首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Several purple and green sulfur bacteria (genera Chromatium, Thiocapsa and Chlorobium ) were tested for their sensitivity to different antimicrobial agents by a disc diffusion assay, using thioacetamide as a source of hydrogen sulfide for plate growth. Chlorobium limicola strains were more sensitive to amoxicillin, erythromycin and nalidixic acid, whereas gentamicin and netilmicin were more active against the purple bacteria tested. None of the organisms were sensitive to oxacillin and trimethoprim + sulfamethoxazole. The critical concentrations at the edge of the inhibition zone were also calculated for three organisms and the antimicrobials colistin, mitomycin C, penicillin G, rifampicin, and streptomycin. The results obtained suggest that colistin, mitomycin C, penicillin G would provide selective conditions against the growth of Chlorobium limicola strains, while streptomycin and other aminoglycoside antibiotics would select against purple bacteria.  相似文献   

2.
Oxidative metabolism of inorganic sulfur compounds by bacteria   总被引:19,自引:0,他引:19  
The history of the elucidation of the microbiology and biochemistry of the oxidation of inorganic sulfur compounds in chemolithotrophic bacteria is briefly reviewed, and the contribution of Martinus Beijerinck to the study of sulfur-oxidizing bacteria highlighted. Recent developments in the biochemistry, enzymology and molecular biology of sulfur oxidation in obligately and facultatively lithotrophic bacteria are summarized, and the existence of at least two major pathways of thiosulfate (sulfur and sulfide) oxidation confirmed. These are identified as the Paracoccus sulfur oxidation (or PSO) pathway and the S4intermediate (or S4I) pathway respectively. The former occurs in organisms such as Paracoccus (Thiobacillus) versutus and P. denitrificans, and possibly in Thiobacillus novellus and Xanthobacter spp. The latter pathway is characteristic of the obligate chemolithotrophs (e.g. Thiobacillus tepidarius, T. neapolitanus, T. ferrooxidans, T. thiooxidans) and facultative species such as T. acidophilus and T. aquaesulis, all of which can produce or oxidize tetrathionate when grown on thiosulfate. The central problem, as yet incompletely resolved in all cases, is the enzymology of the conversion of sulfane-sulfur (as in the outer [S-] atom of thiosulfate [-S-SO3-]), or sulfur itself, to sulfate, and whether sulfite is involved as a free intermediate in this process in all, or only some, cases. The study of inorganic sulfur compound oxidation for energetic purposes in bacteria (i.e. chemolithotrophy and sulfur photolithotrophy) poses challenges for comparative biochemistry. It also provides evidence of convergent evolution among diverse bacterial groups to achieve the end of energy-yielding sulfur compound oxidation (to drive autotrophic growth on carbon dioxide) but using a variety of enzymological systems, which share some common features. Some new data are presented on the oxidation of 35S-thiosulfate, and on the effect of other anions (selenate, molybdate, tu ngstate, chromate, vanadate) on sulfur compound oxidation, including observations which relate to the roles of polythionates and elemental sulfur as intermediates.  相似文献   

3.
Chlorobaculum tepidum is an anaerobic green sulfur bacterium which oxidizes sulfide, elemental sulfur, and thiosulfate for photosynthetic growth. It can also oxidize sulfide to produce extracellular S0 globules, which can be further oxidized to sulfate and used as an electron donor. Here, we performed label-free quantitative proteomics on total cell lysates prepared from different metabolic states, including a sulfur production state (10 h post-incubation [PI]), the beginning of sulfur consumption (20 h PI), and the end of sulfur consumption (40 h PI), respectively. We observed an increased abundance of the sulfide:quinone oxidoreductase (Sqr) proteins in 10 h PI indicating a sulfur production state. The periplasmic thiosulfate-oxidizing Sox enzymes and the dissimilatory sulfite reductase (Dsr) subunits showed an increased abundance in 20 h PI, corresponding to the sulfur-consuming state. In addition, we found that the abundance of the heterodisulfide-reductase and the sulfhydrogenase operons was influenced by electron donor availability and may be associated with sulfur metabolism. Further, we isolated and analyzed the extracellular sulfur globules in the different metabolic states to study their morphology and the sulfur cluster composition, yielding 58 previously uncharacterized proteins in purified globules. Our results show that C. tepidum regulates the cellular levels of enzymes involved in sulfur metabolism in response to the availability of reduced sulfur compounds.  相似文献   

