首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is well known that noise is inevitable in gene regulatory networks due to the low-copy numbers of molecules and local environmental fluctuations. The prediction of noise effects is a key issue in ensuring reliable transmission of information. Interlinked positive and negative feedback loops are essential signal transduction motifs in biological networks. Positive feedback loops are generally believed to induce a switch-like behavior, whereas negative feedback loops are thought to suppress noise effects. Here, by using the signal sensitivity (susceptibility) and noise amplification to quantify noise propagation, we analyze an abstract model of the Myc/E2F/MiR-17-92 network that is composed of a coupling between the E2F/Myc positive feedback loop and the E2F/Myc/miR-17-92 negative feedback loop. The role of the feedback loop on noise effects is found to depend on the dynamic properties of the system. When the system is in monostability or bistability with high protein concentrations, noise is consistently suppressed. However, the negative feedback loop reduces this suppression ability (or improves the noise propagation) and enhances signal sensitivity. In the case of excitability, bistability, or monostability, noise is enhanced at low protein concentrations. The negative feedback loop reduces this noise enhancement as well as the signal sensitivity. In all cases, the positive feedback loop acts contrary to the negative feedback loop. We also found that increasing the time scale of the protein module or decreasing the noise autocorrelation time can enhance noise suppression; however, the systems sensitivity remains unchanged. Taken together, our results suggest that the negative/positive feedback mechanisms in coupled feedback loop dynamically buffer noise effects rather than only suppressing or amplifying the noise.  相似文献   

2.
Kwon YK  Cho KH 《Biophysical journal》2007,92(8):2975-2981
Boolean networks have been frequently used to study the dynamics of biological networks. In particular, there have been various studies showing that the network connectivity and the update rule of logical functions affect the dynamics of Boolean networks. There has been, however, relatively little attention paid to the dynamical role of a feedback loop, which is a circular chain of interactions between Boolean variables. We note that such feedback loops are ubiquitously found in various biological systems as multiple coupled structures and they are often the primary cause of complex dynamics. In this article, we investigate the relationship between the multiple coupled feedback loops and the dynamics of Boolean networks. We show that networks have a larger proportion of basins corresponding to fixed-point attractors as they have more coupled positive feedback loops, and a larger proportion of basins for limit-cycle attractors as they have more coupled negative feedback loops.  相似文献   

3.
Kim JR  Yoon Y  Cho KH 《Biophysical journal》2008,94(2):359-365
Cellular networks are composed of complicated interconnections among components, and some subnetworks of particular functioning are often identified as network motifs. Among such network motifs, feedback loops are thought to play important dynamical roles. Intriguingly, such feedback loops are very often found as a coupled structure in cellular circuits. Therefore, we integrated all the scattered information regarding the coupled feedbacks in various cellular circuits and investigated the dynamical role of each coupled structure. Finally, we discovered that coupled positive feedbacks enhance signal amplification and bistable characteristics; coupled negative feedbacks realize enhanced homeostasis; coupled positive and negative feedbacks enable reliable decision-making by properly modulating signal responses and effectively dealing with noise.  相似文献   

4.
5.
Graph theory has been a valuable mathematical modeling tool to gain insights into the topological organization of biochemical networks. There are two types of insights that may be obtained by graph theory analyses. The first provides an overview of the global organization of biochemical networks; the second uses prior knowledge to place results from multivariate experiments, such as microarray data sets, in the context of known pathways and networks to infer regulation. Using graph analyses, biochemical networks are found to be scale-free and small-world, indicating that these networks contain hubs, which are proteins that interact with many other molecules. These hubs may interact with many different types of proteins at the same time and location or at different times and locations, resulting in diverse biological responses. Groups of components in networks are organized in recurring patterns termed network motifs such as feedback and feed-forward loops. Graph analysis revealed that negative feedback loops are less common and are present mostly in proximity to the membrane, whereas positive feedback loops are highly nested in an architecture that promotes dynamical stability. Cell signaling networks have multiple pathways from some input receptors and few from others. Such topology is reminiscent of a classification system. Signaling networks display a bow-tie structure indicative of funneling information from extracellular signals and then dispatching information from a few specific central intracellular signaling nexuses. These insights show that graph theory is a valuable tool for gaining an understanding of global regulatory features of biochemical networks.  相似文献   

