首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Transport properties of concentrated electrolytes have been analysed using classical molecular dynamics simulations with the algorithms and parameters typical of simulations describing complex electrokinetic phenomena. The electrical conductivity and transport numbers of electrolytes containing monovalent (KCl), divalent (MgCl2), a mixture of both (KCl+MgCl2) and trivalent (LaCl3) cations have been obtained from simulations of the electrolytes in electric fields of different magnitude. The results obtained for different simulation parameters have been discussed and compared with experimental measurements of our own and from the literature. The electroosmotic flow of water molecules induced by the ionic current in different cases has been calculated and interpreted with the help of the hydration properties extracted from the simulations.  相似文献   

3.
4.
Protein-protein interactions have been measured for a mutant (D101F) lysozyme and for native lysozyme in concentrated solutions of ammonium sulfate at pH 7 and sodium chloride at pH 4.5. In the mutant lysozyme, a surface aspartate residue has been replaced with a hydrophobic phenylalanine residue. The protein-protein interactions of D101F lysozyme are more attractive than those of native lysozyme for all conditions studied. The salt-induced attraction is correlated with a solvation potential of mean force given by the work required to desolvate the part of the protein surfaces that is buried by the protein-protein interaction. This work is proportional to the aqueous surface-tension increment of the salt and the fractional non-polar surface coverage of the protein. Experimental measurements of osmotic second virial coefficients validate a proposed potential of mean force that ascribes the salt-induced attraction between protein molecules to an enhancement of the hydrophobic attraction. This model provides a first approximation for predicting the protein-protein potential of mean force in concentrated aqueous electrolyte solutions; this potential is useful for determining solution conditions favorable for protein crystallization.  相似文献   

5.
Titration experiments have been carried out in order to measure the net proton charge of beta- and kappa-casein in NaCl solutions at 0.1 M and 1 M salt concentrations, at 4 degrees C, in the pH range between 5.5 and 10.5. Experimental data are compared with model values calculated through pK(a)'s of titrable groups neglecting the electrostatic perturbation term (deltapK(a)) in order to evaluate the magnitude of the error caused by this approximation and to delimit its effectiveness. At both ionic strengths, the agreement is good for kappa-casein in the pH range [5.5, 9.5], while errors of up to 2 charges are observed for beta-casein in the same range. These deviations are likely to be caused by strong electrostatic effects induced by the high density of negative charges of beta-casein 1-21 peptide. In order to account for these electrostatic effects, the net proton charge on this peptide is evaluated through a model based on the counterion condensation theory developed for the titration of polyelectrolytes with different types of ionizable groups.  相似文献   

6.
Results are presented of force measurements between deposited bilayers of dimyristoylphosphatidyl glycerol (DMPG) at T greater than Tm, and distearoylphosphatidyl glycerol (DSPG) at T less than Tm. Below a bilayer separation of 100 nm, a repulsive double-layer force is measured, which can be explained through the combined screening and binding effect of the counterions in electrolyte solutions of NaCl, HCl, CaCl2, or mixtures of these. The binding of cations to bilayers in the fluid phase (DMPG) appears to be greater than to bilayers in the gel phase (DSPG). At shorter range, below approximately 3 nm, an attractive interaction is measured in solutions containing CaCl2, which was found to be slightly stronger than the theoretically expected van der Waals interaction. No hydration force was observed to exist in solutions containing CaCl2. In NaCl solutions, the measured interbilayer force can completely be accounted for by the electrostatic repulsion, down to a bilayer separation of at least 2 nm, below which no accurate measurements were possible anymore. Parallel measurements on PG monolayers show that the contraction of a DMPG monolayer following addition of CaCl2 is significantly greater than what is predicted from the change in the double-layer free energy alone. This indicates that changes in the lateral interactions between the lipid headgroups probably involve Ca2+-bridge binding and/or a possible dehydration of the lipid headgroups through Ca2+ binding. The results shed new light on both the interbilayer and intrabilayer interactions of PG and identify the possible factors responsible for the morphological behavior of PG aggregates.  相似文献   

7.
J Marra  J Israelachvili 《Biochemistry》1985,24(17):4608-4618
We report direct measurements of the full interbilayer force laws (force vs. distance) between bilayers of various phosphatidylcholines and phosphatidylethanolamine in aqueous solutions. Bilayers were first deposited on molecularly smooth (mica) surfaces and the interbilayer forces then measured at a resolution of 1 A. Three types of forces were identified: attractive van der Waals forces, repulsive electrostatic (double-layer) forces, and (at short range) repulsive steric hydration forces. Double-layer forces, which arise from ion binding, were insignificant in monovalent salt solutions, e.g., NaCl up to 1 M, but were already present in solutions containing millimolar levels of CaCl2 and MgCl2, giving rise to forces in excellent agreement with theory. Ca2+ binds more strongly than Mg2+, and both bind less to lecithin bilayers in the fluid state (T greater than Tc). The plane of charge coincides with the location of the negative phosphate groups, while the effective plane of origin of the van der Waals force is 4-5 A farther out. In water, the adhesion energies are in the range 0.10-0.15 erg/cm2 for lecithins and approximately 0.8 erg/cm2 for phosphatidylethanolamine. The adhesion energies vary on addition of salt due to changes in the repulsive double-layer and hydration forces rather than to a change in the attractive van der Waals force. The short-range repulsive forces which balance the van der Waals force at separations of 10-30 A are due to a combination of hydration and steric repulsions, the latter arising from thermal motions of head groups and thickness fluctuations of fluid bilayers (above Tc). It is also concluded that bilayer fusion is not simply related to the interbilayer force law.  相似文献   

