首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Haemophilus influenzae capsulation gene cluster: a compound transposon   总被引:11,自引:0,他引:11  
The population of capsulate Haemophilus influenzae is divided into two phylogenetic divisions. Here we show that in division I strains the capsulation (cap) gene cluster lies between direct repeats of a novel insertion sequence (IS)-like element, IS1016. cap has apparently been mobilized in the chromosome as a compound transposon by IS1016, and the repeats have provided a molecular substrate for reversible cap gene amplification, with augmentation of capsule production, through unequal homologous recombination. Such amplification has occurred in serotype b strains, but in these a large direct repeat of cap genes has become fixed in the population. We have found a 1.2 kb deletion at one end of this duplicated capb locus, removing most of one copy of the polysaccharide export gene bexA. We have shown that this makes capsulation dependent on preservation of the direct repeat structure in order to avoid recombination-mediated loss of the other copy of bexA. Type b strains with this cap configuration are disseminated worldwide and currently cause nearly all invasive Haemophilus infections, leading us to speculate that the 1.2 kb deletion occurred in an ancestral type b strain and conferred significant biological advantage.  相似文献   

2.
Cloned Haemophilus influenzae type b capsulation genes were used as hybridization probes to isolate DNA from the capsulation loci (cap) of other serotypes of H. influenzae. Mapping of the resulting clones and Southern hybridization analysis of chromosomal DNAs from type a, b, c, and d strains showed that in each strain cap was organized in the same way: a central DNA segment specific to each serotype flanked by DNA segments of common structure. We infer that enzymes necessary for the synthesis of specific capsular polysaccharide are encoded in the central segment of cap, while proteins involved in a more general way in the process of capsulation are encoded in the flanking segments. Studies of the function of the DNA in one of these non-serotype-specific flanking segments (J. S. Kroll, I. Hopkins, and E. R. Moxon, Cell 53:347-356, 1988) have previously identified a gene encoding a protein necessary for polysaccharide export, an event now deduced to proceed by a mechanism independent of the nature of the disaccharide subunit in the polysaccharide. The near-total duplication of cap that has been found in most type b strains was not found at the analogous locus in the other serotypes. This reinforces our previous hypothesis, based on study of type b strains alone, that while such a duplication is unnecessary for capsulation, it confers some unexplained survival advantage on the widely prevalent strains with this clinically important serotype.  相似文献   

3.
Although more than 98% of natural isolates of Haemophilus influenzae type b carry a duplication of 17 kilobases (kb) of DNA at the chromosomal capsulation locus, only one copy is required for capsulation. In one laboratory-derived and two clinical type b strains, the capsulation locus had a single copy of this 17-kb segment, together with 1.3 kb of DNA identified as lying between the repeats of the duplicated locus. This 1.3 kb appears to be crucial for capsule production, since strains lacking it, although retaining a 17-kb segment, were capsule deficient. On comparing capsule polysaccharide production by these three type b strains with that by a prototypic type b strain with a duplicated locus, a gene dosage effect was demonstrated, with a halving of detectable polysaccharide in the single-copy strains. Despite this reduction in polysaccharide, these strains retained virulence potential as evidenced by bacteremia and meningitis in infant rats. As well as subserving augmented capsule polysaccharide production, a duplicated configuration of the type b cap locus endows strains with genetic instability not found in capsulate single-copy variants. We speculate that a survival advantage might be conferred on strains carrying a duplication at this locus as a result of gene dosage, the genetic instability of the locus, or both.  相似文献   

4.
The nucleotide sequence of a 5.1 kb region in the Haemophilus influenzae type b capsulation locus has been determined and found to contain four open reading frames: bexD, bexC, bexB, and bexA. Comparison of the deduced products of bexC, bexB, and bexA to known proteins, and TnphoA mutagenesis, suggests that they form components of an ATP-driven polysaccharide export apparatus. Furthermore, close sequence similarity between BexA and BexB and products of the kpsT and kpsM genes at the Escherichia coli K5 capsulation locus (Smith et al., 1990--accompanying paper) suggests that capsulation genes in these organisms may have a common ancestry.  相似文献   

