首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on specific intercellular adhesion   总被引:2,自引:0,他引:2  
  相似文献   

2.
Summary Primary monolayer cell cultures of adult rat hepatocytes underwent change in morphology and substantial cell loss between 1 and 3 days postinoculation. Dexamethasone-supplementation (1μM) of the culture medium maintained the polygonal epithelial morphology of the hepatocytes and increased longevity such that over 80% of the cells survived for 3 days and at least 30% for 8 or 9 days. This enhancement of survival was obtained up to 48 hr postinoculation, but the earlier the time of dexamethasone supplementation the greater the effect. Removal of dexamethasone resulted in a decrease in longevity. The positive effect of dexamethasone on longevity was observed following dexamethasone replacement of insulin in supplemented cultures, but the combination of insulin and dexamethasone resulted in poorer survival than with dexamethasone alone. The results are interpreted to indicate that dexamethasone provided a requirement of the in vitro environment for survival and suggest that elaboration of a complex medium is required to maintain hepatocytes in culture. This study was supported by an Alexander Ralston Peacock Memorial Grant for Cancer Research (No. BC-133A) from the American Cancer Society.  相似文献   

3.
Summary The conditions for obtaining representative, primary adult rat hepatocyte cultures were explored. The methods applied included enzymatic liver perfusion which was nondestructive to hepatocytes, the prevention of aggregation of dissociated cells and the selective attachment of viable cells. These procedures yielded a recovery of 50% of the liver cells which gave rise to cultures representing 14% of the total liver cells. The cultures were composed of homogeneous epithelial-like cells cytologically similar to hepatocytes and possessed a number of liver-specific enzymes. There was virtually no cell division initially and most cells died between 24 and 48 hr. Insulin enhanced the attachment of the liver cells, altered their morphology, but did not prolong cell survival. This study was supported by grant no. BC 133 from the American Cancer Society.  相似文献   

4.
The molecules involved in Ca2+-dependent cell-cell adhesion systems (CDS) in mouse hepatocytes were characterized and compared with those in teratocarcinoma cells. Fab fragments of antibody raised against liver tissues (anti-liver) inhibited Ca2+-dependent aggregation of both liver and teratocarcinoma cells. A monoclonal antibody raised against teratocarcinoma CDS (ECCD-1) also inhibited the Ca2+-dependent aggregation of these two cell types equally. These antibodies induced disruption of cell-cell adhesion in monolayers of hepatocytes. Thus, CDS in these two cell types are not immunologically distinctive. Immunochemical analyses with these antibodies showed that CDS in both hepatocytes and teratocarcinoma cells involved at least two classes of cell surface proteins with molecular weights of 124,000 and 104,000. ECCD-1 selectively bound to hepatocytes but not to fibroblastic cells in liver cell cultures. Thus, the molecular constitution of CDS in hepatocytes and teratocarcinoma stem cells is identical. As ECCD-1 reacts with other classes of embryonic and fetal cells, the molecules identified here could have a major role in cell-cell adhesion in various tissues at any developmental stage of animals.  相似文献   

5.
In a study performed to identify the molecular mechanisms which regulate cell to cell adhesion and contact inhibition in neoplastic and syngeneic normal cells of the rat we have observed that the adhesive capacity depends on the reagents used, either EDTA or trypsin, to release the cells from monolayer. Taking profit of this last property and of the possibility of blocking free -NH2 groups on membrane proteins with specific cross-linking reagents "in vitro", we have studied in this work the behaviour of the proteins of the cell coat involved in cell to cell adhesion of rat fibroblasts FG/2. The cross-linking reagents used were dimethyladipimidate (DMA) and dimethylsuberimidate (DMS). The cells were exposed to the reagents at 0 degrees C for 30'. Cell to cell adhesion was measured by determining the percentage of single cells labeled with 3H-leucine, adhering to a confluent monolayer at different incubation times. The inhibitory effect on cell to cell adhesion brought about by cross-linking reagents indicates that a) EDTA-released cells are more sensitive to both imides than those released with trypsin, b) DMA is more effective on trypsin-released cells and c) DMS is more effective on EDTA-released cells. Therefore, we conclude that the inhibition of adhesion by reaction with the two cross-linking reagents is more likely due to a stiffening of the molecules of the cell coat involved in the adhesion, rather than to the modification of -NH2 residues which should specifically participate to adhesive process.  相似文献   