4.
Molecular aspects of photosystem I   总被引:2,自引:0,他引:2  
Photosystem I (PSI) in higher plants consists of 17 polypeptide subunits. Cofactors are chlorophyll a and b , β-carotene, phylloquinone and iron-sulfur clusters. Eight subunits are specific for higher plants while the remaining ones are also present in cyanobacteria. Two 80-kDa subunits (PSI-A and -B) constitute the major part of PSI and bind most of the pigments and electron donors and acceptors. The 9-kDa PSI-C carries the remaining electron acceptors which are [4Fe-4S] iron sulfur clusters. PSI-D, -E and -H have importance for integrity and function at the stromal face of PSI while PSI-F has importance for function at the lumenal face. PSI-N is localized at the lumenal side, but its function is unknown. Four subunits are light-harvesting chlorophyll a/b -binding proteins. The remaining subunits are integral membrane proteins with poorly understood function. Subunit interactions have been studied in reconstitution experiments and by cross-linking studies. Based on these data, it is concluded that iron-sulfur cluster FB is proximal to FX and that FA is the terminal acceptor in PSI. Similarities between PSI and the reaction center from green sulfur bacteria are discussed.  相似文献   

5.
The carbon and nitrogen isotopic signatures of chloropigments and porphyrins from the sediments of redox‐stratified lakes and marine basins reveal details of past biogeochemical nutrient cycling. Such interpretations are strengthened by modern calibration studies, and here, we report on the C and N isotopic composition of pigments and nutrients in the water column and surface sediment of redox‐stratified Fayetteville Green Lake (FGL; New York). We also report δ13C and δ15N values for pyropheophytin a (Pphe a) and bacteriochlorophyll e (Bchl e) deposited in the Black Sea during its transition to a redox‐stratified basin ca. 7.8 ka. We propose a model for evolving nutrient cycling in the Black Sea from 7.8 to 6.4 ka, informed by the new pigment data from FGL. The seasonal study of water column nutrients and pigments at FGL revealed population dynamics in surface and deep waters that were also captured in the sediments. Biomass was greatest near the chemocline, where cyanobacteria, purple sulfur bacteria (PSB), and green sulfur bacteria (GSB) had seasonally variable populations. Bulk organic matter in the surface sediment, however, was derived mainly from the oxygenated surface waters. Surface sediment pigment δ13C and δ15N values indicate intact chlorophyll a (Chl a) was derived from near the chemocline, but its degradation product pheophytin a (Phe a) was derived primarily from surface waters. Bacteriopheophytin a (Bphe a) and Bchl e in the sediments came from chemocline populations of PSB and GSB, respectively. The distinctive δ13C and δ15N values for Chl a, Phe a, and Bphe a in the surface sediment are inputs to an isotopic mixing model that shows their decomposition to a common porphyrin derivative can produce non‐specific sedimentary isotope signatures. This model serves as a caveat for paleobiogeochemical interpretations in basins that had diverse populations near a shallow chemocline.  相似文献   

6.
Abstract The sulfur cycle in a microbial mat was studied by determining viable counts of sulfate-reducing bacteria, chemolithoautotrophic sulfur bacteria and anoxygenic phototrophic bacteria. All three functional groups of sulfur bacteria revealed a maximum population density in the uppermost 5 mm of the mat: 1.1 × 108 cells of sulfate reducers cm−3 sediment, 2.0 × 109 cells of chemolithoautotrophs cm−3 sediment, and 4.0 × 107 cells of anoxygenic phototrophs cm−3 sediment. Bacterial dynamics were studied by sulfate reduction rate measurements, both under anoxic conditions (dark incubation) and oxic conditions (incubation in the light), and determination of the vertical distribution of the potential rate of thiosulfate consumption under oxic conditions. Sulfate reduction rates in the top 5 mm of the sediment were 566 nmol cm−3 d−1 in the absence of oxygen, and 123 nmol cm−3 d−1 in the presence of oxygen. In the latter case, the maximum rate was found in the 5–10-mm depth horizon (361 nmol cm−3 d−1). Biological consumption of amended thiosulfate was rapid and decreased with depth, while in the presence of molybdate, thiosulfate consumption decreased to 10–30% of the original rate.  相似文献   

