的作用奠定了基础。 相似文献
12.
Xavier Michelet Adriana Alberti Laura Benkemoun Nathalie Roudier Christophe Lefebvre Renaud Legouis 《Biology of the cell / under the auspices of the European Cell Biology Organization》2009,101(10):599-615
Background information. Within the endocytic pathway, the ESCRT (endosomal sorting complex required for transport) machinery is essential for the biogenesis of MVBs (multivesicular bodies). In yeast, ESCRTs are recruited at the endosomal membrane and are involved in cargo sorting into intralumenal vesicles of the MVBs. Results. In the present study, we characterize the ESCRT‐III protein CeVPS‐32 (Caenorhabditis elegans vacuolar protein sorting 32) and its interactions with CeVPS‐27, CeVPS‐23 and CeVPS‐4. In contrast with other CevpsE (class E vps) genes, depletion of Cevps‐32 is embryonic lethal with severe defects in the remodelling of epithelial cell shape during organogenesis. Furthermore, Cevps‐32 animals display an accumulation of enlarged early endosomes in epithelial cells and an accumulation of autophagosomes. The CeVPS‐32 protein is enriched in epithelial tissues and in residual bodies during spermatid maturation. We show that CeVPS‐32 and CeVPS‐27/Hrs (hepatocyte‐growth‐factor‐regulated tyrosine kinase substrate) are enriched in distinct subdomains at the endosomal membrane. CeVPS‐27‐positive subdomains are also enriched for the ESCRT‐I protein CeVPS‐23/TSG101 (tumour susceptibility gene 101). The formation of CeVPS‐27 subdomains is not affected by the depletion of CeVPS‐23, CeVPS‐32 or the ATPase CeVPS‐4. Conclusion. Our results suggest that the formation of membrane subdomains is essential for the maturation of endosomes. 相似文献
13.
Although recent evidence supports a functional relationship between platelet endothelial cell adhesion molecule (PECAM-1) and Syk tyrosine kinase, little is known about the interaction of Syk with PECAM-1. We report that down-regulation of Syk inhibits the spreading of human THP-1 macrophage cells. Moreover, our data indicate that Syk binds PECAM-1 through its immune tyrosine-based inhibitory motif (ITIM), and dual phosphorylation of the ITIM domain of PECAM-1 leads to activation of Syk. Our results indicate that the distance between the phosphotyrosines could be up to 22 amino acids in length, depending on the conformational flexibility, and that the dual ITIM tyrosine motifs of PECAM-1 facilitate immunoreceptor tyrosine-based activation motif-like signaling. The preferential binding of PECAM-1 to Src homology region 2 domain-containing phosphatase-2 or Syk may depend on their relative affinities, and could provide a mechanism by which signal transduction from PECAM-1 is internally regulated by both positive and negative signaling enzymes. 相似文献
14.
Alix and its homologs are involved in various phenomena such as endosomal protein-sorting and adaptation to stress conditions. In this study, we found that development of Dictyostelium discoideum Alix (DdAlix) deletion mutant (alx-) cells was impaired in alkaline pH environments. The fruiting body formation efficiency of alx- cells at pH 9.0 was significantly lower than that of wild-type cells (6.8+/-4.2% vs 93+/-6.3%). The alkaline-sensitive phenotype of alx- cells was rescued by addition of salt. The phenotype was rescued by exogenous expression of human Alix as well as DdAlix but not by that of either Saccharomyces cerevisiae Alix homolog Rim20 or Bro1. DdAlix may be, structurally and functionally, more related to human Alix than to yeast Rim20 and Bro1. 相似文献
15.
The multivesicular body (MVB) pathway functions in multiple cellular processes including cell surface receptor down-regulation and viral budding from host cells. An important step in the MVB pathway is the correct sorting of cargo molecules, which requires the assembly and disassembly of endosomal sorting complexes required for transport (ESCRTs) on the endosomal membrane. Disassembly of the ESCRTs is catalyzed by ATPase associated with various cellular activities (AAA) protein Vps4. Vps4 contains a single AAA domain and undergoes ATP-dependent quaternary structural change to disassemble the ESCRTs. Structural and biochemical analyses of the Vps4 ATPase reaction cycle are reported here. Crystal structures of Saccharomyces cerevisiae Vps4 in both the nucleotide-free form and the ADP-bound form provide the first structural view illustrating how nucleotide binding might induce conformational changes within Vps4 that lead to oligomerization and binding to its substrate ESCRT-III subunits. In contrast to previous models, characterization of the Vps4 structure now supports a model where the ground state of Vps4 in the ATPase reaction cycle is predominantly a monomer and the activated state is a dodecamer. Comparison with a previously reported human VPS4B structure suggests that Vps4 functions in the MVB pathway via a highly conserved mechanism supported by similar protein-protein interactions during its ATPase reaction cycle. 相似文献
16.
Uemura T Morita MT Ebine K Okatani Y Yano D Saito C Ueda T Nakano A 《The Plant journal : for cell and molecular biology》2010,64(5):864-873
SNAREs (soluble N-ethylmaleimide sensitive factor attachment protein receptors) mediate specific membrane fusion between transport vesicles or organelles and target membranes. VAM3/SYP22 and PEP12/SYP21 are Qa-SNAREs that act in the vacuolar transport pathway of Arabidopsis thaliana, and are localized predominantly on the vacuolar membrane and the pre-vacuolar compartment (PVC), respectively. Previous studies have shown that loss-of-function mutants of VAM3/SYP22 or PEP12/SYP21 showed male gametophytic lethality, suggesting that VAM3/SYP22 and PEP12/SYP21 possess different, non-redundant functions. We have re-evaluated the effects of mutations in these genes using T-DNA insertion mutants in the Columbia accession. We found that a mutation in VAM3/SYP22 (vam3-1) caused pleiotropic abnormalities, including semi-dwarfism and wavy leaves. In contrast, a loss-of-function mutant of PEP12/SYP21 (pep12) showed no apparent abnormal phenotype. We also found that the double vam3-1 pep12 mutant had severely reduced fertilization competence, although male and female gametophytes (vam3-1(-) pep12(-) ) maintained the ability to fertilize. Moreover, promoter swapping analysis revealed that expression of a GFP-PEP12/SYP21 fusion under the control of the VAM3/SYP22 promoter suppressed all phenotypes of the vam3-1 mutant. These results indicate that the functions of VAM3/SYP22 and PEP12/SYP21 were redundant and interchangeable. 相似文献
17.
