首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Qa-11 Ag expressed in certain strains with the B2-microglobulin-b allele, apparently maps into the Tla region as well as into the Qa-2 region. Moreover Qa-11 has been shown to be biochemically indistinguishable from Qa-2. Genetic complementation studies combining the right Qa and Tla regions failed to lead to Qa-11 expression. To elucidate the molecular basis of this apparent paradox, we examined the expression of Qa-11 on products of transfected Q-region class I genes. Immunochemical analysis has shown that the Qa-11 Ag is expressed on class I molecules encoded by the Q7 gene from both C57BL/10 (Q7b) and BALB/c (Q7d), but not on the protein product of the Q9 gene isolated from the C57BL/10 strain (Q9b). Inasmuch as the predicted protein products of the Q7b and Q9b genes would differ at a single amino acid, a residue critical for Qa-11 expression has been identified. Based on these results it is proposed that among the beta-2-mb strains, the Qa-11+/Qa-2+ mice are likely to express at least the Q7 gene, whereas Qa-11-/Qa-2+ mice express only Q9. In support of this model, the Qa-2+/Q-11- recombinant B6.K2, essential for the apparent mapping of Qa-11 into the Tla region, expresses only Q9 but not Q7 encoded molecules on the cell surface, and only Q9 and no processed Q7 mRNA is detected in the cytoplasm. This expression pattern in B6.K2 cannot be explained on the basis of a single crossing-over event.  相似文献   

2.
In spite of the large number of class I genes in the Qa-Tla region of the H-2 complex, only few membrane-bound Qa and TL Ag have been identified. We show that one of the Qa-Tla region genes, the T11b gene, is transcribed in lymphoid cells, lymphoma cell lines, teratocarcinoma cell lines, and L cells transfected with the cloned T11b gene. The T11b gene potentially encodes a polypeptide with normal class I characteristics. The product as present at the cell surface of L cells transfected with the cloned T11b gene, is a sialylated protein of m.w. 41,000, associated with beta 2-microglobulin. This T11b Ag shares epitopes with H-2K and H-2D molecules of various haplotypes and with Qa-2 molecules, but has distinct biochemical properties. RFLP analysis revealed that the T11b gene is found in mice of the Tlab and Tlaf haplotype. Genes homologous to, but distinct from, T11b (allelic or duplicated) are present in all Tla haplotypes tested.  相似文献   

3.
A new antigen, Qa-11, is detected as a 40,000 dalton band in the SDS-PAGE of immunoprecipitates of radiolabeled lymphocyte membrane preparations. In C57BL H-2 congenic strains, its presence is controlled by a gene in the Tla region. In strains with genetic background other than C57BL it is not expressed. Tests with recombinant inbred strains and with H-3 congenic strains show that, in addition to the Tla region, a gene linked to or identical with the beta 2-microglobulin-b-allele is required for the expression of Qa-11 as well. The mobility of the Qa-11 antigen in SDS-PAGE and in isoelectrofocusing is the same as that of Qa-2 antigen. The Cleveland peptide maps of Qa-2 and Qa-11 are identical as well. This finding, that the Tla region controlled Qa-11 antigen is structurally very similar to the Qa-2 antigen, contrasts with the fact that Tla region products do not react with anti-Qa-2 sera. This paradox could be explained by a separate Qa-11 region between Qa-2 and Tla. Alternatively, it is possible that the Qa-11 antigen is the result of the action of a modifying gene in the Tla region upon a Qa-2 gene product, or that the structural gene for Qa-11 is located in the Qa-2 region and a Tla region gene controls its expression.  相似文献   

4.
5.
Transcription of H-2 and Qa genes in embryonic and adult mice   总被引:17,自引:6,他引:11       下载免费PDF全文
K Fahrner  B L Hogan    R A Flavell 《The EMBO journal》1987,6(5):1265-1271
  相似文献   

