首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nepenthaceae, the pitcher plants of the Old World tropics show a remarkable diversity in SE Asia, especially on the islands of Borneo and Sumatra. This region is considered as a secondary center of diversity. Sequence analysis of the cpDNA TRNK intron supports this hypothesis showing the species of the Malay Archipelago as neighbour group to the isolated species from Sri Lanka, the Seychelles, and Madagascar. Based on phylogenetic reconstructions an origin of recent Nepenthaceae in the Indian subcontinent is assumed. A recent investigation focused on a non-plastid, translocated copy of the TRNK intron has revealed an incongruence to tree topology based on the cpDNA TRNK intron. Although the translocated copy emerged as insufficient for phylogenetic reconstruction of Nepenthaceae some taxa showed, contrary to the cpDNA dataset, relatively high distances to the rest of the taxa. These results indicated that the phylogeny of the TRNK intron could not reflect true phylogenetic relationships. We investigated the peptide transferase 1 (PTR1), to develop a phylogenetic marker that is based on a nuclear low copy gene in Nepenthes. All sequences obtained were probably functional, indicated by the ratio of point mutations of the single codon positions in exon and intron regions. Comparative analysis showed that this locus is of similar variability as the cpDNA TRNK intron and, contrary to the translocated copy of TRNK, potential useful for phylogenetic reconstruction. While in parts congruent to the plastid TRNK intron phylogeny, a higher divergence of some sequences in PRT1 and in the previously reported, non cpDNA dataset indicates that remnants of an older species stock persisted east of Wallace's line and on the Sunda Shelf. This suggests that plastid haplotypes existing today in the main distribution center of the Nepenthaceae could be descendants of more recently dispersed lineages that had been transmitted to an old species stock.  相似文献   

2.
A homeotic gene, LEAFY, has been suggested to be a single-copy gene in diploid angiosperms. Nucleotide sequences of the second intron of this gene, along with those of several regions of the chloroplast genome (trnL-trnF, trnD-trnY-trnE-trnT, and matK-trnK) and nuclear ribosomal ITS, were obtained from the species of Neillia and Stephanandra to examine the phylogenetic utility of the intron and to elucidate the phylogenetic relationships among species of the two genera. PCR amplification of the second intron of LEAFY using universal degenerate primers produced PCR products in sufficient quantity for successful direct sequencing. The length of the intron ranged from 591 to 622 base pairs (bp) in Neillia and Stephanandra, except in N. thibetica (ca. 1370 bp), and sequence analysis of this region from multiple accessions revealed low levels of infraspecific variation. Comparison of the LEAFY data with ITS and cpDNA data demonstrated that the LEAFY intron was the most variable and useful for phylogenetic analysis at the species level, providing many more phylogenetically informative characters per 100 bp (7.4) than either ITS (3.2) or cpDNA (0.7). Phylogenetic analyses of LEAFY data using both maximum parsimony and likelihood methods generated well supported and highly resolved gene trees with few homoplasies (CI=0.97). Stephanandra is monophyletic and is nested within Neillia in both LEAFY and cpDNA trees, while the relationship is poorly resolved by ITS data. LEAFY and cpDNA data, however, strongly conflicted with each other with respect to the position of Stephanandra: LEAFY trees placed Stephanandra as sister to the ((N. affinis, N. gracilis), N. thyrsiflora) clade whereas cpDNA data suggested Stephanandra is sister to N. uekii. Both gene trees, however, are nearly identical to each other when Stephanandra is excluded. A hybrid origin of Stephanandra is suggested as a plausible hypothesis to explain the incongruence between LEAFY and cpDNA data sets, though gene duplication/loss and lineage sorting events cannot be ruled out as possibilities.  相似文献   