5.
6.
Temperate bacteriophages effect chromosomal evolution of their bacterial hosts, mediating rearrangements and the acquisition of novel genes from other taxa. Although the Haemophilus influenzae genome shows evidence of past phage-mediated lateral transfer, the phages presumed responsible have not been identified. To date, six different H. influenzae phages are known; of these, only the HP1/S2 group, which lyosogenizes exclusively Rd strains (which were originally encapsulated serotype d), is well characterized. Phages in this group are genetically very similar, with a highly conserved set of genes. Because the majority of H. influenzae strains are nonencapsulated (nontypeable), it is important to characterize phages infecting this larger, genetically more diverse group of respiratory pathogens. We have identified and sequenced HP2, a bacteriophage of nontypeable H. influenzae. Although related to the fully sequenced HP1 (and even more so to the partially sequenced S2) and similar in genetic organization, HP2 has a few novel genes and differs in host range; HP2 will not infect or lysogenize Rd strains. Genomic comparisons between HP1/S2 and HP2 suggest recent divergence, with new genes completely replacing old ones at certain loci. Sequence comparisons suggest that H. influenzae phages evolve by recombinational exchange of genes with each other, with cryptic prophages, and with the host chromosome.  相似文献   

7.
8.
The central (serotype-specific) Region II of the Haemophilus influenzae Type b capsulation locus cap is 8.3 kb long and contains a cluster of four genes. We show that these genes, designated orf1 to orf4, are involved in the biosynthetic steps required for the formation of the Type b capsular polysaccharide and that orf1 probably encodes a CDP-ribitolpyrophosphorylase. We present evidence that growth of polysaccharide chains takes place through the alternating addition of single sugar nucleotides.  相似文献   

9.
The serotype-specific, 5.9-kb region II of the Haemophilus influenzae type a capsulation locus was sequenced and found to contain four open reading frames termed acs1 to acs4. Acs1 was 96% identical to H. influenzae type b Orf1, previously shown to have CDP-ribitol pyrophosphorylase activity (J. Van Eldere, L. Brophy, B. Loynds, P. Celis, I. Hancock, S. Carman, J. S. Kroll, and E. R. Moxon, Mol. Microbiol. 15:107-118, 1995). Low but significant homology to other pyrophosphorylases was only detected in the N-terminal part of Acs1, whereas the C-terminal part was homologous to several short-chain dehydrogenases/reductases, suggesting that Acs1 might be a bifunctional enzyme. To test this hypothesis, acs1 was cloned in an expression vector and overexpressed in Escherichia coli. Cells expressing this protein displayed both ribitol 5-phosphate dehydrogenase and CDP-ribitol pyrophosphorylase activities, whereas these activities were not detectable in control cells. Acs1 was purified to near homogeneity and found to copurify with ribitol 5-phosphate dehydrogenase and CDP-ribitol pyrophosphorylase activities. These had superimposable elution profiles from DEAE-Sepharose and Blue-Sepharose columns. The dehydrogenase activity was specific for ribulose 5-phosphate and NADPH in one direction and for ribitol 5-phosphate and NADP+ in the other direction and was markedly stimulated by CTP. The pyrophosphorylase showed activity with CTP and ribitol 5-phosphate or arabitol 5-phosphate. We conclude that acs1 encodes a bifunctional enzyme that converts ribulose 5-phosphate into ribitol 5-phosphate and further into CDP-ribitol, which is the activated precursor form for incorporation of ribitol 5-phosphate into the H. influenzae type a capsular polysaccharide.  相似文献   

10.
J S Kroll  I Hopkins  E R Moxon 《Cell》1988,53(3):347-356
The capsulation locus cap in H. influenzae type b contains directly repeated segments of DNA flanking a bridge region. Here we show that this bridge region contains a gene, bexA, encoding a 24.7 kd protein essential for export of capsular polysaccharide. bexA is disrupted, with loss of part of its coding sequence, in the spontaneous reduction of the duplicated cap locus to single-copy that accompanies loss of capsule expression. The predicted amino acid sequence of BexA aligns significantly with that of MalK from E. coli and with HisP and OppD of S. typhimurium. Thus, polysaccharide export might occur via an energy-dependent transporter with similarities to those identified for the import of various substrates into Gram-negative bacteria, BexA being the "energizer" of the transporter.  相似文献   