6.
7.
We have determined the structure and organization of the entire Qa family of class I genes from the major histocompatibility complex of the C3H mouse. Restriction maps of overlapping lambda and cosmid clones reveal that there are only five Qak genes: Q1k, Q2k, Q4k, Q10k and a Q5/9 hybrid, presumably generated by unequal homologous recombination. The resulting deletion of Q6-Q9 is consistent with the Qa-2null phenotype of this mouse strain. We have sequenced the Qak genes, and predict that each may encode a class I molecule with a structure comparable with that proposed for the transplantation antigens. Furthermore, these Qa products should be able to bind peptides and interact with appropriate T-cell receptors. Interestingly, in comparing Qak and H-2k sequences, we find limited evidence of interlocus gene conversion between Qa and H-2 loci, suggesting that the Qa genes are not likely to serve as a reservoir of genetic information for the generation of H-2 diversity within this haplotype.  相似文献   

8.
The specificity of H-2 unrestricted cytotoxic T cells was analyzed in secondary CML responses. A/J strain effector cells, sensitized against A.Tlab lymphoid cells, lysed target cells from strains with differing H-2 haplotypes but all sharing Qa-1b/Tlab alleles; whereas, target cells from strains with Qa-1a/Tlaa were not. When B6.Tlaa animals were in vivo-primed and challenged in vitro with B6 stimulator cells, no cytotoxic effector cell activity was generated. However, if B6.Tlaa animals were primed in vivo with A.BY cells and then rechallenged in vitro with either A.BY or B6 stimulator cells, cytotoxic effector cells were generated that lysed target cells from strains with Qa-1b/Tlab alleles. This suggests that factors in addition to Qa/Tla may play a role in the generation of anti-Qa/Tla effector cell activity. It was also noted that targets from strains with Qa-1a/Tlaa alleles were killed, although to a much lesser extent than the Qa-1b/Tlab targets. SWR anti-DBA/1 efffector cells strongly lysed target cells frrom strains with Qa-1b/Tlab, lysed Qa-1a/Tlaa targets to a lesser extent, and produced no cytotoxic effect on B6.Tlaa target cells. These data suggest that in addition to a CML target antigen associated with Qa-1b/Tlab, there may be an additional specificity recognized by cytotoxic T cells controlled by a gene outside of Qa-1b/Tlab.  相似文献   

9.
Q10 is a class I Qa-2 region-encoded molecule that is secreted by the liver and present in serum at high concentrations (about 10 to 60 micrograms/ml) in most strains of mice. The amino terminal portion of this molecule can also be expressed as an integral membrane protein by splicing the 5' end of the Q10 gene to the 3' end of H-2Ld and transfecting the hybrid gene into murine L cells. Because CTL primarily recognize polymorphic determinants controlled by the alpha 1 and alpha 2 domains of class I molecules and because the Q10d/Ld product expressed by transfected L cells includes the alpha 1 and alpha 2 domains of Q10d, we could address whether mice bearing serum Q10 were tolerant to this molecule at the CTL level. The results of these experiments demonstrate that Q10+ mice are able to generate H-2-unrestricted CTL activity against Q10d expressed on transfected L cells, and this response was not inhibitable by the addition of Q10-containing normal mouse serum. It is unlikely that this CTL activity is due to possible polymorphic differences in Q10 alleles, since semisyngeneic BALB/c (H-2d) mice, from which the Q10d hybrid gene construct was derived, are able to generate anti-Q10d effector cells. The Q10d molecule was shown to cross-react with H-2Ld, lending support to the concept that Qa genes can serve as donors for polymorphic sequences found in H-2K, -D, and -L. That mice can generate anti-Q10 CTL activity suggests that this soluble class I protein does not act as a toleragen for these cells. The implications of these findings for an understanding of self-tolerance are discussed.  相似文献   

10.
We have cloned 26 different class I genes that are located in the major histocompatibility complex of the C57BL/10 mouse. Two of the three class I genes found in the H-2 complex encode the H-2Kb and H-2Db antigens; the other 23 class I genes map to the adjacent Tla complex. We have grouped the cosmids containing these genes into three clusters: one cluster links the H-2K and I-A regions, one cluster links the H-2D and Qa-2 regions, and the final cluster maps to the TL region. The class I gene organizations in the Qa-2 and TL regions of the C57BL/10 and BALB/c mice are generally similar, but there are several polymorphic segments. The Qa-2 region of both mice seems to have evolved by the duplication of gene pairs; furthermore, the H-2K region may have been generated by the translocation of a gene pair from the Qa-2 region. We have evidence that several of the genes in the Qa-2 region are expressed.  相似文献   