3.
A region of the Pinus contorta chloroplast genome which contains a duplication of the psbA gene was characterized. From previous experiments it was known that the two copies of the psbA gene were located approximately 3.3 kilobase pairs (kbp) apart, that they had the same orientation and that one endpoint of the duplication was 19 base pairs (bp) downstream of the psbA stop codon. In order to determine the size and additional genetic content of the duplicated segment, both copies as well as the intervening DNA were sequenced completely. It was found that the duplicated segment was 1969 bp long, that the two copies were completely identical and were separated by 2431 bp. The duplicated segment carried, in addition to psbA, the 3' exon of the trnK gene, which was partially included in a 124 bp direct repeat. The translocated copy of the duplicated segment was found to be inserted upstream of the trnK(UUU) gene and was immediately followed by a repeated 41 bp stretch from the psbA coding region. The trnK gene was split by a 2509 bp intron which contained an open reading frame of 515 codons. Sequence comparisons of the duplicated segment and its flanking DNA to the corresponding regions of P. sylvestris, a species which lacks the rearrangements found in P. contorta, made it possible to identify 3-9 bp homologies within which recombinations had occurred. A model was derived which would accommodate the conversion of a trnK-psbA locus of the ancestral P. sylvestris-like organization into the rearranged structure found in P. contorta.  相似文献   

4.
5.
Many species belonging to the coccoid green algae genus Coelastrella are considered potential candidates for the large-scale production of natural pigments and biofuels. However, little is known about the structural, functional and molecular aspects of the chloroplast genomes (cpDNAs) of this genus. In the present study, the complete sequence of the cpDNA of strain FACHB-2138, which was further identified as Coelastrella saipanensis Hanagata based on morphological and molecular analyses, was elucidated. The 196 140 bp cpDNA sequence that was assembled as a circular map was found to possess the typical quadripartite structure. The two identical copies of 11 897 bp inverted repeat (IR) sequences were separated from one another by single copy regions. The large single copy region (LSC) was 104 949 bp, whereas the small single copy region (SSC) was 67 397 bp. The cpDNA encoded a total of 96 unique genes, which included 67 protein-coding genes, three rRNA genes and 26 tRNA genes. A total of 19 group I introns were annotated in this genome. Comparative analyses with three species from the family Scenedesmaceae showed C. saipanensis had a slightly expanded genome, higher GC content and less skewed distribution of its genes between the two DNA strands than that of the other three species. The cpDNA data deduced from the present study helps to expand our present understanding of plant systematics and phylogenetic reconstruction, and identify the possible biotechnological applications of the species belonging to the studied taxa.  相似文献   

6.
We performed phylogenetic analyses of Fagopyrum species in the urophyllum group based on nucleotide sequences of two nuclear genes, FLORICAULA/LEAFY (FLO/LFY) and AGAMOUS (AG), and three segments of chloroplast DNA (cpDNA), rbcL-accD, trnK intron, and trnC-rpoB spacer. The FLO/LFY and AG sequences turned out to be phylogenetically more informative at the intrageneric level than the cpDNA sequences. Congruence among these gene trees, inferred by a maximum-likelihood (ML) method, demonstrated that topologies were partially incongruent between the nuclear and chloroplast DNA phylogenies. The nuclear DNA sequence data supported a monophyletic relation of F. statice, F. gilesii, and F. jinshaense, whereas the former two species formed another monophyletic relation with the F. capillatum-F. gracilipes-F. gracilipedoides-F. rubifolium clade excluding F. jinshaense in the synthetic cpDNA phylogeny. In addition, two divergent sequences of FLO/LFY were found in F. rubifolium (tetraploid). One of these was sister to F. gracilipedoides and another was sister to F. statice, and a monophyletic relation of these two genes was rejected by a bootstrap analysis. These results suggest that hybridization may have occurred during diversification of Fagopyrum species in the urophyllum group, and that F. rubifolium is possibly allotetraploid species.  相似文献   