7.
Seasonal studies of the anoxygenic phototrophic bacterial community of the water column of the saline eutrophic meromictic Lake Shunet (Khakassia) were performed in 2002 (June) and 2003 (February–March and August). From the redox zone down, the lake water was of dark green color. Green sulfur bacteria predominated in every season. The maximum number of green sulfur bacteria was 107 cells/ml in summer and 106 cells/ml in winter. A multi-syringe stratification sampler was applied for the study of the fine vertical distribution of phototrophs in August 2003; the sampling was performed every 5 cm. A 5-cm-thick pink-colored water layer inhabited by purple sulfur bacteria was shown to be located above the layer of green bacteria. The species composition and ratio of purple bacterial species depended on the sampling depth and on the season. In summer, the number of purple sulfur bacteria in the layer of pink water was 1.6 × 108 cells/ml. Their number in winter was 3 × 105 cells/ml. In the upper oxygen-containing layer of the chemocline the cells of purple nonsulfur bacteria were detected in summer. The maximum number of nonsulfur purple bacteria, 5 × 102 cells/ml, was recorded in August 2003. According to the results of the phylogenetic analysis of pure cultures of the isolated phototrophic bacteria, which were based on 16S rDNA sequencing, green sulfur bacteria were close to Prosthecochloris vibrioformis, purple sulfur bacteria, to Thiocapsa and Halochromatium species, and purple nonsulfur bacteria, to Rhodovulum euryhalinum and Pinkicyclus mahoneyensis.  相似文献   

8.
硫氧化细菌的种类及硫氧化途径的研究进展   总被引:3,自引:0,他引:3  
硫,作为生物必需的大量营养元素之一,参与了细胞的能量代谢与蛋白质、维生素和抗生素等物质代谢。自然界中,硫以多种化学形态存在,包括单质硫、还原性硫化物、硫酸盐和含硫有机物。硫氧化是硫元素生物地球化学循环的重要组成部分,通常是指单质硫或还原性硫化物被微生物氧化的过程。硫氧化细菌种类繁多,其硫氧化相关基因、酶和途径也多种多样。近几年,相关方面的研究已取得很多进展,但在不同层面仍存在一些尚未解决的科学问题。本文主要围绕硫氧化细菌的种类及硫氧化途径的研究进展进行了综述。  相似文献   

9.
湖泊硫循环微生物研究进展   总被引:6,自引:0,他引:6  
陈俊松  杨渐  蒋宏忱 《微生物学报》2020,60(6):1177-1191
湖泊是响应气候和环境变化的关键生态系统,是研究元素(如碳、氮和硫等)生物地球化学循环的热点环境。湖泊(尤其咸盐湖)具有硫酸盐含量高且含硫化合物种类丰富的特点,因而湖泊中硫元素生物地球化学循环过程非常活跃。微生物是驱动湖泊硫循环的重要推手。因此,研究湖泊中微生物参与的硫元素生物地球化学循环过程以及相关微生物类群构成,对于深入探索微生物在湖泊生态系统中的作用具有重要意义。本文综述了湖泊中驱动硫循环的微生物(硫氧化菌和硫酸盐还原菌)种群多样性、功能基因、代谢途径、硫氧化/硫酸盐还原速率及其对环境条件变化响应等方面的研究现状,并对未来湖泊微生物驱动的硫循环研究方向进行了展望。  相似文献   

10.
Abstract Over 200 strains of marine purple photosynthetic bacteria were isolated. Two strains showed antibiotic activity towards Saccharomyces cerevisiae and were tentatively identified as Chromatium purpuratum . Crude antibiotic, prepared by solvent extraction, showed a broad antimicrobial spectrum. The highest activity was found in the chromatophore fraction. Chromatographic separation of purified light harvesting complex from one strain, NKPB 031704, showed the presence of two separate pigmented compounds which were responsible for antimicrobial activity. Our findings reveal the unexpected ability of photosynthetic bacteria to produce broad spectrum antibiotics. In addition, this is the first example of intracellular localization of antibiotic activity in a marine bacterium.  相似文献   

