首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phylogenetic trees show a remarkable slowdown in the increase of number of lineages towards the present, a phenomenon which cannot be explained by the standard birth-death model of diversification with constant speciation and extinction rates. The birth-death model instead predicts a constant or accelerating increase in the number of lineages, which has been called the pull of the present. The observed slowdown has been attributed to nonconstancy of the speciation and extinction rates due to some form of diversity dependence (i.e., species-level density dependence), but the mechanisms underlying this are still unclear. Here, we propose an alternative explanation based on the simple concept that speciation takes time to complete. We show that this idea of "protracted" speciation can be incorporated in the standard birth-death model of diversification. The protracted birth-death model predicts a realistic slowdown in the rate of increase of number of lineages in the phylogeny and provides a compelling fit to four bird phylogenies with realistic parameter values. Thus, the effect of recognizing the generally accepted fact that speciation is not an instantaneous event is significant; even if it cannot account for all the observed patterns, it certainly contributes substantially and should therefore be incorporated into future studies.  相似文献   

2.
Quantitative traits have long been hypothesized to affect speciation and extinction rates. For example, smaller body size or increased specialization may be associated with increased rates of diversification. Here, I present a phylogenetic likelihood-based method (quantitative state speciation and extinction [QuaSSE]) that can be used to test such hypotheses using extant character distributions. This approach assumes that diversification follows a birth-death process where speciation and extinction rates may vary with one or more traits that evolve under a diffusion model. Speciation and extinction rates may be arbitrary functions of the character state, allowing much flexibility in testing models of trait-dependent diversification. I test the approach using simulated phylogenies and show that a known relationship between speciation and a quantitative character could be recovered in up to 80% of the cases on large trees (500 species). Consistent with other approaches, detecting shifts in diversification due to differences in extinction rates was harder than when due to differences in speciation rates. Finally, I demonstrate the application of QuaSSE to investigate the correlation between body size and diversification in primates, concluding that clade-specific differences in diversification may be more important than size-dependent diversification in shaping the patterns of diversity within this group.  相似文献   

3.
Abstract What causes species richness to vary among different groups of organisms? Two hypotheses are that large geographical ranges and fast life history either reduce extinction rates or raise speciation rates, elevating a clade's rate of diversification. Here we present a comparative analysis of these hypotheses using data on the phylogenetic relationships, geographical ranges and life history of the terrestrial mammal fauna of Australia. By comparing species richness patterns to null models, we show that species are distributed nonrandomly among genera. Using sister‐clade comparisons to control for clade age, we then find that faster diversification is significantly associated with larger geographical ranges and larger litters, but there is no evidence for an effect of body size or age at first breeding on diversification rates. We believe the most likely explanation for these patterns is that larger litters and geographical ranges increase diversification rates because they buffer species from extinction. We also discuss the possibility that positive effects of litter size and range size on diversification rates result from elevated speciation rates.  相似文献   

4.
There is considerable interest in the possibility of using molecular phylogenies to estimate extinction rates. The present study aims at assessing the statistical performance of the birth-death model fitting approach to estimate speciation and extinction rates by comparison to the approach considering fossil data. A simulation-based approach was used. The diversification of a large number of lineages was simulated under a wide range of speciation and extinction rate values. The estimators obtained with fossils performed better than those without fossils. In the absence of fossils (e.g. with a molecular phylogeny), the speciation rate was correctly estimated in a wide range of situations; the bias of the corresponding estimator was close to zero for the largest trees. However, this estimator was substantially biased when the simulated extinction rate was high. On the other hand the estimator of extinction rate was biased in a wide range of situations. Surprisingly, this bias was lesser with medium-sized trees. Some recommendations for interpreting results from a diversification analysis are given.  相似文献   