Plant cells may contain two functionally distinct vacuolar compartments. Membranes of protein storage vacuoles (PSV) are marked by the presence of α-tonoplast intrinsic protein (TIP), whereas lytic vacuoles (LV) are marked by the presence of γ-TIP. Mechanisms for sorting integral membrane proteins to the different vacuoles have not been elucidated. Here we study a chimeric integral membrane reporter protein expressed in tobacco suspension culture protoplasts whose traffic was assessed biochemically by following acquisition of complex Asn-linked glycan modifications and proteolytic processing, and whose intracellular localization was determined with confocal immunofluorescence. We show that the transmembrane domain of the plant vacuolar sorting receptor BP-80 directs the reporter protein via the Golgi to the LV prevacuolar compartment, and attaching the cytoplasmic tail (CT) of γ-TIP did not alter this traffic. In contrast, the α-TIP CT prevented traffic of the reporter protein through the Golgi and caused it to be localized in organelles separate from ER and from Golgi and LV prevacuolar compartment markers. These organelles had a buoyant density consistent with vacuoles, and α-TIP protein colocalized in them with the α-TIP CT reporter protein when the two were expressed together in protoplasts. These results are consistent with two separate pathways to vacuoles for membrane proteins: a direct ER to PSV pathway, and a separate pathway via the Golgi to the LV. 相似文献
18.
Schaefer AW Kamei Y Kamiguchi H Wong EV Rapoport I Kirchhausen T Beach CM Landreth G Lemmon SK Lemmon V 《The Journal of cell biology》2002,157(7):1223-1232
Dynamic regulation of the cell surface expression of adhesion molecules is an important mechanism for controlling neuronal growth cone motility and guidance. Clathrin-mediated vesicular internalization of L1 via the tyrosine-based endocytosis motif YRSL regulates adhesion and signaling by this Ig superfamily molecule. Here, we present evidence that tyrosine-1176 (Y1176) of the YRSL motif is phosphorylated in vivo. The nonreceptor tyrosine kinase (p60src) is implicated in L1-mediated neurite outgrowth, and we find that p60src phosphorylates Y1176 in vitro. Phosphorylation of Y1176 prevents L1 binding to AP-2, an adaptor required for clathrin-mediated internalization of L1. mAb 74-5H7 recognizes the sequence immediately NH2-terminal to the tyrosine-based motif and binds L1 only when Y1176 is dephosphorylated. 74-5H7 identifies a subset of L1 present at points of cell-cell contact and in vesicle-like structures that colocalize with an endocytosis marker. L1-L1 binding or L1 cross-linking induces a rapid increase in 74-5H7 immunoreactivity. Our data suggest a model in which homophilic binding or L1 cross-linking triggers transient dephosphorylation of the YRSL motif that makes L1 available for endocytosis. Thus, the regulation of L1 endocytosis through dephosphorylation of Y1176 is a critical regulatory point of L1-mediated adhesion and signaling. 相似文献
19.
Toxoplasma gondii, like most apicomplexan parasites, possesses an essential relict chloroplast, the apicoplast. Several apicoplast membrane proteins lack the bipartite targeting sequences of luminal proteins. Vesicles bearing these membrane proteins are detected during apicoplast enlargement, but the means of cargo selection remains obscure. We used a combination of deletion mutagenesis, point mutations and protein chimeras to identify a short motif prior to the first transmembrane domain of the T. gondii apicoplast phosphate transporter 1 (APT1) that is necessary for apicoplast trafficking. Tyrosine 16 was essential for proper localization; any substitution resulted in misdirection of APT1 to the Golgi body. Glycine 17 was also important, with significant Golgi body accumulation in the alanine mutant. Separation of at least eight amino acids from the transmembrane domain was required for full motif function. Similarly placed YG motifs are present in apicomplexan APT1 orthologs and the corresponding N‐terminal domain from Plasmodium vivax was able to route T. gondii APT1 to the apicoplast. Differential permeabilization showed that both the N‐ and C‐termini of APT1 are exposed to the cytosol. We propose that this YG motif facilitates APT1 trafficking via interactions that occur on the cytosolic face of nascent vesicles destined for the apicoplast. 相似文献
20.
Xavier Michelet Abderazak Djeddi Renaud Legouis 《Biology of the cell / under the auspices of the European Cell Biology Organization》2010,102(3):191-202
ESCRTs (endosomal sorting complexes required for transport) were first discovered in yeast and are known to be required in the biogenesis of the MVB (multivesicular body). Most ESCRT research has been carried out in vitro using models such as yeast and mammalian cells in culture. The role of the ESCRTs genes in endosome maturation is conserved from yeast to mammals, but little is known about their function during development in multicellular organisms. Since ESCRTs play a leading role in regulating some cell signalling pathways by addressing receptors to the lysosome, it appears important to monitor ESCRT functions in multicellular models. The present review summarizes recent research on the developmental and cellular functions of the ESCRT in Caenorhabditis elegans, Drosophila melanogaster, Mus musculus or Arabidopsis thaliana. 相似文献