11.
一株嗜盐嗜碱硫氧化菌的筛选、鉴定及硫氧化特性   总被引:1,自引:0,他引:1  
【背景】沼气和天然气等清洁能源中往往会含有一定量的硫化氢,硫化氢的存在不仅污染环境,而且对人类危害很大。【目的】以硫代硫酸钠为唯一硫源从巴丹吉林沙漠盐碱湖岸边沉积物中分离筛选得到一株硫氧化菌BDL05,并研究其硫氧化特性。【方法】通过形态观察、生理生化特征及16S rRNA基因序列分析对硫氧化菌BDL05进行鉴定。【结果】菌株BDL05为革兰氏阴性菌,弧状,其16S rRNA基因序列与Thiomicrospira microaerophila ASL 8-2的相似性达99.8%,将其命名为Thiomicrospira microaerophila BDL05。该菌氧化硫代硫酸盐的最适pH为9.3,最适总钠盐浓度为0.8mol/L,在以硫化钠为硫源的气升式反应器中单质硫的生成率为94.7%,生成速率为3.0 mmol/(L·h)。【结论】菌株Thiomicrospira microaerophila BDL05为嗜盐嗜碱硫氧化菌,其耐盐耐碱性较强,比生长速率快,硫化钠氧化能力较强,是一株在气体生物脱硫方面具有应用价值的菌株。  相似文献   

12.
Sulfur bacteria such as Beggiatoa or Thiomargarita have a particularly high capacity for storage because of their large size. In addition to sulfur and nitrate, these bacteria also store phosphorus in the form of polyphosphate. Thiomargarita namibiensis has been shown to release phosphate from internally stored polyphosphate in pulses creating steep peaks of phosphate in the sediment and thereby inducing the precipitation of phosphorus-rich minerals. Large sulfur bacteria populate sediments at the sites of recent phosphorite formation and are found as fossils in ancient phosphorite deposits. Therefore, it can be assumed that this physiology contributes to the removal of bioavailable phosphorus from the marine system and thus is important for the global phosphorus cycle. We investigated under defined laboratory conditions which parameters stimulate the decomposition of polyphosphate and the release of phosphate in a marine Beggiatoa strain. Initially, we tested phosphate release in response to anoxia and high concentrations of acetate, because acetate is described as the relevant stimulus for phosphate release in activated sludge. To our surprise, the Beggiatoa strain did not release phosphate in response to this treatment. Instead, we could clearly show that increasing sulfide concentrations and anoxia resulted in a decomposition of polyphosphate. This physiological reaction is a yet unknown mode of bacterial polyphosphate usage and provides a new explanation for high phosphate concentrations in sulfidic marine sediments.  相似文献   

13.
The processes that lead to the precipitation of authigenic calcium phosphate minerals in certain marine pore waters remain poorly understood. Phosphogenesis occurs in sediments beneath some oceanic upwelling zones that harbor polyphosphate‐accumulating bacteria. These bacteria are believed to concentrate phosphate in sediment pore waters, creating supersaturated conditions with respect to apatite precursors. However, the relationship between microbes and phosphorite formation is not fully resolved. To further study this association, we examined microbial community data generated from two sources: sediment cores recovered from the shelf of the Benguela upwelling region where phosphorites are currently forming, and DNA preserved within phosphoclasts recovered from a phosphorite deposit along the Benguela shelf. iTag and clone library sequencing of the 16S rRNA gene showed that many of our sediment‐hosted communities shared large numbers of phylotypes with one another, and that the same metabolic guilds were represented at localities across the shelf. Sulfate‐reducing bacteria and sulfur‐oxidizing bacteria were particularly abundant in our datasets, as were phylotypes that are known to carry out nitrification and the anaerobic oxidation of ammonium. The DNA extracted from phosphoclasts contained the signature of a distinct microbial community from those observed in the modern sediments. While some aspects of the modern and phosphoclast communities were similar, we observed both an enrichment of certain common microbial classes found in the modern phosphogenic sediments and a relative depletion of others. The phosphoclast‐associated DNA could represent a relict signature of one or more microbial assemblages that were present when the apatite or its precursors precipitated. While these taxa may or may not have contributed to the precipitation of the apatite that now hosts their genetic remains, several groups represented in the phosphoclast extract dataset have the genetic potential to metabolize polyphosphate, and perhaps modulate phosphate concentrations in pore waters where carbonate fluorapatite (or its precursors) are known to be precipitating.  相似文献   