8.
Understanding aqueous protein-protein interactions is crucial for the development of a molecular-thermodynamic model for salt-induced protein precipitation. In addition, protein interactions are important in many disease states, including cataract formation and alpha-amyloid diseases. Fluorescence anisotropy provides a means to measure intermolecular interactions. In this work, monomer-dimer equilibrium of the peptide T4 LYS(11-36) was studied by fluorescence anisotropy over the pH range 4-7 and the NaCl concentration range 0.0-1.0 M, in a 25 mM sodium phosphate buffer. This 26 amino-acid peptide is derived from the beta-sheet region of the T4 lysozyme molecule and has the potential to form amyloid fibrils. The association constant for dimerization increases with rising pH and ionic strength. The potential of mean force for peptide-peptide interactions was calculated from these association constants. Circular-dichroism measurements show that the peptide becomes more structured as the pH rises, possibly contributing to increased association.  相似文献   

9.
10.
11.
New highly porous pure cellulose aerogel-like material called "aerocellulose" was prepared from aqueous cellulose/NaOH solutions. Solutions were gelled to obtain shaped three-dimensional objects, then cellulose was regenerated and dried in supercritical conditions using CO2. The porosity of aerocellulose is higher than 95% with pore sizes distribution from a few tens of nanometers to a few tens of micrometers. The internal specific surface area is around 200-300 m2/g, and density ranges from 0.06 to 0.3 g/cm3, depending on the preparation conditions. The influence of cellulose DP and concentration, of the addition of a surfactant leading to solution foaming, of gelation conditions and the temperature and acidity of regenerating bath on the morphology of aerocellulose has been studied. The results are compared with another type of aerocellulose that was prepared from cellulose/NMMO solutions.  相似文献   

12.
13.
14.
15.
R. A. Mills 《Biopolymers》1970,9(12):1511-1530
The potential problem is formulated for rodlike macroions and reduced to a single dimensionless equation with appropriate boundary conditions. A method of solution based on piecewise linearization of the potential equation is detailed and compared with two other approaches. It is suggested that the present method yields improved estimates of macroion charges. Some numerical results are included, and the relation between electrophoretic charge and macroion charge is considered.  相似文献   

16.
17.
Field-dependent measurements of the paramagnetic relaxation enhancement for water protons in the presence of Mn(II) complexes ( S=5/2), reported recently, are re-interpreted using theoretical models that take into consideration the fact that the relaxation of the electron spin for S>1 is multiexponential (even in the Redfield limit) and that are valid for an arbitrary relation between the electronic Zeeman interaction and the zero-field splitting in the complex.  相似文献   

18.
At low temperature and in a narrow pH-range, the hydroxyl-proton resonance spectra of a range of mono-, di- and oligo-saccharides in dilute aqueous solutions have been resolved. The signals rapidly broaden on raising the temperature and on changing the pH of the solutions. Optimum conditions for obtaining maximum resolution are described and attempts are made to assign the resonances to specific hydroxyl groups. In all cases the resonances for the anomeric hydroxyl-proton occurred at lowest field and the pH value for optimum resolution of these resonances was always lower than that for the other hydroxyl resonances.  相似文献   

19.
The glycolytic pathway is one of the most important pathways for living organisms, due to its role in energy production and as supplier of precursors for biosynthesis in living cells. This work focuses on determination of the standard Gibbs energy of reaction ΔRg0 of the enolase reaction, the ninth reaction in the glycolysis pathway. Exact ΔRg0 values are required to predict the thermodynamic feasibility of single metabolic reactions or even of metabolic reaction sequences under cytosolic conditions. So-called “apparent” standard data from literature are only valid at specific conditions. Nevertheless, such data are often used in pathway analyses, which might lead to misinterpretation of the results. In this work, equilibrium measurements were combined with activity coefficients in order to obtain new standard values ΔRg0 for the enolase reaction that are independent of the cytosolic conditions. Reaction equilibria were measured at different initial substrate concentrations and temperatures of 298.15 K, 305.15 K and 310.15 K at pH 7. The activity coefficients were predicted using the equation of state electrolyte Perturbed-Chain Statistical Associating Fluid Theory (ePC-SAFT). The ePC-SAFT parameters were taken from literature or fitted to new experimentally determined osmotic coefficients and densities. At 298.15 K and pH 7, a ΔRg0(298.15 K, pH 7) value of −2.8 ± 0.2 kJ mol1 was obtained. This value differs by up to 5 kJ mol1 from literature data. Reasons are the poorly defined “standard” conditions and partly undefined reaction conditions of literature works. Finally, using temperature-dependent equilibrium constants and the van ‘t Hoff equation, the standard enthalpy of reaction of ΔRh0(298.15 K, pH 7) = 27 ± 10 kJ mol1 was determined, and a similar value was found by quantum-chemistry calculations.  相似文献   

20.
Estimation of standard Gibbs energy changes of biotransformations   总被引:12,自引:0,他引:12  
Contributions and corrections for the estimation of standard Gibbs energies are given. The group contribution method, applicable to both cyclic and acyclic compounds, permits the approximate estimation of the standard Gibbs energy of a biotransformation, given the stoichiometry and structures of the metabolites involved. Estimated standard Gibbs energies of formation for a number of acyclic biochemical compounds are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号