11.
Certain non-capsulate strains belonging to the Haemophilus influenzae/Haemophilus aegyptius complex show unusually high pathogenicity, but the evolutionary origin of these virulent phenotypes, termed H. influenzae biogroup aegyptius, is as yet unknown. The aim of the present study was to elucidate the mechanisms of evolution of two paralogous genes, hap and iga, which encode the adhesion and penetration Hap protein and the IgA1 protease respectively. Partial sequencing of hap and iga genes in a comprehensive collection of strains belonging to the H. influenzae/H. aegyptius complex revealed considerable genetic polymorphism and pronounced mosaic-like patterns in both genes, but no evidence of intrastrain recombination between the two genes. A conserved hap pseudogene was present in all strains of H. aegyptius and H. influenzae biogroup aegyptius, each of which constituted distinct subpopulations as revealed by phylogenetic analysis. There was no evidence for a second, functional copy of the hap gene in these strains. The perturbed expression of the Hap serine protease appears to be associated with the formation of elongated bacterial cells growing in chains and a distinct colonization pattern on conjunctival cells, previously termed microcolony formation. The fact that individual hap pseudogenes differed from the ancestral sequence by zero to two positions within a 1.5 kb stretch suggests that the silencing event happened approximately 2000-11,000 years ago. Divergence of H. aegyptius and H. influenzae biogroup aegyptius occurred subsequent to this genetic event. The loss of Hap protein expression may be one of the genetic events that facilitated exploitation of the conjunctivae as a new niche.  相似文献   

12.
We studied the adherence of Haemophilus influenzae to monkey respiratory mucosa using nasal turbinates maintained in organ culture. Adherence of capsulated and rough strains was not inhibited by monosaccharides, sucrose, human albumin, foetal calf serum or polyribophosphate. However, antisera directed against surface components decreased bacterial adherence. Although variation in adherence capacity in individual strains was observed there was no correlation with capsulation, anatomical site of strain isolation or biotype. Bacterial surface structures other than capsular material appear important in effecting upper respiratory tract colonization.  相似文献   

13.
One of the common features of bacterial genomes is a strong compositional asymmetry between differently replicating DNA strands (leading and lagging). The main cause of the observed bias is the mutational pressure associated with replication. This suggests that genes translocated between differently replicating DNA strands are subjected to a higher mutational pressure, which may influence their composition and divergence rate. Analyses of groups of completely sequenced bacterial genomes have revealed that the highest divergence rate is observed for the DNA sequences that in closely related genomes are located on different DNA strands in respect to their role in replication. Paradoxically, for this group of sequences the absolute values of divergence rate are higher for closely related species than for more diverged ones. Since this effect concerns only the specific group of orthologs, there must be a specific mechanism introducing bias into the structure of chromosome by enriching the set of homologs in trans position in newly diverged species in relatively highly diverged sequences. These highly diverged sequences may be of varied nature: (1) paralogs or other fast-evolving genes under weak selection; or (2) pseudogenes that will probably be eliminated from the genome during further evolution; or (3) genes whose history after divergence is longer than the history of the genomes in which they are found. The use of these highly diverged sequences for phylogenetic analyses may influence the topology and branch length of phylogenetic trees. The changing mutational pressure may contribute to arising of genes with new functions as well.  相似文献   

14.
Neisseria meningitidis capsule is an important virulence determinant required for survival in the blood but is reportedly involved in inhibiting cellular interactions mediated by meningococcal outer membrane adhesins. However, evidence from our previous studies suggested that target receptor density on host cells may determine whether or not capsulate bacteria can adhere via outer membrane proteins such as Opa. To confirm this and evaluate the impact of capsulation on bacterial interactions, we used Opa(+) and Opa(-) derivatives of capsulate and acapsulate meningococcal isolates and transfected cell lines expressing CEACAM1, a receptor targeted by Opa proteins. To assess the extent and rate of cell association, subpopulations of stably transfected Chinese hamster ovary cells with different receptor levels were derived. A quantitative correlation of CEACAM1 levels and Opa-dependent binding of both capsulate and acapsulate bacteria was demonstrated, which was accelerated at high receptor densities. However, it appears that invasion by Opa(+) capsulate bacteria only occurs when a threshold level of CEACAM density has been reached. Target cells expressing high levels of CEACAM1 (MFI c. 400) bound threefold more, but internalized 20-fold more Opa(+) capsulate bacteria than those with intermediate expression (MFI c. 100). No overall selection of acapsulate phenotype was observed in the internalized population. These observations confirm that capsule may not be an adequate barrier for cellular interactions and demonstrate the role of a host factor that may determine capsulate bacterial invasion potential. Upregulation of CEACAMs, which can occur in response to inflammatory cytokines, could lead to translocation of a small number of fully capsulate bacteria across mucosal epithelium into the bloodstream sufficient to cause a rapid onset of disseminated disease. Thus the data also suggest a novel rationale for the epidemiological observations that individuals with prior infectious/inflammatory conditions carry a high risk of invasive meningococcal disease.  相似文献   