14.
A cloned 5.8-kb genomic fragment of the green sulfur bacteriumChlorobium vibrioforme encodes the genes for three enzymes catalyzing early steps in the biosynthetic pathway of tetrapyrroles, common to chlorophyll and heme. ThehemA, hemC andhemD genes encode the enzymes glutamyl tRNA dehydrogenase, porphobilinogen deaminase and uroporphyrinogen III synthase, respectively. The cloned genes were expressed in transformedEscherichia coli orSalmonella typhimurium and conferred autotrophy on the respective auxotrophs. Activities of the enzymes encoded by the cloned genes were demonstrated in vitro, with cell extracts obtained from the transformed enterobacteria. The proximity of these genes indicates that they form a cluster inChlorobium vibrioforme, while in most other organisms they appear to be scattered. The presence of this cluster may imply coordinate regulation of the genes involved and they may constitute an operon.  相似文献   

15.
海岸盐沼湿地土壤硫循环中的微生物及其作用   总被引:8,自引:0,他引:8  
硫及硫化合物的动态循环是海岸盐沼湿地的重要组成部分,硫酸盐还原菌(SRB)和硫氧化菌(SOB)是推动硫循环的重要微生物。硫酸盐还原菌把硫酸盐还原为硫化物,同时消耗土壤中的有机物质;硫氧化菌把还原性硫化合物氧化为硫酸盐,缓解土壤中硫化物的积累,它们共同维持硫循环的动态平衡。本文综述了海岸盐沼湿地土壤中硫的存在形式、硫的地球化学循环以及在硫循环过程中扮演重要角色的硫酸盐还原菌和硫氧化菌的生物多样性、活性测定方法及其生态学意义等的最新研究进展,并提出了存在的问题及研究展望。  相似文献   

16.
A novel selective enrichment method is described for phototrophic green sulfur bacteria even in the presence of purple sulfur and purple nonsulfur bacteria using sulfanilate, which was discovered during efforts to selectively isolate sulfanilate-metabolizing anoxygenic phototrophic bacteria from marine habitats. Samples for these experiments were obtained from beaches, saltpans, subsurface mangrove soils, fish and prawn aquaculture ponds and backwaters of the East and West coasts of India. Photoorganoheterotrophic and photolithoautotrophic enrichments in the absence of sulfanilate predominantly yielded purple bacterial enrichments. In contrast, photolithoautotrophic enrichments in the presence of sulfanilate yielded green-colored enrichments from the same samples. Whole cell absorption spectra of the enrichment cultures revealed the presence of bacteriochlorophyll c and thus green phototrophic bacteria. Microscopic observation demonstrated the presence of sulfur globules outside the bacterial cells and the presence of non-motile cells, some of which had prosthecae. 16S rDNA sequences obtained from green sulfur bacterial strains isolated from enrichment cultures confirmed the presence of representatives of the green sulfur bacterial genera Prosthecochloris and Chlorobaculum. The selective pressure of sulfanilate exerted through inhibition of phototrophic purple sulfur bacteria was demonstrated by inhibition studies using the purple sulfur bacteria Marichromatium indicum JA100 and Marichromatium sp. JA120 (JCM 13533) and the green sulfur bacterium Prosthecochloris sp. JAGS6 (JCM 13299).  相似文献   

