首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The bulk polar movement of the plant signaling molecule auxin through the stem is a long-recognized but poorly understood phenomenon. Here we show that the highly polar, high conductance polar auxin transport stream (PATS) is only part of a multimodal auxin transport network in the stem. The dynamics of auxin movement through stems are inconsistent with a single polar transport regime and instead suggest widespread low conductance, less polar auxin transport in the stem, which we term connective auxin transport (CAT). The bidirectional movement of auxin between the PATS and the surrounding tissues, mediated by CAT, can explain the complex auxin transport kinetics we observe. We show that the auxin efflux carriers PIN3, PIN4, and PIN7 are major contributors to this auxin transport connectivity and that their activity is important for communication between shoot apices in the regulation of shoot branching. We propose that the PATS provides a long-range, consolidated stream of information throughout the plant, while CAT acts locally, allowing tissues to modulate and be modulated by information in the PATS.  相似文献   

3.
The plant hormone auxin plays a critical role in plant development. Central to its function is its distribution in plant tissues, which is, in turn, largely shaped by intercellular polar transport processes. Auxin transport relies on diffusive uptake as well as carrier-mediated transport via influx and efflux carriers. Mathematical models have been used to both refine our theoretical understanding of these processes and to test new hypotheses regarding the localization of efflux carriers to understand auxin patterning at the tissue level. Here we review models for auxin transport and how they have been applied to patterning processes, including the elaboration of plant vasculature and primordium positioning. Second, we investigate the possible role of auxin influx carriers such as AUX1 in patterning auxin in the shoot meristem. We find that AUX1 and its relatives are likely to play a crucial role in maintaining high auxin levels in the meristem epidermis. We also show that auxin influx carriers may play an important role in stabilizing auxin distribution patterns generated by auxin-gradient type models for phyllotaxis.  相似文献   

4.
Regulated transport of the plant hormone auxin is central to many aspects of plant development. Directional transport, mediated by membrane transporters, produces patterns of auxin distribution in tissues that trigger developmental processes, such as vascular patterning or leaf formation. Experimentation has produced many, largely qualitative, data providing strong evidence for multiple feedback systems between auxin and its transport. However, the exact mechanisms concerned remain elusive and the experiments required to evaluate alternative hypotheses are challenging. Because of this, computational modelling now plays an important role in auxin transport research. Here we review some current approaches and underlying assumptions of computational auxin transport models. We focus on self‐organising models for polar auxin transport and on recent attempts to unify conflicting mechanistic explanations. In addition, we discuss in general how these computer simulations are proving to be increasingly effective in hypothesis generation and testing, and how simulation can be used to direct future experiments. Editor's suggested further reading in BioEssays Local auxin production: a small contribution to a big field Abstract  相似文献   

5.
Regulation of auxin transport polarity by AGC kinases   总被引:2,自引:0,他引:2  
The plant hormone auxin controls plant development through gradients and maxima that are generated by PIN efflux carrier driven polar auxin transport. PIN proteins direct this cell-to-cell auxin transport, and thus orient plant development through their asymmetric subcellular distribution. PIN polarity is regulated by PINOID and the phototropins, members of the AGC protein serine/threonine kinase family. Here we review the signaling pathways of these kinases and the role of calcium and BTB proteins in translating both internal and external signals into developmental responses via PIN relocalization, to adapt plant development to changing environmental conditions.  相似文献   

6.
The vegetative hormone Auxin is involved in vascular tissues formation throughout the plant. Trans-membrane carrier proteins transporting auxin from cell to cell and distributed asymmetrically around each cell give to auxin a polarized movement in tissues, creating streams of auxin that presume future vascular bundles. According to the canalization hypothesis, auxin transport ability of cells is thought to increase with auxin flux, resulting in the self-enhancement of this flux along auxin paths. In this study we evaluate a series of models based on canalization hypothesis using carrier proteins, under different assumptions concerning auxin flux formation and carrier protein dynamics. Simulations are run on a hexagonal lattice with uniform auxin production. A single cell located in the margin of the lattice indicates the petiole, and acts as an auxin sink. The main results are: (1) We obtain branching auxin distribution patterns. (2) The type of self-enhancement described by the functional form of the carrier proteins regulation responding to the auxin flux intensity in different parts of a cell, has a strong effect on the possibility of generating the branching patterns. For response functions with acceleration in the increase of carrier protein numbers compared to the auxin flux, branching patterns are likely to be generated. For linear or decelerating response functions, no branching patterns are formed. (3) When branching patterns are formed, auxin distribution greatly differs between the case in which the number of carrier proteins in different parts of a cell are regulated independently, and the case in which different parts of a cell compete for a limited number of carrier proteins. In the former case, the auxin level is lower in veins than in the surrounding tissue, while in the latter, the auxin is present in greater abundance in veins. These results suggest that canalization is a good candidate for describing plant vein pattern formation.  相似文献   