5.
Theory predicts that biogeographic factors should play a central role in promoting population divergence and speciation. Previous empirical studies into biogeography and diversification have been relatively restricted in terms of the geographical area, phylogenetic scope, and the range of biogeographic factors considered. Here we present a global analysis of allopatric phenotypic divergence (measured as subspecies richness) across more than 9600 bird species. The main aim of this study was to examine the extent to which biogeographical factors can explain patterns of phenotypic divergence. Analysis of the taxonomic distribution of subspecies among species suggests that subspecies formation and extinction have occurred at a considerably faster rate than has species formation. However, the observed distribution departs from the expectation under a random birth-death model of diversification. Across 19 phylogenetic trees, we find no significant linear relationship between species age and subspecies richness, implying that species age is a poor predictor of subspecies richness. Both subspecies richness and subspecies diversification rate are found to exhibit low phylogenetic signal, meaning that closely related species do not tend to possess similar numbers of subspecies. As predicted by theory, high subspecies richness was associated with large breeding range size, island dwelling, inhabitation of montane regions, habitat heterogeneity, and low latitude. Of these factors, breeding range size was the variable that explained the most variation. Unravelling whether species that have invaded previously glacial areas have more or fewer subspecies than expected proves to be complicated due to a covariation between the postglacial colonization, latitude, geographic range size, and subspecies richness. However, the effect of postglacial colonization on subspecies richness appears to be small. Mapping the distribution of species' subspecies richness globally reveals geographical patterns that correspond to many of the predictions of the statistical models, but may also reflect geographical variation in taxonomic practice. Overall, we demonstrate that biogeographic models can explain about 30% of the global variation in subspecies richness in birds.  相似文献   

6.
Understanding the origin of diversity is a fundamental problem in biology. Evolutionary diversification has been intensely explored during the last years due to the development of molecular tools and the comparative method. However, most studies are conducted using only information from extant species. This approach probably leads to misleading conclusions, especially because of inaccuracy in the estimation of extinction rates. It is critical to integrate the information generated by extant organisms with the information obtained from the fossil record. Unfortunately, this integrative approach has been seldom performed, and thus, our understanding of the factors fueling diversification is still deficient. Ecological interactions are a main factor shaping evolutionary diversification by influencing speciation and extinction rates. Most attention has focused on the effect of antagonistic interactions on evolutionary diversification. In contrast, the role of mutualistic interactions in shaping diversification has been much less explored. In this study, by combining phylogenetic, neontological, and paleontological information, we show that a facultative mutualistic plant-animal interaction emerging from frugivory and seed dispersal has most likely contributed to the diversification of our own lineage, the primates. We compiled diet and seed dispersal ability in 381 extant and 556 extinct primates. Using well-established molecular phylogenies, we demonstrated that mutualistic extant primates had higher speciation rates, lower extinction rates, and thereby higher diversification rates than nonmutualistic ones. Similarly, mutualistic fossil primates had higher geological durations and smaller per capita rates of extinction than nonmutualistic ones. As a mechanism underlying this pattern, we found that mutualistic extinct and extant primates have significantly larger geographic ranges, which promotes diversification by hampering extinction and increasing geographic speciation. All these outcomes together strongly suggest that the establishment of a facultative mutualism with plants has greatly benefited primate evolution and fueled its taxonomic diversification.  相似文献   

7.
Species co-occur with different sets of other species across their geographical distribution, which can be either closely or distantly related. Such co-occurrence patterns and their phylogenetic structure within individual species ranges represent what we call the species phylogenetic fields (PFs). These PFs allow investigation of the role of historical processes—speciation, extinction and dispersal—in shaping species co-occurrence patterns, in both extinct and extant species. Here, we investigate PFs of large mammalian species during the last 3 Myr, and how these correlate with trends in diversification rates. Using the fossil record, we evaluate species'' distributional and co-occurrence patterns along with their phylogenetic structure. We apply a novel Bayesian framework on fossil occurrences to estimate diversification rates through time. Our findings highlight the effect of evolutionary processes and past climatic changes on species'' distributions and co-occurrences. From the Late Pliocene to the Recent, mammal species seem to have responded in an individualistic manner to climate changes and diversification dynamics, co-occurring with different sets of species from different lineages across their geographical ranges. These findings stress the difficulty of forecasting potential effects of future climate changes on biodiversity.  相似文献   

8.
In this paper, I develop efficient tools to simulate trees with a fixed number of extant species. The tools are provided in my open source R-package TreeSim available on CRAN. The new model presented here is a constant rate birth-death process with mass extinction and/or rate shift events at arbitrarily fixed times 1) before the present or 2) after the origin. The simulation approach for case (2) can also be used to simulate under more general models with fixed events after the origin. I use the developed simulation tools for showing that a mass extinction event cannot be distinguished from a model with constant speciation and extinction rates interrupted by a phase of stasis based on trees consisting of only extant species. However, once we distinguish between mass extinction and period of stasis based on paleontological data, fast simulations of trees with a fixed number of species allow inference of speciation and extinction rates using approximate Bayesian computation and allow for robustness analysis once maximum likelihood parameter estimations are available.  相似文献   