17.
Although the polypeptides of core light-harvesting complexes (LH1) from many purple nonsulfur bacteria have been well characterized, little information is available on the polypeptides of LH1 from purple sulfur photosynthetic organisms. We present here the results of isolation and characterization of LH1 polypeptides from two purple sulfur bacteria, Thermochromatium (Tch.) tepidum and Allochromatium (Ach.) vinosum. Native LH1 complexes were extracted and purified in a reaction center (RC)-associated form with the Qy absorption at 914 nm and 889 nm for Tch. tepidum and Ach. vinosum, respectively. Three components were confirmed from reverse-phase HPLC for the LH1 apopolypeptides of Tch. tepidum. The beta-polypeptide was found to be methylated at N-terminus, and two alpha-polypeptides were identified with one of them being modified by a formyl group at the N-terminal methionine residue. Two alpha- and two beta-polypeptides were confirmed for the LH1 complex of Ach. vinosum, and their primary structures were precisely determined. Homologous and hybrid reconstitution abilities were examined using bacteriochlorophyll a and separated alpha- and beta-polypeptides. The beta-polypeptide from Tch. tepidum was capable of forming uniform structural subunit not only with the alpha-polypeptide of Tch. tepidum but also with the alpha-polypeptide from a nonsulfur bacterium Rhodospirillum rubrum. The alpha-polypeptide alone or beta-polypeptide alone appeared only to result in incomplete subunits in the reconstitution experiments.  相似文献   

18.
The photosynthetic response of the purple sulfur bacterium Chromatium vinosum DSM 185 to different degrees of illumination was analyzed. The microorganism was grown in continuous culture, and samples were taken from the effluent of the culture and incubated at different irradiances to determine the specific rate of sulfur oxidation as a measure of the photosynthetic activity of the organism. The activities obtained were plotted as a function of the specific rate of light uptake, and for each set of data a photosynthesis equation was fitted, which allowed the estimation of Pmax (photosynthetic capacity), qk (the threshold irradiance for light limitation), and m (maintenance coefficient). The results indicated that cells grown under light limitation are able to achieve higher photosynthetic activities than cells grown under light saturation. The photosynthetic capacity (Pmax) remained constant under all the conditions of illumination tested, while the maintenance expenses (m) were higher under light limitation. The parameter qk, on the contrary, decreased considerably at limiting irradiances. Received: 16 January 1998 / Accepted: 7 September 1998  相似文献   

19.
The effects of light quality (color) on the 14CO2 fixation rates of natural population of photosynthetic sulfur bacteria were tested. The phototrophic bacteria were collected from the sulfide containing waters of 3 stratified lakes. The populations sampled survive in environments where light intensities are very low. Not only are the light intensities low but, due to the light filtering characteristics of the lake water, the light is of specific color. It was determined that the spectral properties of the three lakes differed, hence the quality of light reaching the phototrophic bacteria in each lake differed. It was also observed that only green sulfur bacteria were present in the study lake which transmits mainly red light and both purple and green sulfur bacteria were present in the two study lakes which transmit predominantly green light. Enrichment cultures were set up with phototrophic bacteria from two of the lakes serving as the inocula. Enrichment culture studies and photosynthetic responses of the natural populations indicate that light quality is a major factor in determining the composition of phototrophic bacterial population in some lakes.Non-Common Abbreviations Bchl Bacteriochlorophyll - DPM Disintegrations per minute  相似文献   

20.
Dissolution of Triassic-Jurassic, intrusive salt deposits within 150 m of the sea floor produces a hypersaline brine seep (∼200 0/00) at 71 m water depth on the East Flower Garden Bank. The anoxic, sulfide-rich brine supports large populations of sulfur oxidizing bacteria. Toxic effects of the brine on surrounding epifauna, infauna and fishes are limited to the brine and a very narrow surrounding zone. Leafy algae, coralline algae, foraminifers, sponges, bryozoans, anemones, polychaetes, sipunculids, amphipods and pelecypods live on the hard substratum within 2 cm of the brine-seawater interface. Sixty meters from the brine outflow, at dilutions of 50 to 1, the carbonate sand harbors polychaetes, ostracods, nematodes, amphipods, tanaidaceans, isopods, copepods, pelecypods and gastropods. Certain species of fish momentarily enter the brine and brine-seawater mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号