7.
BACKGROUND: Plants achieve remarkable plasticity in shoot system architecture by regulating the activity of secondary shoot meristems, laid down in the axil of each leaf. Axillary meristem activity, and hence shoot branching, is regulated by a network of interacting hormonal signals that move through the plant. Among these, auxin, moving down the plant in the main stem, indirectly inhibits axillary bud outgrowth, and an as yet undefined hormone, the synthesis of which in Arabidopsis requires MAX1, MAX3, and MAX4, moves up the plant and also inhibits shoot branching. Since the axillary buds of max4 mutants are resistant to the inhibitory effects of apically supplied auxin, auxin and the MAX-dependent hormone must interact to inhibit branching. RESULTS: Here we show that the resistance of max mutant buds to apically supplied auxin is largely independent of the known, AXR1-mediated, auxin signal transduction pathway. Instead, it is caused by increased capacity for auxin transport in max primary stems, which show increased expression of PIN auxin efflux facilitators. The max phenotype is dependent on PIN1 activity, but it is independent of flavonoids, which are known regulators of PIN-dependent auxin transport. CONCLUSIONS: The MAX-dependent hormone is a novel regulator of auxin transport. Modulation of auxin transport in the stem is sufficient to regulate bud outgrowth, independent of AXR1-mediated auxin signaling. We therefore propose an additional mechanism for long-range signaling by auxin in which bud growth is regulated by competition between auxin sources for auxin transport capacity in the primary stem.  相似文献   

8.
With the discovery of the phytohormone auxin in the late 1920s, it became possible to link the regulation of complex plant growth responses to a single biologically active compound. Among all the plant growth regulators characterised so far, only auxin appears to be actively transported throughout the plant to create complex variations in concentration patterns and flow directions over time. This stimulated interest in the specific mechanisms underlying auxin transport as key factors in plant growth responses. Research in the last decade revealed several genes involved in the controlled transport of auxin and greatly improved our understanding of the basic principles of auxin-mediated responses. We are at this point, however, only starting to understand the complex interplay and control of factors that ultimately underlie the observed spatiotemporal variations in auxin transport and thus mediate plant growth and environmental responses. This review highlights important findings that provide us with a framework of molecular players and potential regulatory mechanisms that should contribute to the formulation of a comprehensive dynamic model of spatiotemporal auxin distribution.  相似文献   

9.
The plant hormone auxin is fundamental for plant growth, and its spatial distribution in plant tissues is critical for plant morphogenesis. We consider a leading model of the polar auxin flux, and study in full detail the stability of the possible equilibrium configurations. We show that the critical states of the auxin transport process are composed of basic building blocks, which are isolated in a background of auxin depleted cells, and are not geometrically regular in general. The same model was considered recently through a continuous limit and a coupling to the von Karman equations, to model the interplay of biochemistry and mechanics during plant growth. Our conclusions might be of interest in this setting, since, for example, we establish the existence of Lyapunov functions for the auxin flux, proving in this way the convergence of pure transport processes toward the set of equilibrium points.  相似文献   

10.
Leyser O 《Cell》2005,121(6):819-822
The plant hormone auxin is central in patterning diverse plant tissues. The direction of auxin flow and the distribution of auxin within tissues are regulated by auxin efflux transporters that are polarly localized in cells. Feedback regulation between auxin and its transporters establishes homeostatic patterns of auxin accumulation but allows dynamic repatterning in response to developmental or environmental cues.  相似文献   