9.
Species diversity patterns are governed by complex interactions among biotic and abiotic factors over time and space, but are essentially the result of the diversification dynamics (differential speciation and extinction rates) over the long-term evolutionary history of a clade. Previous studies have suggested that temporal variation in global temperature drove long-term diversity changes in Crocodylia, a monophyletic group of large ectothermic organisms. We use a large database of crocodylian fossil occurrences (192 spp.) and body mass estimations, under a taxic approach, to characterize the global diversification dynamics of crocodylians since the Cretaceous, and their correlation with multiple biotic and abiotic factors in a Bayesian framework. The diversification dynamic of crocodylians, which appears to have originated in the Turonian (c. 92.5 Ma), is characterized by several phases with high extinction and speciation rates within a predominantly low long-term mean rate. Our results reveal long-term diversification dynamics of Crocodylia to be a highly complex process driven by a combination of biotic and abiotic factors which influenced the speciation and extinction rates in dissimilar ways. Higher crocodylian extinction rates are related to low body mass disparity, indicating selective extinctions of taxa at both ends of the body mass spectrum. Speciation rate slowdowns are noted when the diversity of the clade is high and the warm temperate climatic belt is reduced. Our finding supports the idea that temporal variations of body mass disparity, self-diversity, and the warm climate belt size provided more direct mechanistic explanations for crocodylian diversification than do proxies of global temperature.  相似文献   

10.
Whatever criteria are used to measure evolutionary success – species numbers, geographic range, ecological abundance, ecological and life history diversity, background diversification rates, or the presence of rapidly evolving clades – the legume family is one of the most successful lineages of flowering plants. Despite this, we still know rather little about the dynamics of lineage and species diversification across the family through the Cenozoic, or about the underlying drivers of diversification. There have been few attempts to estimate net species diversification rates or underlying speciation and extinction rates for legume clades, to test whether among-lineage variation in diversification rates deviates from null expectations, or to locate species diversification rate shifts on specific branches of the legume phylogenetic tree. In this study, time-calibrated phylogenetic trees for a set of species-rich legume clades – Calliandra, Indigofereae, Lupinus, Mimosa and Robinieae – and for the legume family as a whole, are used to explore how we might approach these questions. These clades are analysed using recently developed maximum likelihood and Bayesian methods to detect species diversification rate shifts and test for among-lineage variation in speciation, extinction and net diversification rates. Possible explanations for rate shifts in terms of extrinsic factors and/or intrinsic trait evolution are discussed. In addition, several methodological issues and limitations associated with these analyses are highlighted emphasizing the potential to improve our understanding of the evolutionary dynamics of legume diversification by using much more densely sampled phylogenetic trees that integrate information across broad taxonomic, geographical and temporal levels.  相似文献   

11.
12.
How seasonal migration originated and impacted diversification in birds remains largely unknown. Although migratory behaviour is likely to affect bird diversification, previous studies have not detected any effect. Here, we infer ancestral migratory behaviour and the effect of seasonal migration on speciation and extinction dynamics using a complete bird tree of life. Our analyses infer that sedentary behaviour is ancestral, and that migratory behaviour evolved independently multiple times during the evolutionary history of birds. Speciation of a sedentary species into two sedentary daughter species is more frequent than speciation of a migratory species into two migratory daughter species. However, migratory species often diversify by generating a sedentary daughter species in addition to the ancestral migratory one. This leads to an overall higher migratory speciation rate. Migratory species also experience lower extinction rates. Hence, although migratory species represent a minority (18.5%) of all extant birds, they have a higher net diversification rate than sedentary species. These results suggest that the evolution of seasonal migration in birds has facilitated diversification through the divergence of migratory subpopulations that become sedentary, and illustrate asymmetrical diversification as a mechanism by which diversification rates are decoupled from species richness.  相似文献   