6.
The cell division cycle comprises a sequence of phenomena controlled by a stable and robust genetic network. We applied a probabilistic genetic network (PGN) to construct a hypothetical model with a dynamical behavior displaying the degree of robustness typical of the biological cell cycle. The structure of our PGN model was inspired in well-established biological facts such as the existence of integrator subsystems, negative and positive feedback loops, and redundant signaling pathways. Our model represents genes interactions as stochastic processes and presents strong robustness in the presence of moderate noise and parameters fluctuations. A recently published deterministic yeast cell-cycle model does not perform as well as our PGN model, even upon moderate noise conditions. In addition, self stimulatory mechanisms can give our PGN model the possibility of having a pacemaker activity similar to the observed in the oscillatory embryonic cell cycle.  相似文献   

7.
Feedback modules, which appear ubiquitously in biological regulations, are often subject to disturbances from the input, leading to fluctuations in the output. Thus, the question becomes how a feedback system can produce a faithful response with a noisy input. We employed multiple time scale analysis, Fluctuation Dissipation Theorem, linear stability, and numerical simulations to investigate a module with one positive feedback loop driven by an external stimulus, and we obtained a critical quantity in noise attenuation, termed as “signed activation time”. We then studied the signed activation time for a system of two positive feedback loops, a system of one positive feedback loop and one negative feedback loop, and six other existing biological models consisting of multiple components along with positive and negative feedback loops. An inverse relationship is found between the noise amplification rate and the signed activation time, defined as the difference between the deactivation and activation time scales of the noise-free system, normalized by the frequency of noises presented in the input. Thus, the combination of fast activation and slow deactivation provides the best noise attenuation, and it can be attained in a single positive feedback loop system. An additional positive feedback loop often leads to a marked decrease in activation time, decrease or slight increase of deactivation time and allows larger kinetic rate variations for slow deactivation and fast activation. On the other hand, a negative feedback loop may increase the activation and deactivation times. The negative relationship between the noise amplification rate and the signed activation time also holds for the six other biological models with multiple components and feedback loops. This principle may be applicable to other feedback systems.  相似文献   

8.
Feedback loops play an important role in determining the dynamics of biological networks. To study the role of negative feedback loops, this article introduces the notion of distance-to-positive-feedback which, in essence, captures the number of independent negative feedback loops in the network, a property inherent in the network topology. Through a computational study using Boolean networks, it is shown that distance-to-positive-feedback has a strong influence on network dynamics and correlates very well with the number and length of limit cycles in the phase space of the network. To be precise, it is shown that, as the number of independent negative feedback loops increases, the number (length) of limit cycles tends to decrease (increase). These conclusions are consistent with the fact that certain natural biological networks exhibit generally regular behavior and have fewer negative feedback loops than randomized networks with the same number of nodes and same connectivity.  相似文献   

9.
In this paper, we develop a new methodology to analyze and design periodic oscillators of biological networks, in particular gene regulatory networks with multiple genes, proteins and time delays, by using negative cyclic feedback systems. We show that negative cyclic feedback networks have no stable equilibria but stable periodic orbits when certain conditions are satisfied. Specifically, we first prove the basic properties of the biological networks composed of cyclic feedback loops, and then extend our results to general cyclic feedback network with less restriction, thereby making our theoretical analysis and design of oscillators easy to implement, even for large-scale systems. Finally, we use one circadian network formed by a period protein (PER) and per mRNA, and one biologically plausible synthetic gene network, to demonstrate the theoretical results. Since there is less restriction on the network structure, the results of this paper can be expected to apply to a wide variety of areas on modelling, analyzing and designing of biological systems.  相似文献   