7.
Group II introns comprise the majority of noncoding DNA in many plant chloroplast genomes and include the commonly sequenced regions trnK/matK, the rps16 intron, and the rpl16 intron. As demand increases for nucleotide characters at lower taxonomic levels, chloroplast introns may come to provide the bulk of plastome sequence data for assessment of evolutionary relationships in infrageneric, intergeneric, and interfamilial studies. Group II introns have many attractive properties for the molecular systematist: they are confined to organellar genomes in eukaryotes and the majority are single-copy; they share a well-defined and empirically tested secondary and tertiary structure; and many are easily amplified due to highly conserved sequence in flanking exons. However, structure-linked mutation patterns in group II intron sequences are more complex than generally supposed and have important implications for aligning nucleotides, assessing mutational biases in the data, and selecting appropriate models of character evolution for phylogenetic analysis. This paper presents a summary of group II intron function and structure, reviews the link between that structure and specific mutational constraints in group II intron sequences, and discusses strategies for accommodating the resulting complex mutational patterns in subsequent phylogenetic analyses.  相似文献   

8.
We examined genetic variation in 22 accessions belonging to 11 species in four genera of the Zingiberaceae, mainly from Myanmar, by PCR–restriction fragment length polymorphism analysis to investigate their relationships within this family. Two of 10 chloroplast gene regions ( trnS-trnfM and trnK2 – trnQr ) showed differential PCR amplification across the taxa. Restriction enzyme digestion of the PCR products revealed interspecific variability. The restriction patterns were used to classify the regions as either highly conserved or variable across the taxa. None of the regions was highly conserved across the four genera, and the level of conservation varied. The gene region trnS-trnfM appeared to display interspecific variability among most of the species. However, the relative efficiency of different restriction enzymes depended on the gene regions and genera investigated. Cluster analysis revealed interspecific discrimination among the taxa. The two Curcuma species ( Curcuma zedoaria and Curcuma xanthorrhiza ) appeared to be identical, thus supporting their recent classification as synonyms. The results provide the basis for selecting specific combinations of restriction enzymes and gene regions of chloroplast DNA (cpDNA) to identify interspecific variation in the Zingiberaceae and to identify both highly conserved and variable regions. Overall, cpDNA depicted comparatively diverse genetic profile of the studied germplasm. The genetic information revealed here can be applied to the conservation and future breeding of Zingiber and Curcuma species.  相似文献   

9.
Sun G 《Hereditas》2002,137(2):119-124
Several published universal primers for amplification of non-coding regions of chloroplast, mitochondrial and ribosomal (rRNA) IGS region were tested whether they can amplify respective regions in Elymus species. PCR-RFLP analysis of the chloroplast, mitochondral DNA, and rRNA IGS region of the genus Elymus was used to determine if the method could be employed to detect inter-specific variation in this genus. Published universal primers for amplification of trnK [tRNA-Lys (UUU) exon 1]-trnK [tRNA-Lys (UUU) exon2], and mitochondrial nad1 exon B-nadl exon C intron successfully amplified the respective regions in Elymus species. However, the primers for amplification of chloroplast trnD-trnT intron and rRNA IGS failed to amplify the respective region in Elymus species. New primer pairs were designed and successfully amplified the cpDNA trnD-trnT intron and rRNA IGS region in Elymus species. The amplification products were digested with seven restriction enzymes. The results showed that the investigated regions of chloroplast and mitochondrial genomes are variable in most of the tested taxa and contain multiple variable regions. These regions should serve as useful molecular markers in phylogenetic studies of closely related species, at least at the interspecific level in Elymus. It is likely that further studies, including larger sample sizes, more regions of these genomes and/or more powerful methods for the detection of cpDNA and mt DNA variation will reveal additional variation for this genus. Highly inter- and intra-specific polymorphisms for rRNA IGS region were detected, suggesting the IGS will be a useful molecular marker for population studies of Elymus species.  相似文献   