15.
Colanic acid (CA) is an extracellular polysaccharide produced by most Escherichia coli strains as well as by other species of the family Enterobacteriaceae. We have determined the sequence of a 23-kb segment of the E. coli K-12 chromosome which includes the cluster of genes necessary for production of CA. The CA cluster comprises 19 genes. Two other sequenced genes (orf1.3 and galF), which are situated between the CA cluster and the O-antigen cluster, were shown to be unnecessary for CA production. The CA cluster includes genes for synthesis of GDP-L-fucose, one of the precursors of CA, and the gene for one of the enzymes in this pathway (GDP-D-mannose 4,6-dehydratase) was identified by biochemical assay. Six of the inferred proteins show sequence similarity to glycosyl transferases, and two others have sequence similarity to acetyl transferases. Another gene (wzx) is predicted to encode a protein with multiple transmembrane segments and may function in export of the CA repeat unit from the cytoplasm into the periplasm in a process analogous to O-unit export. The first three genes of the cluster are predicted to encode an outer membrane lipoprotein, a phosphatase, and an inner membrane protein with an ATP-binding domain. Since homologs of these genes are found in other extracellular polysaccharide gene clusters, they may have a common function, such as export of polysaccharide from the cell.  相似文献   

16.
The genomic transferrin receptor genes ( tbpA and tbpB  ) from two strains of Haemophilus influenzae type b (Hib) and two strains of non-typable H. influenzae (NTHi) have been cloned and sequenced. The deduced protein sequences of the H. influenzae tbpA genes were 95–100% conserved and those of the tbpB genes were 66–100% conserved. The tbpB gene from one strain of NTHi was found to encode a truncated Tbp2 protein. The tbpB genes from four additional NTHi strains were amplified by the polymerase chain reaction (PCR) utilizing primers derived from the conserved N-terminal sequences of Tbp1 and Tbp2 and were found to encode full-length proteins. Although several bacterial species express transferrin receptors, when the Tbp1 and Tbp2 sequences from different organisms were compared, there was only limited homology. Recombinant Tbp1 and Tbp2 proteins were expressed from Escherichia coli and antisera were raised to the purified proteins. There was significant antigenic conservation of both Tbp1 and Tbp2 amongst H. influenzae strains, as determined by Western blot analysis. In a passive model of bacteraemia, infant rats were protected from challenge with Hib after transfer of anti-rTbp2 antiserum, but not after anti-rTbp1 antiserum.  相似文献   

17.
Haemophilus influenzae type b is a common cause of invasive bacterial disease, especially among children in underdeveloped countries. The type b polysaccharide capsule is a polymer of ribose and ribitol-5-phosphate and is a critical determinant of virulence. Expression of the type b capsule is dependent upon the cap b locus, which consists of three functionally distinct regions, designated regions 1 to 3. Region 3 contains the hcsA and hcsB genes, which share significant homology with genes that have been implicated in encapsulation in other pathogenic bacteria but have unclear functions. In this study, we inactivated hcsA alone, hcsB alone, and both hcsA and hcsB together and examined the effects of these mutations on polysaccharide transport and bacterial virulence properties. Inactivation of hcsA alone resulted in accumulation of polysaccharide in the periplasm and a partial decrease in surface-associated polysaccharide, whereas inactivation of hcsB alone or of both hcsA and hcsB together resulted in accumulation of polysaccharide in the periplasm and complete loss of surface-associated polysaccharide. All mutations eliminated serum resistance and abrogated bacteremia and mortality in neonatal rats. These results indicate that the hcsA and hcsB gene products have complementary functions involved in the transport of polysaccharide across the outer membrane and are essential for virulence.  相似文献   