13.
To determine how historical processes, namely speciation, extinction, and dispersal, have contributed to regional species diversity patterns across the marine tropics, we examined the biogeographical history of a circumtropical genus of intertidal gastropods. A species-level phylogeny of Nerita, representing approximately 87% of extant species, was developed from 1608bp of mitochondrial (COI and 16S) and nuclear (ATPSalpha) markers. Phylogenetic relationships generally corresponded to prior classifications; however, comprehensive sampling revealed a number of previously undetected ESUs. Using the resulting tree as a framework, we combined geographical distributions and fossil evidence to reconstruct ancestral ranges, produce a time-calibrated chronogram, and estimate diversification rates. Analyses revealed two monophyletic eastern Pacific+Atlantic (EPA) clades, each of which likely split from an Indo-West Pacific (IWP) sister clade prior to an early Miocene Tethys Seaway closure. More recent diversification throughout the IWP appears to have been driven by both vicariance and dispersal events; EPA diversity has been further shaped by speciation across the Central American Seaway prior to its closure and dispersal across the Atlantic. Despite the latter, inter-regional dispersal has been rare, and likely contributes little to regional diversity patterns. Similarly, infrequent transitions into temperate regions combined with reduced diversification rates may explain low diversity in West and South Pacific clades. Since origination, Nerita diversification appears remarkably constant, with the exception of a lag in the late Eocene-early Oligocene and elevated rates in the late Oligocene-early Miocene. However, a comparison among regions suggested that IWP clades have experienced, on average, higher rates of speciation. Fossil evidence indicates that the EPA likely witnessed greater extinction relative to the IWP. We propose that regional differences in species diversity in Nerita have been largely shaped by differential rates of speciation and extinction.  相似文献   

14.
Evolutionary processes underlying spatial patterns in species richness remain largely unexplored, and correlative studies lack the theoretical basis to explain these patterns in evolutionary terms. In this study, we develop a spatially explicit simulation model to evaluate, under a pattern-oriented modeling approach, whether evolutionary niche dynamics (the balance between niche conservatism and niche evolution processes) can provide a parsimonious explanation for patterns in species richness. We model the size, shape, and location of species' geographical ranges in a multivariate heterogeneous environmental landscape by simulating an evolutionary process in which environmental fluctuations create geographic range fragmentation, which, in turn, regulates speciation and extinction. We applied the model to the South American domain, adjusting parameters to maximize the correspondence between observed and predicted patterns in richness of about 3,000 bird species. Predicted spatial patterns, which closely resemble observed ones (r2=0.795), proved sensitive to niche dynamics processes. Our simulations allow evaluation of the roles of both evolutionary and ecological processes in explaining spatial patterns in species richness, revealing the enormous potential of the link between ecology and historical biogeography under integrated theoretical and methodological frameworks.  相似文献   

15.
A common pattern in time-calibrated molecular phylogenies is a signal of rapid diversification early in the history of a radiation. Because the net rate of diversification is the difference between speciation and extinction rates, such "explosive-early" diversification could result either from temporally declining speciation rates or from increasing extinction rates through time. Distinguishing between these alternatives is challenging but important, because these processes likely result from different ecological drivers of diversification. Here we develop a method for estimating speciation and extinction rates that vary continuously through time. By applying this approach to real phylogenies with explosive-early diversification and by modeling features of lineage-accumulation curves under both declining speciation and increasing extinction scenarios, we show that a signal of explosive-early diversification in phylogenies of extant taxa cannot result from increasing extinction and can only be explained by temporally declining speciation rates. Moreover, whenever extinction rates are high, "explosive early" patterns become unobservable, because high extinction quickly erases the signature of even large declines in speciation rates. Although extinction may obscure patterns of evolutionary diversification, these results show that decreasing speciation is often distinguishable from increasing extinction in the numerous molecular phylogenies of radiations that retain a preponderance of early lineages.  相似文献   

16.
While the environmental correlates of global patterns in standing species richness are well understood, it is poorly known which environmental factors promote diversification (speciation minus extinction) in clades. We tested several hypotheses for how geographic and climatic variables should affect diversification using a large dataset of bird sister genera endemic to the New World. We found support for the area, evolutionary speed, environmental predictability and climatic stability hypotheses, but productivity and topographic complexity were rejected as explanations. Genera that had accumulated more species tend to occupy wider niche space, manifested both as occurrence over wider areas and in more habitats. Genera with geographic ranges that have remained more stable in response to glacial‐interglacial changes in climate were also more species rich. Since many relevant explanatory variables vary latitudinally, it is crucial to control for latitude when testing alternative mechanistic explanations for geographic variation in diversification among clades.  相似文献   