11.
Crop architecture parameters such as tiller number, angle and plant height are important agronomic traits that have been considered for breeding programmes. Auxin distribution within the plant has long been recognized to alter architecture. The rice (Oryza sativa L.) genome contains 12 putative PIN genes encoding auxin efflux transporters, including four PIN1 and one PIN2 genes. Here, we report that over-expression of OsPIN2 through a transgenic approach in rice (Japonica cv. Nipponbare) led to a shorter plant height, more tillers and a larger tiller angle when compared with wild type (WT). The expression patterns of the auxin reporter DR5::GUS and quantification of auxin distribution showed that OsPIN2 over-expression increased auxin transport from the shoot to the root-shoot junction, resulting in a non-tissue-specific accumulation of more free auxin at the root-shoot junction relative to WT. Over-expression of OsPIN2 enhanced auxin transport from shoots to roots, but did not alter the polar auxin pattern in the roots. Transgenic plants were less sensitive to N-1-naphthylphthalamic acid, an auxin transport inhibitor, than WT in their root growth. OsPIN2-over-expressing plants had suppressed the expression of a gravitropism-related gene OsLazy1 in the shoots, but unaltered expression of OsPIN1b and OsTAC1, which were reported as tiller angle controllers in rice. The data suggest that OsPIN2 has a distinct auxin-dependent regulation pathway together with OsPIN1b and OsTAC1 controlling rice shoot architecture. Altering OsPIN2 expression by genetic transformation can be directly used for modifying rice architecture.  相似文献   

12.
Plant development displays an exceptional plasticity and adaptability that involves the dynamic, asymmetric distribution of the phytohormone auxin. Polar auxin flow, which requires polarly localized transport facilitators of the PIN family, largely contributes to the establishment and maintenance of the auxin gradients. Functionally overlapping action of PIN proteins mediates multiple developmental processes, including embryo formation, organ development and tropisms. Here we show that PIN proteins exhibit synergistic interactions, which involve cross-regulation of PIN gene expression in pin mutants or plants with inhibited auxin transport. Auxin itself positively feeds back on PIN gene expression in a tissue-specific manner through an AUX/IAA-dependent signalling pathway. This regulatory switch is indicative of a mechanism by which the loss of a specific PIN protein is compensated for by auxin-dependent ectopic expression of its homologues. The compensatory properties of the PIN-dependent transport network might enable the stabilization of auxin gradients and potentially contribute to the robustness of plant adaptive development.  相似文献   

13.
When a tree stem deviates from verticality, as a result of different environmental factors, patterns of differential radial growth appear. Higher rates of wood production have been observed on the lower side of the tree and lower rates in the opposite side. Biological studies on plant hormones have shown that the concentration of auxin induces radial growth. They also have demonstrated the redistribution of auxin transport in response to gravity. Auxin is then designated as a mediator for differential growth. This paper presents a model for three-dimensional (3-D) auxin transport in conifer trees, which includes gravity dependence. We obtain realistic heterogeneous patterns of auxin distribution over the tree. Then, we propose a law of growth based on auxin concentration to simulate successive differential radial growths. The predicted growths are compared with experimental results of reconstruction of 3-D annual growth of Radiata pine.  相似文献   

14.
An intriguing phenomenon in plant development is the timing and positioning of lateral organ initiation, which is a fundamental aspect of plant architecture. Although important progress has been made in elucidating the role of auxin transport in the vegetative shoot to explain the phyllotaxis of leaf formation in a spiral fashion, a model study of the role of auxin transport in whorled organ patterning in the expanding floral meristem is not available yet. We present an initial simulation approach to study the mechanisms that are expected to play an important role. Starting point is a confocal imaging study of Arabidopsis floral meristems at consecutive time points during flower development. These images reveal auxin accumulation patterns at the positions of the organs, which strongly suggests that the role of auxin in the floral meristem is similar to the role it plays in the shoot apical meristem. This is the basis for a simulation study of auxin transport through a growing floral meristem, which may answer the question whether auxin transport can in itself be responsible for the typical whorled floral pattern. We combined a cellular growth model for the meristem with a polar auxin transport model. The model predicts that sepals are initiated by auxin maxima arising early during meristem outgrowth. These form a pre-pattern relative to which a series of smaller auxin maxima are positioned, which partially overlap with the anlagen of petals, stamens, and carpels. We adjusted the model parameters corresponding to properties of floral mutants and found that the model predictions agree with the observed mutant patterns. The predicted timing of the primordia outgrowth and the timing and positioning of the sepal primordia show remarkable similarities with a developing flower in nature.  相似文献   

15.
The directional transport of the plant hormone auxin is a unique process mediating a wide variety of developmental processes. Auxin movement between cells depends on AUX1/LAX, PGP and PIN protein families that mediate auxin transport across the plasma membrane. The directionality of auxin flow within tissues is largely determined by polar, subcellular localization of PIN auxin efflux carriers. PIN proteins undergo rapid subcellular dynamics that is important for the process of auxin transport and its directionality. Furthermore, various environmental and endogenous signals can modulate trafficking and polarity of PIN proteins and by this mechanism change auxin distribution. Thus, the subcellular dynamics of auxin transport proteins represents an important interface between cellular processes and development of the whole plant. This review summarizes our recent contributions to the field of PIN trafficking and auxin transport regulation.  相似文献   