10.
Autoregulatory feedback loops, where the protein expressed from a gene inhibits or activates its own expression are common gene network motifs within cells. In these networks, stochastic fluctuations in protein levels are attributed to two factors: intrinsic noise (i.e., the randomness associated with mRNA/protein expression and degradation) and extrinsic noise (i.e., the noise caused by fluctuations in cellular components such as enzyme levels and gene-copy numbers). We present results that predict the level of both intrinsic and extrinsic noise in protein numbers as a function of quantities that can be experimentally determined and/or manipulated, such as the response time of the protein and the level of feedback strength. In particular, we show that for a fixed average number of protein molecules, decreasing response times leads to attenuation of both protein intrinsic and extrinsic noise, with the extrinsic noise being more sensitive to changes in the response time. We further show that for autoregulatory networks with negative feedback, the protein noise levels can be minimal at an optimal level of feedback strength. For such cases, we provide an analytical expression for the highest level of noise suppression and the amount of feedback that achieves this minimal noise. These theoretical results are shown to be consistent and explain recent experimental observations. Finally, we illustrate how measuring changes in the protein noise levels as the feedback strength is manipulated can be used to determine the level of extrinsic noise in these gene networks.  相似文献   

11.
A quantitative analysis of naturally-occurring regulatory networks, especially those present in mammalian cells, is difficult due to their high complexity. Much simpler gene networks can be engineered in model organisms and analyzed as isolated regulatory modules. Recently, several synthetic networks have been constructed in mammalian systems. However, most of these engineered mammalian networks have been characterized using steady-state population level measurements. Here, we use an integrated experimental-computational approach to analyze the dynamical response of a synthetic positive feedback network in individual mammalian cells. We observe a switch-like activation of the network with variable delay times in individual cells. In agreement with a stochastic model of the network, we find that increasing the strength of the positive feedback results in a decrease in the mean delay time and a more coherent activation of individual cells. Our results are important for gaining insight into biological processes which rely on positive feedback regulation.  相似文献   

12.
Constructing biological networks capable of performing specific biological functionalities has been of sustained interest in synthetic biology. Adaptation is one such ubiquitous functional property, which enables every living organism to sense a change in its surroundings and return to its operating condition prior to the disturbance. In this paper, we present a generic systems theory-driven method for designing adaptive protein networks. First, we translate the necessary qualitative conditions for adaptation to mathematical constraints using the language of systems theory, which we then map back as ‘design requirements’ for the underlying networks. We go on to prove that a protein network with different input–output nodes (proteins) needs to be at least of third-order in order to provide adaptation. Next, we show that the necessary design principles obtained for a three-node network in adaptation consist of negative feedback or a feed-forward realization. We argue that presence of a particular class of negative feedback or feed-forward realization is necessary for a network of any size to provide adaptation. Further, we claim that the necessary structural conditions derived in this work are the strictest among the ones hitherto existed in the literature. Finally, we prove that the capability of producing adaptation is retained for the admissible motifs even when the output node is connected with a downstream system in a feedback fashion. This result explains how complex biological networks achieve robustness while keeping the core motifs unchanged in the context of a particular functionality. We corroborate our theoretical results with detailed and thorough numerical simulations. Overall, our results present a generic, systematic and robust framework for designing various kinds of biological networks.  相似文献   

13.
Bacteria use two-component systems (TCSs) to sense environmental conditions and change gene expression in response to those conditions. To amplify cellular responses, many bacterial TCSs are under positive feedback control, i.e. increase their expression when activated. Escherichia coli Mg2+ -sensing TCS, PhoPQ, in addition to the positive feedback, includes a negative feedback loop via the upregulation of the MgrB protein that inhibits PhoQ. How the interplay of these feedback loops shapes steady-state and dynamical responses of PhoPQ TCS to change in Mg2+ remains poorly understood. In particular, how the presence of MgrB feedback affects the robustness of PhoPQ response to overexpression of TCS is unclear. It is also unclear why the steady-state response to decreasing Mg2+ is biphasic, i.e. plateaus over a range of Mg2+ concentrations, and then increases again at growth-limiting Mg2+. In this study, we use mathematical modeling to identify potential mechanisms behind these experimentally observed dynamical properties. The results make experimentally testable predictions for the regime with response robustness and propose a novel explanation of biphasic response constraining the mechanisms for modulation of PhoQ activity by Mg2+ and MgrB. Finally, we show how the interplay of positive and negative feedback loops affects the network’s steady-state sensitivity and response dynamics. In the absence of MgrB feedback, the model predicts oscillations thereby suggesting a general mechanism of oscillatory or pulsatile dynamics in autoregulated TCSs. These results improve the understanding of TCS signaling and other networks with overlaid positive and negative feedback.  相似文献   