6.
Chicken hepatocytes synthesize glucose and fatty acids at rates which are faster than rat hepatocytes. The former also consume exogenous lactate and pyruvate at a much faster rate and, in contrast to rat hepatocytes, do not accumulate large quantities of lactate and pyruvate by aerobic glycolysis. α-Cyano-4-hydroxycinnamate, an inhibitor of pyruvate transport, causes lactate and pyruvate accumulation by chicken hepatocytes. Glucagon and N6,O2′-dibutyryl adenosine 3′,5′-monophosphate (dibutyryl cyclic AMP) convert pyruvate kinase (EC 2.7.1.40) of rat hepatocytes to a less active form. This effect explains, in part, inhibition of glycolysis, inhibition of lipogenesis, stimulation of gluconeogenesis, and inhibition of the transfer of reducing equivalents from the mitochondrial compartment to the cytoplasmic compartment by these compounds. In contrast, pyruvate kinase of chicken hepatocytes is refractory to inhibition by glucagon or dibutyryl cyclic AMP. Rat liver is known to have predominantly the type L isozyme of pyruvate kinase and chicken liver predominantly the type K. Thus, only the type L isozyme appears subject to interconversion between active and inactive forms by a cyclic AMP-dependent, phosphorylation-dephos-phorylation mechanism. This explains why the transfer of reducing equivalents from the mitochondrial compartment to the cytoplasmic compartment of chicken hepatocytes is insensitive to cyclic AMP. However, glucagon and dibutyryl cyclic AMP inhibit net glucose utilization, inhibit fatty acid synthesis, inhibit lactate and pyruvate accumulation in the presence of α-cyano-4-hydroxycinnamate, and stimulate gluconeogenesis from lactate and dihydroxyacetone by chicken hepatocytes. Thus, a site of action of cyclic AMP distinct from pyruvate kinase must exist in the glycolytic-gluconeogenic pathway of chicken liver.  相似文献   

7.
Agonist-induced intracellular calcium signals may propagate as intercellular Ca2+ waves in multicellular systems as well as in intact organs. The mechanisms initiating intercellular Ca2+ waves in one cell and determining their direction are unknown. We investigated these mechanisms directly on fura2-loaded multicellular systems of rat hepatocytes and on cell populations issued from peripheral (periportal) and central (perivenous) parts of the hepatic lobule. There was a gradient in vasopressin sensitivity along connected cells as demonstrated by low vasopressin concentration challenge. Interestingly, the intercellular sensitivity gradient was abolished either when D-myo-inositol 1,4, 5-trisphosphate (InsP3) receptor was directly stimulated after flash photolysis of caged InsP3 or when G proteins were directly stimulated with AlF4-. The gradient in vasopressin sensitivity in multiplets was correlated with a heterogeneity of vasopressin sensitivity in the hepatic lobule. There were more vasopressin-binding sites, vasopressin-induced InsP3 production and V1a vasopressin receptor mRNAs in perivenous than in periportal cells. Therefore, we propose that hormone receptor density determines the cellular sensitivity gradient from the peripheral to the central zones of the liver cell plate, thus the starting cell and the direction of intercellular Ca2+ waves, leading to directional activation of Ca2+-dependent processes.  相似文献   

8.
B A Laishes  G M Williams 《In vitro》1976,12(12):821-832
Primary monolayer cell cultures of adult rat hepatocytes underwent change in morphology and substantial cell loss between 1 and 3 days postinoculation. Dexamethasone-supplementation (1 micronM) of the culture medium maintained the polygonal epithelial morphology of the hepatocytes and increased longevity such that over 80% of the cells survived for 3 days and at least 30% for 8 or 9 days. This enhancement of survival was obtained up to 48 hr postinoculation, but the earlier the time of dexamethason supplementation the greater the effect. Removal of dexamethasone resulted in a decrease in longevity. The positive effect of dexamethasone on longevity was observed following dexamethasone replacement of insulin in supplemented cultures, but the combination of insulin and dexamethasone resulted in poorer survival than with dexamethasone alone. The results are interpreted to indicate that dexamethasone provided a requirement of the in vitro environment for survival and suggest that elaboration of a complex medium is required to maintain hepatocytes in culture.  相似文献   

9.
Investigations into cellular adhesion, both of a biochemical and biophysical nature, have not yet produced an established theory or widely accepted hypothesis to explain the mechanics of this fundamental biological process although much information concerning the structure and function of the mammalian cell surface has been gained. At the present time there is increasing evidence to suggest that cellular adhesion is mediated by specific cell surface macromolecules which are capable of forming protein-carbohydrate complexes possibly resembling those found between plant lectins and their carbohydrate substrates.  相似文献   

10.
11.
12.
Cell-cell adhesion complexes play an important role in the organization and behavior of cells in tissues. An important step in the formation of such complexes is the clustering of the adhesion receptors; this is critical for proper adhesion, for anchorage of the cytoskeleton to the plasma membrane, and for generation of different intracellular signals. Recent advances reveal that several interconnected mechanisms are responsible for clustering of the different adhesion receptors.  相似文献   