17.
A characteristic signature of adaptive radiation is a slowing of the rate of speciation toward the present. On the basis of molecular phylogenies, studies of single clades have frequently found evidence for a slowdown in diversification rate and have interpreted this as evidence for density dependent speciation. However, we demonstrated via simulation that large clades are expected to show stronger slowdowns than small clades, even if the probability of speciation and extinction remains constant through time. This is a consequence of exponential growth: clades, which, by chance, diversify at above the average rate early in their history, will tend to be large. They will also tend to regress back to the average diversification rate later on, and therefore show a slowdown. We conducted a meta-analysis of the distribution of speciation events through time, focusing on sequence-based phylogenies for 45 clades of birds. Thirteen of the 23 clades (57%) that include more than 20 species show significant slowdowns. The high frequency of slowdowns observed in large clades is even more extreme than expected under a purely stochastic constant-rate model, but is consistent with the adaptive radiation model. Taken together, our data strongly support a model of density-dependent speciation in birds, whereby speciation slows as ecological opportunities and geographical space place limits on clade growth.  相似文献   

18.
Clade diversification is a central topic in macroevolutionary studies. Recently, it has been shown that diversification rates appear to decelerate over time in many clades. What causes this deceleration remains unclear, but it has been proposed that competition for limited resources between sympatric, ecologically similar species slows diversification. Employing carnivoran mammals as a model system, we test this hypothesis using a comprehensive time‐calibrated phylogeny. We also explore several conceptually related explanations including limited geographic area and limited rates of niche evolution. We find that diversification slowdowns are strong in carnivorans. Surprisingly, these slowdowns are independent of geographic range overlap between related species and are also decoupled from rates of niche evolution, suggesting that slowdowns are unrelated to competition and niche filling. When controlling for the effects of clade diversity, diversification slowdowns appear independent of geographic area. There is a significant effect of clade diversity on diversification slowdowns, but simulations show that this relationship may arise as a statistical artifact (i.e., greater clade diversity increases the ability of the gamma statistic to refute constant diversification). Overall, our results emphasize the need to test hypotheses about the causes of diversification slowdowns with ecological data, rather than assuming ecological processes from phylogenies alone.  相似文献   

19.
Global diversification rates of passerine birds   总被引:3,自引:0,他引:3  
The distribution of species richness in families of passerine birds suggests that the net rate of diversification was significantly higher than average in as many as 7 out of 47 families. However, the absence of excess species richness among the 106 tribes within these families indicates that these high rates were transient, perhaps associated in some cases with tectonic movements or dispersal events that extended geographical ranges. Thus, large clade size among passerine birds need not represent intrinsic key innovations that influence the rate of diversification. Approximately 17 families and 30 tribes have too few species relative to other passerine taxa. Many of these are ecologically or geographically marginal, being especially overrepresented in the Australasian region. Observed intervals between lineage splitting suggest that extinction has occurred ca. 90% as frequently as speciation (waiting times of 1.03 and 0.93 Myr) and that the 47 modern families comprising 5712 species descended from approximately 430 passerine lineages extant 24 Myr ago. Speciation and extinction rates among small, marginal families might be 1-2 orders of magnitude lower.  相似文献   

20.
Likelihood methods for detecting temporal shifts in diversification rates   总被引:8,自引:0,他引:8  
Maximum likelihood is a potentially powerful approach for investigating the tempo of diversification using molecular phylogenetic data. Likelihood methods distinguish between rate-constant and rate-variable models of diversification by fitting birth-death models to phylogenetic data. Because model selection in this context is a test of the null hypothesis that diversification rates have been constant over time, strategies for selecting best-fit models must minimize Type I error rates while retaining power to detect rate variation when it is present. Here I examine model selection, parameter estimation, and power to reject the null hypothesis using likelihood models based on the birth-death process. The Akaike information criterion (AIC) has often been used to select among diversification models; however, I find that selecting models based on the lowest AIC score leads to a dramatic inflation of the Type I error rate. When appropriately corrected to reduce Type I error rates, the birth-death likelihood approach performs as well or better than the widely used gamma statistic, at least when diversification rates have shifted abruptly over time. Analyses of datasets simulated under a range of rate-variable diversification scenarios indicate that the birth-death likelihood method has much greater power to detect variation in diversification rates when extinction is present. Furthermore, this method appears to be the only approach available that can distinguish between a temporal increase in diversification rates and a rate-constant model with nonzero extinction. I illustrate use of the method by analyzing a published phylogeny for Australian agamid lizards.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号