10.
Noncoding DNA sequences from numerous regions of the chloroplast genome have provided a significant source of characters for phylogenetic studies in seed plants. In lycophytes and monilophytes (leptosporangiate ferns, eusporangiate ferns, Psilotaceae, and Equisetaceae), on the other hand, relatively few noncoding chloroplast DNA regions have been explored. We screened 30 lycophyte and monilophyte species to determine the potential utility of PCR amplification primers for 18 noncoding chloroplast DNA regions that have previously been used in seed plant studies. Of these primer sets eight appear to be nearly universally capable of amplifying lycophyte and monilophyte DNAs, and an additional six are useful in at least some groups. To further explore the application of noncoding chloroplast DNA, we analyzed the relative phylogenetic utility of five cpDNA regions for resolving relationships in Botrychium s.l. (Ophioglossaceae). Previous studies have evaluated both the gene rbcL and the trnL(UAA)-trnF(GAA) intergenic spacer in this group. To these published data we added sequences of the trnS(GCU)-trnG(UUC) intergenic spacer + the trnG(UUC) intron region, the trnS(GGA)-rpS4 intergenic spacer+rpS4 gene, and the rpL16 intron. Both the trnS(GCU)-trnG(UUC) and rpL16 regions are highly variable in angiosperms and the trnS(GGA)-rpS4 region has been widely used in monilophyte phylogenetic studies. Phylogenetic resolution was equivalent across regions, but the strength of support for the phylogenies varied among regions. Of the five sampled regions the trnS(GCU)-trnG(UUC) spacer+trnG(UUC) intron region provided the strongest support for the inferred phylogeny.  相似文献   

11.
A group II intron containing the matK gene, which encodes a splicing-associated maturase, was found in the trnK (lysine tRNA) exon in the chloroplast genome of the six extant genera of green algae in the family Characeae, which among green algae are the sister group to embryophytes (land plants). The characean trnK intron (~2.5 kilobases [kb]) and matK ORF (~1.5 kb) are comparable in size to the intron and ORF of land plants, in which they are similarly found inserted in the trnK exon. Domain X, a sequence of conserved amino acid residues within matK, occurs in the Characeae. Phylogenetic analysis using maximum likelihood (GTR + I + gamma likelihood model) and parsimony (branch and bound search) yielded one tree with high bootstrap support for all branches. The matK tree was congruent with the rbcL tree for the same taxa. The number and proportion of informative sites was higher in matK (501, 31% of matK sequence) compared to rbcL (122, 10%). Characeae branch lengths were on average more than five times longer for matK compared to rbcL and provided better resolution within the Characeae. These findings along with recent genomic analyses demonstrate that the intron and matK invaded the chloroplast genome of green algae prior to the evolution of land plants.  相似文献   

12.
To reconstruct the systematic relationships of larch Larix sukaczewii, we used the chloroplast trnK intron sequences of L. decidua, L. sukaczewii, L. sibirica, L. czekanovskii, and L. gmelinii. Analysis of phylogenetic trees constructed using the maximum parsimony and maximum likelihood methods showed a clear divergence of the trnK intron sequences between L. sukaczewii and L. sibirica. This divergence reaches intraspecific level, which supports a previously published hypothesis on the taxonomic isolation of L. sukaczewii.  相似文献   

13.
A Molecular Phylogeny of Costaceae (Zingiberales)   总被引:1,自引:0,他引:1  
The phylogenetic relationships of Costaceae, a tropical monocotyledonous family sister to the gingers (Zingiberaceae), were investigated with a combination of two chloroplast loci (the trnL-F locus, including the trnL intron, the 3'trnL exon, and the trnL-F intergenic spacer, and the trnK locus, including the trnK intron and the matK coding region) and one nuclear locus (ITS1-5.8s-ITS2). The resulting parsimony analysis of selected taxa that demonstrate the range of floral morphological variation in the family shows that the Cadalvena-type [corrected] floral morphology is ancestral to the group and that both Tapeinochilos species and a Monocostus + Dimerocostus clade represent recent divergences. The genus Costus is broadly paraphyletic but Costus subgenus Eucostus K. Schum. represents a large monophyletic radiation that is poorly resolved. Within this clade, secondary analyses suggest that pollination syndrome, traditionally used for taxonomic and classification purposes within the genus Costus, is a relatively plastic trait of limited phylogenetic utility. This represents the first detailed investigation into intrageneric and interspecific evolutionary relationships within the family Costaceae and presents some novel evolutionary trends with respect to floral morphology and biogeography.  相似文献   