11.
Con A splenic lymphoblasts were incubated with phosphatidyl-inositol specific phospholipase C (PIPLC) derived from Bacillus thuringiensis and subsequently analyzed for Qa-2 Ag with the Qa-2 reactive mAb Qa-m2. This treatment completely removed Qa-2 detectable Ag on lymphoblasts from H-2d animals, indicating that these molecules are likely anchored to the cell membrane through phosphatidyl inositol (PI). Although exposure of lymphoblasts from H-2b mice to PIPLC greatly reduced Qa-2 expression, a subpopulation of cells retained a limited quantity of the Ag. Bulk cultured anti-Qa-2 CTL generated against the Qa-2 region from H-2b haplotype mice lysed Qa-2+ targets from B6.K2 (H-2b) and BALB/cJ (H-2d) animals. Pretreatment of these lymphoblast targets with PIPLC completely abolished lysis of the BALB/cJ target cells, whereas lysis of B6 targets was reduced only slightly. Anti-Qa-2 CTL clones tested against PIPLC-treated B6 target cells revealed two patterns of reactivity. One group of clones was unaffected in its ability to lyse PIPLC-pretreated targets and cross-reacted on Q6d/Ld molecules expressed on transfected L cells. A second group was unable to lyse PIPLC-pretreated lymphoblasts and cross-reacted on Q7d/Ld targets. These data suggest that H-2b-derived lymphoblasts express two different types of Qa-2 molecules with respect to PIPLC sensitivity; one type is sensitive to PIPLC and cross-reactive with Q7d, the other type is resistant to PIPLC and cross-reactive with Q6d. In contrast, H-2d lymphoblasts express only the PIPLC-sensitive type of molecules. It was also noted that bulk cultured anti-Qa-2 CTL more readily lysed H-2b target cells expressing a smaller quantity of PIPLC-resistant Ag than H-2d targets expressing a larger amount of PIPLC-sensitive Ag. Further, anti-Qa-2 CTL clones readily lysed PIPLC-treated target cells expressing very low levels of serologically detectable Qa-2. This suggests that recognition of class I molecules anchored to the membrane via a PIPLC-resistant linkage may more readily activate CTL for expression of lytic activity than molecules anchored through PI.  相似文献   

12.
The Ped (preimplantation embryonic development) gene influences the rate of preimplantation embryonic development and subsequent embryonic survival. The protein product of the Ped gene, the Qa-2 protein, is a major histocompatibility complex (MHC) class Ib protein. There are two alleles of the Ped gene, fast (Qa-2 [+]) and slow (Qa-2 [-]). Qa-2 is encoded by four very similar MHC class Ib genes: Q6, Q7, Q8, and Q9. Recent research in our laboratory has shown that the Ped phenotype is potentially encoded by the Q7 and/or Q9 gene because the Q7 and Q9 genes, but not the Q6 or Q8 gene, are expressed during preimplantation mouse embryonic development. In this study we utilized microinjection of transgenes to assess the functional roles of both the Q7 and Q9 genes in control of the rate of preimplantation development. The Q7 gene, the Q9 gene, and a combination of the Q7 and Q9 genes were microinjected into Ped slow zygotes, and the Ped phenotype and cell surface expression of Qa-2 protein were assayed after a 72-h or 96-h incubation period. We found that the microinjected individual Q7 and Q9 genes increased the rate of preimplantation development. Simultaneous injection of the Q7 and Q9 genes did not have a synergistic effect on the Ped phenotype. Microinjection of the Q7 and/or Q9 genes resulted in protein expression in 10-25% of the microinjected embryos. These results show that both the Q7 and Q9 genes encode the mouse Ped phenotype.  相似文献   