16.
Morphogenesis during multicellular development is regulated by intercellular signaling molecules as well as by the mechanical properties of individual cells. In particular, normal patterns of organogenesis in plants require coordination between growth direction and growth magnitude. How this is achieved remains unclear. Here we show that in Arabidopsis thaliana, auxin patterning and cellular growth are linked through a correlated pattern of auxin efflux carrier localization and cortical microtubule orientation. Our experiments reveal that both PIN1 localization and microtubule array orientation are likely to respond to a shared upstream regulator that appears to be biomechanical in nature. Lastly, through mathematical modeling we show that such a biophysical coupling could mediate the feedback loop between auxin and its transport that underlies plant phyllotaxis.  相似文献   

17.
Plant-parasitic nematodes are destructive plant pathogens that cause significant yield losses. They induce highly specialized feeding sites (NFS) in infected plant roots from which they withdraw nutrients. In order to establish these NFS, it is thought that the nematodes manipulate the molecular and physiological pathways of their hosts. Evidence is accumulating that the plant signalling molecule auxin is involved in the initiation and development of the feeding sites of sedentary plant-parasitic nematodes. Intercellular transport of auxin is essential for various aspects of plant growth and development. Here, we analysed the spatial and temporal expression of PIN auxin transporters during the early events of NFS establishment using promoter-GUS/GFP fusion lines. Additionally, single and double pin mutants were used in infection studies to analyse the role of the different PIN proteins during cyst nematode infection. Based on our results, we postulate a model in which PIN1-mediated auxin transport is needed to deliver auxin to the initial syncytial cell, whereas PIN3 and PIN4 distribute the accumulated auxin laterally and are involved in the radial expansion of the NFS. Our data demonstrate that cyst nematodes are able to hijack the auxin distribution network in order to facilitate the infection process.  相似文献   

18.
Auxin regulation of plant growth and development is mediated by controlled distribution of this hormone and dose-dependent mechanisms of its action. A mathematical model is proposed, which describes auxin distribution in the cell array along the root longitudinal axis in Arabidopsis thaliana. The model qualitatively simulates auxin distribution over the longitudinal axis in intact roots, changes in this distribution at decreased auxin transport rates, and restoration of the auxin distribution pattern with subsequent establishment of new root meristem in the course of root regeneration after the ablation of its tip. The model shows the presence of different auxin distribution patterns over the longitudinal root axis and suggests possible scenarios for root growth and lateral root formation. Biological interpretation of different regimes of model behavior is presented.  相似文献   

19.
The signalling molecule auxin controls plant morphogenesis via its activity gradients, which are produced by intercellular auxin transport. Cellular auxin efflux is the rate-limiting step in this process and depends on PIN and phosphoglycoprotein (PGP) auxin transporters. Mutual roles for these proteins in auxin transport are unclear, as is the significance of their interactions for plant development. Here, we have analysed the importance of the functional interaction between PIN- and PGP-dependent auxin transport in development. We show by analysis of inducible overexpression lines that PINs and PGPs define distinct auxin transport mechanisms: both mediate auxin efflux but they play diverse developmental roles. Components of both systems are expressed during embryogenesis, organogenesis and tropisms, and they interact genetically in both synergistic and antagonistic fashions. A concerted action of PIN- and PGP-dependent efflux systems is required for asymmetric auxin distribution during these processes. We propose a model in which PGP-mediated efflux controls auxin levels in auxin channel-forming cells and, thus, auxin availability for PIN-dependent vectorial auxin movement.  相似文献   

20.
Auxin transport: a field in flux   总被引:9,自引:0,他引:9  
Polar auxin transport is crucial for plant growth and development. Auxin moves between plant cells through a combination of membrane diffusion and carrier-mediated transport. Several classes of membrane proteins that facilitate auxin uptake and efflux have recently been identified in Arabidopsis. The relative contribution to auxin transport made by the different facilitators and by membrane diffusion is unclear. In this Opinion article, we assess the significance of auxin diffusion versus carrier-mediated transport and then discuss the physiological importance of the transport facilitators within the context of the multiple trans-cellular auxin fluxes recently described in the Arabidopsis root apex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号