18.
The genomic organization of Bordetella pertussis strains has been examined by using a new method. This method does not depend on the prior determination of a restriction map of the bacterial chromosome but is based on the ability to measure directly the distance between two genes. This is accomplished through the integration at each gene of a suicide vector containing a cleavage site for the intron-encoded endonuclease I-SceI, which is not otherwise found in the chromosome. Integration is mediated by homologous recombination between the chromosomal and cloned plasmid copies of a gene of interest. Digestion with I-SceI gives rise to a fragment the size of which represents the distance between the two genes. Multiple pairwise determinations within a set of genes provide sufficient information to derive a map of the relative gene positions. Mapping a set of 11 to 13 genes for five strains of B. pertussis and one strain of B. parapertussis revealed extensive divergence of gene order between B. pertussis Tohama I, B. pertussis 18-323, and B. parapertussis ATCC 15311. Less extensive divergence of gene order was observed between B. pertussis Tohama I and B. pertussis Tohama III, BP165, and Wellcome 28, with most of the observed differences explainable by large inversions.  相似文献   

19.
The gram-negative bacterium Haemophilus influenzae is a human-restricted commensal of the nasopharynx that can also be associated with disease. The majority of H. influenzae respiratory isolates lack the genes for capsule production and are nontypeable (NTHI). Whereas encapsulated strains are known to belong to serotype-specific phylogenetic groups, the structure of the NTHI population has not been previously described. A total of 656 H. influenzae strains, including 322 NTHI strains, have been typed by multilocus sequence typing and found to have 359 sequence types (ST). We performed maximum-parsimony analysis of the 359 sequences and calculated the majority-rule consensus of 4,545 resulting equally most parsimonious trees. Eleven clades were identified, consisting of six or more ST on a branch that was present in 100% of trees. Two additional clades were defined by branches present in 91% and 82% of trees, respectively. Of these 13 clades, 8 consisted predominantly of NTHI strains, three were serotype specific, and 2 contained distinct NTHI-specific and serotype-specific clusters of strains. Sixty percent of NTHI strains have ST within one of the 13 clades, and eBURST analysis identified an additional phylogenetic group that contained 20% of NTHI strains. There was concordant clustering of certain metabolic reactions and putative virulence loci but not of disease source or geographic origin. We conclude that well-defined phylogenetic groups of NTHI strains exist and that these groups differ in genetic content. These observations will provide a framework for further study of the effect of genetic diversity on the interaction of NTHI with the host.  相似文献   

20.
We have tried to approach the nature of the last common ancestor to Haemophilus influenzae and Escherichia coli and to determine how each bacterium could have diverged from this putative organism. The approach used was exhaustive analysis of the homologous proteins coded by genes present in these bacteria, using as criteria for sequence relatedness an alignment of at least 80 amino acid residues and a PAM distance (number of accepted point mutations per 100 residues separating two sequences) below 250. Evolutionarily significant similarities were found between 1,345 H. influenzae proteins (85% of the total genome) and 3,058 E. coli. proteins (75% of the total genome), many of them belonging to families of various sizes (from 666 doublets to 35 large groups of more than 10 members). Nearly all the genes found by this approach to be duplicated in both bacteria were already duplicated in their last common ancestor. This was deduced from (1) the comparison of the respective distributions of evolutionary distances between orthologs (genes separated only by speciation events) and paralogs (genes duplicated in the same genome) and (2) the analysis of the phylogenetic trees reconstructed for each family of paralogs containing at least two members belonging to each bacterium. The distributions of the different categories of homologs show a significant loss of paralogous genes in H. influenzae (reduction proportional to the genome size), of many sequences which are still present in one copy in E. coli, and of some entire gene families. Phylogenetic trees also confirmed this recent loss of paralogous genes in H. influenzae. Thus, the genome size of the last common ancestor of these two bacteria would have been close to that of present-day E. coli, and the evolution of H. influenzae toward a parasitic life led to an important decrease in its genome size by some mechanism of streamlining. During this recent evolution, the memory of the gene order present in the last common ancestor has been blurred, but a few short conserved chromosomal fragments can still be detected in present-day E. coli and H. influenzae.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号