13.
The major histocompatibility complex of the mouse contains numerous class I genes, most of which are encoded in the Qa and Tla regions. By hybridizations, the murine class I genes have been classified into three major families (Rogers, J. H. (1985a) Immunogenetics 21, 343-353). As yet, complete sequences are available only for members of family 1 (several H-2 and Qa genes) or family 2 (the pseudoallelic Tla genes T3b and T13c). We here present the complete nucleotide sequence of a gene from the Tla region that belongs to family 3. This gene, T2Aa, is a pseudogene by several criteria. The general structure of the gene is nonetheless well preserved. A comparison of the T2Aa sequence to those of other murine class I genes confirms the classification into three gene families. Members of gene families 2 and 3, located in the Tla region, are no more similar to each other than to family 1 (the H-2 and Qa2,3 genes). This suggests that families 2 and 3 were both created by ancient duplications of the functionally important family 1 genes. The fact that families 2 and 3 have diverged extensively both from family 1 and from each other may suggest that they are devoid of function.  相似文献   

14.
Embryo survival is influenced by both genetic and environmental factors. Previous research in our laboratory has identified one gene associated with embryonic survival, the Ped gene, a gene that is linked to the major histocompatibility complex (MHC) of the mouse. The Ped gene has been shown to influence the rate of preimplantation embryonic cleavage division, as well as litter size, birth weight, and weaning weight. Genetic mapping of the Ped gene has located it in the Q region of the MHC and has suggested that possible Q region genes encoding the Ped gene are Q3, Q5, Q6, Q7, Q8, and/or Q9. Whereas the protein products of the Q3 and Q5 genes are unknown, the protein product of the very similar Q6, Q7, Q8, and Q9 genes is the Qa-2 antigen. Two forms of membrane-bound Qa-2 antigen are known: glycosylphosphatidylinositol (GPI)-linked and transmembrane bound. Only the GPI-linked form is sensitive to cleavage by phosphatidylinositol phospholipase C (PI-PLC). The first purpose of the present study was to determine the nature of the linkage of the Qa-2 antigen to the cell surface of preimplantation mouse embryos. It was found that all detectable Qa-2 antigen on the embryonic cell surface is sensitive to cleavage by PI-PLC and is therefore bound to the cell membrane by a GPI linkage. Furthermore, removal of Qa-2 antigen from the embryonic cell surface slows down the rate of development of preimplantation mouse embryos. These results suggest the likelihood that the Qa-2 antigen is the Ped gene product.  相似文献   

15.
16.
We have used the human teratocarcinoma-derived embryonal carcinoma cell line Tera-2 cl. 13 to explore the putative expression of novel HLA class I(-like) genes. Serological analyses revealed that Tera-2 cells do not express polymorphic HLA class I (-A, -B, -C) specificities, but do express HLA class I-like antigens. These phenotypic properties parallel those of certain mouse embryonal carcinoma cells. To study the expression of HLA class I(-like) genes in the Tera-2 cells two different approaches were used. Screening of a Tera-2 cDNA library with a full-length HLA class I cDNA probe under conditions that would allow for the identification of relatively distinct HLA class I-like sequences yielded 27 positive clones, all of which were of the regular HLA-A, -B, -C type. Reverse northern hybridizations of the restriction enzyme-digested Tlab region comprising cosmids with Tera-2 cDNA as the probe resulted in the identification of several putative human genes whose equivalents map within the mouse Tla region. However, none of these genes appeared to be structurally related to HLA class I. A putative H3.3 histone gene was identified in the proximal Tla region of the C57BL/10 mouse. It is concluded that no structural homologues of mouse Qa/Tla genes are expressed in the human developmental cell line Tera-2.  相似文献   