14.
15.
16.
弹性是生物分子网络重要且基础的属性之一,一方面弹性赋予生物分子网络抵抗内部噪声与环境干扰并维持其自身基本功能的能力,另一方面,弹性为网络状态的恢复制造了阻力。生物分子网络弹性研究试图回答如下3个问题:a. 生物分子网络弹性的产生机理是什么?b. 弹性影响下生物分子网络的状态如何发生转移?c. 如何预测生物网络状态转换临界点,以防止系统向不理想的状态演化?因此,研究生物分子网络弹性有助于理解生物系统内部运作机理,同时对诸如疾病发生临界点预测、生物系统状态逆转等临床应用具有重要的指导意义。鉴于此,本文主要针对以上生物分子网络弹性领域的3个热点研究问题,在研究方法和生物学应用上进行了系统地综述,并对未来生物分子网络弹性的研究方向进行了展望。  相似文献   

17.
It has been a challenge in systems biology to unravel relationships between structural properties and dynamic behaviors of biological networks. A Cytoscape plugin named NetDS was recently proposed to analyze the robustness-related dynamics and feed-forward/feedback loop structures of biological networks. Despite such a useful function, limitations on the network size that can be analyzed exist due to high computational costs. In addition, the plugin cannot verify an intrinsic property which can be induced by an observed result because it has no function to simulate the observation on a large number of random networks. To overcome these limitations, we have developed a novel software tool, PANET. First, the time-consuming parts of NetDS were redesigned to be processed in parallel using the OpenCL library. This approach utilizes the full computing power of multi-core central processing units and graphics processing units. Eventually, this made it possible to investigate a large-scale network such as a human signaling network with 1,609 nodes and 5,063 links. We also developed a new function to perform a batch-mode simulation where it generates a lot of random networks and conducts robustness calculations and feed-forward/feedback loop examinations of them. This helps us to determine if the findings in real biological networks are valid in arbitrary random networks or not. We tested our plugin in two case studies based on two large-scale signaling networks and found interesting results regarding relationships between coherently coupled feed-forward/feedback loops and robustness. In addition, we verified whether or not those findings are consistently conserved in random networks through batch-mode simulations. Taken together, our plugin is expected to effectively investigate various relationships between dynamics and structural properties in large-scale networks. Our software tool, user manual and example datasets are freely available at http://panet-csc.sourceforge.net/.  相似文献   

18.
Feedback theory and Darwinian evolution.   总被引:3,自引:0,他引:3  
Feedback loops can have a significant impact on biological systems that are evolving under Darwinian natural selection. Many of the striking and sometimes bizarre patterns that characterize the evolution of such systems have simple, natural explanations that involve the effects of feedback loops. The two fundamental types of feedback loops, positive and negative, have effects that are radically different: negative feedback tends to produce stability and resistance to change; positive feedback produces instability and even catastrophe. Both types of feedback loops are important in biological systems, and both can produce chaos, whose mathematical complexity often produces strange, beautiful and totally unexpected patterns that have only begun to be explored using the computational capabilities of modern electronic computers. An understanding of the patterns that can result from the effects of feedback loops can produce important new insights into the patterns that mark the evolutionary development of biological systems.  相似文献   

19.
Multisite phosphorylation of regulatory proteins has been proposed to underlie ultrasensitive responses required to generate nontrivial dynamics in complex biological signaling networks. We used a random search strategy to analyze the role of multisite phosphorylation of key proteins regulating cyclin-dependent kinase (CDK) activity in a model of the eukaryotic cell cycle. We show that multisite phosphorylation of either CDK, CDC25, wee1, or CDK-activating kinase is sufficient to generate dynamical behaviors including bistability and limit cycles. Moreover, combining multiple feedback loops based on multisite phosphorylation do not destabilize the cell cycle network by inducing complex behavior, but rather increase the overall robustness of the network. In this model we find that bistability is the major dynamical behavior of the CDK signaling network, and that negative feedback converts bistability into limit cycle behavior. We also compare the dynamical behavior of several simplified models of CDK regulation to the fully detailed model. In summary, our findings suggest that multisite phosphorylation of proteins is a critical biological mechanism in generating the essential dynamics and ensuring robust behavior of the cell cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号