13.
14.
15.
Species restrictions in immune cell interactions have been demonstrated both in Ag-specific responses of T lymphocytes and the phenomenon of natural attachment. To determine the possible contribution of adhesion receptors to these restrictions, we have studied binding between the murine and human homologues of LFA-1 (CD11a/CD18) and ICAM employing purified human LFA-1 and ICAM-1 (CD54) bound to solid substrates. Murine cell lines bind to purified human LFA-1 through ICAM-1 and at least one other counter-receptor. This provides evidence for multiple counter-receptors for LFA-1 in the mouse as well as in the human. In contrast to binding of murine ICAM-1 to human LFA-1, murine LFA-1 does not bind to human ICAM-1. The species specificity maps to the LFA-1 alpha subunit, because mouse x human hybrid cells expressing the human alpha subunit associated with a mouse beta subunit bind to human ICAM-1, whereas those with a human beta subunit associated with a murine alpha subunit do not. Increased adhesiveness for ICAM-1 stimulated by phorbol esters could be demonstrated for hybrid LFA-1 molecules with human alpha and murine beta subunits.  相似文献   

16.
17.
1. The assembly of rat liver cytochrome oxidase was studied in isolated hepatocytes and isolated liver mitochondria labelled with L-[35S]methionine. 2. Labelled subunits II and III appeared in the immunoabsorbed holoenzyme within minutes after the initiation of a pulse label. In contrast, labelled subunit I appeared in immunoabsorbed holoenzyme only after a subsequent 2 h chase or after an additional 2 h of labelling. Subunit I was heavily labelled, however, in intact mitochondria after 10 min. 3. A similar pattern of labelling was observed in holo-cytochrome oxidase which was chemically isolated by a small scale procedure adapted for this purpose. The appearance of subunit I in the holoenzyme was delayed for 1.5-2 h after a 60 min pulse with labelled methionine. 4. Incubation of hepatocytes for 4 h in the presence of cycloheximide had no effect on the labelling pattern described above. 5. Methods were developed in which newly translated, presumably unassembled, subunits of cytochrome oxidase could be separated from the holoenzyme by fractionation in Triton X-114. Short-term pulse experiments indicate that subunits II and III are associated with the holoenzyme fraction immediately after their completion, whereas subunit I is not. 6. The data are consistent with a model in which cytochrome oxidase assembly is viewed as an ordered and sequential event.  相似文献   

18.
The anomeric specificity of D-glucose metabolism in intact hepatocytes remains a matter of debate. This issue was further investigated in the present study, which is based on the quantification of the alpha- and beta-anomers of the 13C-enriched isotopomers of D-glucose generated by rat liver cells exposed to either D-[1-13C] fructose or D-[2-13C] fructose in the presence of D2O. The D-[1-13C]glucose/D-[6-13C]glucose paired ratios found in the cells exposed to D-[1-13C] fructose and the D-[2-13C]glucose/D-[5-13C]glucose paired ratios found in the cells exposed to D-[2-13C] fructose yielded a paired beta/alpha ratio averaging (mean +/- S.E.M.) 79.3 +/- 6.1%. In the case of the isotopomers of D-glucose formed by gluconeogenesis, the D-[2-13C]glucose/D-[5-13C]glucose and D-[3-13C]glucose/D-[4-13C]glucose paired ratios found in cells exposed to D-[1-13C] fructose, as well as the D-[1-13C]glucose/D-[6-13C]glucose and D-[3-13C]glucose/D-[4-13C]glucose paired ratios found in cells exposed to D-[2-13C]fructose, yielded an alpha/beta paired ratio averaging 75.0 +/- 5.8%. Last, in the cells exposed to D-[2-13C]fructose, the beta/alpha ratio for the C2-deuterated isotopomers of D-[2-13C]glucose represented 78.9 +/- 3.7% of that for the C5-deuterated isotopomers of D-[5-13C]glucose. The three values representative of the anomeric specificity of D-glucose production by liver cells were not significantly different from one another, with an overall mean value of 76.9 +/- 3.6%. These findings unambiguously document that the anomeric specificity of phosphoglucoisomerase is operative in intact hepatocytes, resulting in a preferential output of the alpha-anomer of 13C-enriched D-glucose under the present experimental conditions.  相似文献   

19.
Cell-cell interaction and the extracellular matrix (ECM) are believed to play essential roles duringin vitro culturing of primary hepatocytes in the control of differentiation and in the maintenance of tissue specific functions. The objective of this study was to examine the effects of degree of cell-cell contact (DCC) on liver specific function of rat primary hepatocytes. Hepatocyte aggregates with various degrees of cell-cell contact,i.e., dispersed cells, longish aggregate, rugged aggregate, and smooth spheroid were obtained at 1, 5–6, 15–20, and 36–48 hrs, respectively in suspension cultures grown in spinner flasks embedded in Caalginate bead and collagen gel in order. The smooth spheroids displayed a decrease in viability and functional activities. This may result from mass transfer limitation and shear damage caused by agitation during aggregation. The rugged aggregate showed a higher viability and albumin secretion rate than the dispersed cells or the other aggregates. This result indicates the possible enhancement of a bioartificial liver's (BAL) performance using primary hepatocytes and the reduction in time to prepare a BAL through optimization of the immobilization time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号