17.
Ld/Q7d, a hybrid molecule consisting of alpha-1 and alpha-2 domains from H-2Ld and alpha-3 and carboxy-end components from Q7d, was expressed on the surface of CRL-3A rat liver cells. This molecule retained serologic H-2Ld epitopes. The Ag is attached to the cell membrane through a phosphatidyl-inositol linkage, characteristic of Qa-2 molecules. Both bulk cultured and cloned H-2Ld alloreactive CTL as well as H-2Ld restricted vesicular stomatitis virus-specific CTL lyse CRL-3A cells which express H-2Ld but show little or no lytic activity on cells which express the Ld/Q7d hybrid. These cells also fail to act as cold target competitors for alloreactive anti-H-2Ld CTL. However, cells expressing Ld/Q7d are not resistant to CTL mediated lysis because they can be killed in the presence of lectin. These data indicate that recognition of polymorphic class I CTL epitopes in the alpha-1 and alpha-2 domains are influenced by the structure of the carboxy-end of the molecule.  相似文献   

18.
BALB/cBy (Qa-2) mice injected with the syngeneic tumor, ORA I-a (Qa-2+), produced antibodies to Qa-2 and a newly discovered antigen, Qa-6. Specific antisera against Qa-6, in the presence of complement, lyses approximately 40% of lymph-node lymphocytes and splenocytes. Strain distribution analyses indicate that Qa-6 is specified by a gene within the TL subregion of the major histocompatibility complex. Thus, Qa-6 is the third member of the Qa/TL subset of cell surface antigens which is anomalously expressed on certain tumor cells. This finding suggests that the Qa and TL molecules may have a unique, functional role on the cell surface.  相似文献   

19.
Previous studies have determined that various Qa2 serologic determinants can be removed from the surface of spleen cells by treatment with a phospholipase C. Our studies have determined that the class I molecule Qa2, expressed on the surface of spleen cells and activated T cells, behaves as an integral membrane protein based on its ability to associate with detergent micelles. Studies utilizing two purified phospholipase C have revealed that although most (90 to 95%) of the Qa2 molecules expressed on the surface of resting spleen cells are released as intact 40-kDa polypeptides associated with beta 2-microglobulin, activated T cells contain a major cell subpopulation expressing lipase-resistant Qa2 molecules. Flow cytometric analysis revealed that L3T4+-activated T cells expressed lipase-sensitive Qa2 molecules, whereas Lyt-2+ cells express lipase-resistant forms of the Qa2 molecule. The relationship between the secreted form of the Qa2 molecule and the lipase-generated soluble Qa2 molecule was investigated. Based on SDS-PAGE analysis, the secreted Qa2 molecules has a Mr of 39 kDa whereas the cell surface form released from either resting spleen or activated T cells by phosphatidylinositol-specific phospholipase C has a Mr of approximately equal to 40 kDa. Furthermore, the secreted Qa2 molecule lacks an epitope, cross-reacting determinant, often present on lipase-solubilized cell surface molecules. Thus, based on serologic and biochemical criteria, the soluble Qa2 molecules generated by an exogenous phospholipase C and the secreted Qa2 molecule are structurally distinct.  相似文献   

20.
The region of the murine 17th chromosome telomeric to H-2D encodes a group of serologically defined cell surface antigens termed Qa-1-5. These antigens are of interest because their expression is restricted to hematopoietic cells. In addition, the molecular weight and subunit structure (ie, association with β-2 microglobulin) of Qa-2 molecules are similar to H-2 and TL antigens. In the present studies, we have prepared isotopically labeled Qa-2 and H-2 molecules from mitogen-stimulated C57BL/6 spleen cells. Comparative peptide mapping of tryptic peptides from Qa-2 and H-2 molecules (Kb, DbKk, Dd) reveal that Qa-2 has a unique primary structure. However, considerable homology is indicated since 30–40% of the Qa-2 peptides cochromatograph with peptides derived from H-2Kb, H-2Db, H-2Kk, and H-2Dd. Studies by other investigators have demonstrated that similar levels of structural homology are observed when H-2K, H-2D, and H-2L tryptic peptides are analyzed. We conclude from these studies that the Qa-2 alloantigen is structurally related to a class of cell surface molecules (ie, H-2) that play critical roles in immune recognition processes. These data further suggest that the genes encoding Qa-2 and H-2 molecules have arisen from a common primordial gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号