14.
The history of MADS box genes is well-known in angiosperms. While duplication events and gene losses occur frequently, gene structure and intron positions are very conserved. We investigated all six introns in a duplicated MADS box gene (deficiens, def) in selected Impatiens taxa, thereby assessing intron features. For the first time, our study provides a comparison of molecular changes in all introns of a gene from a phylogenetic perspective. Interestingly, a uniform pattern of molecular evolution in the introns of each copy was not observed, but intron length increases, decreases, and size retention can be found in each copy. A tendency to accumulate long autapomorphic indels is also present, thus, a longer intron length does not reflect a higher number of parsimony-informative characters. Substitution rates vary between introns of each gene copy. While four of the six introns of def1 exhibit a change in their substitution rate, five of the six def2 introns maintain their rates throughout the genus albeit at different levels. In MADS box genes several regulatory sequences are found residing in introns. Thus, presence of putative regulatory motifs was investigated. Most of them are not conserved in position and usually present in only one of the gene copies. In addition, the potential for phylogenetic reconstruction of introns in both def copies is shortly discussed.  相似文献   

15.
Nucleotide sequence polymorphisms of the intron of the chloroplast trnK (UUU) gene, including a matK gene, were investigated within two wild Fagopyrum species, F. leptopodum and F. statice, to assess the degree and pattern of the inter- and intraspecific differences in coding and noncoding chloroplast DNA regions in higher plants. Ten and five accessions were used for F. leptopodum and F. statice, respectively. The length of the trnK intron region in these species ranged from 2494 to 2506 bp. In the trnK intron, the net nucleotide substitution number per site (Da) between the two species was 0.00109, lower than the nucleotide diversity (pi), 0.00195 for F. leptopodum and 0.00144 for F. statice, suggesting a low level of interspecific divergence. This result seems to be due to the phylogenetic pattern that both species are interspersed with each other, which was revealed by the phylogenetic analyses based on the nucleotide substitutions and indels. In the matK gene region (1524 bp), seven and two nucleotide substitutions were found within F. leptopodum and F. statice, respectively. All of the nine nucleotide substitutions (eight of which were nonsynonymous) within and between F. leptopodum and F. statice were clustered in the 5' part of the matK gene region, and no variation was found in the 3' part. This suggests that most of the 3' part is occupied by the conserved domains that are important for the binding activity of the gene product to the precursor mRNA, and therefore implies that the 3' part is more functionally constrained than the 5' part.  相似文献   

16.
Insertions, deletions, and inversions in the chloroplast genome of higher plants have been shown to be extremely useful for resolving phylogenetic relationships both between closely related taxa and among more basal lineages. Introns and intergenic spacers from the chloroplast genome are now increasingly used for phylogenetic and population genetic studies of populations from a single species, and it is therefore interesting to know whether indels can provide useful data and hence increase the power of intraspecific studies. Here, we show that indels in three cpDNA intergenic spacers and one cpDNA intron for two species of Silene evolve at slightly higher rates than base pair substitutions. Repeat indels appear to have the highest rate of evolution and are thus more prone to homoplasy. We show that coded indel data have high information content for phylogenetic analysis, and indels thus provide useful information to infer phylogenetic relationships at the intraspecific level.  相似文献   

17.
Abstract: Nepenthaceae are an exceptional family with regard to carnivory and the uniformity of characters. This makes it difficult to resolve phylogenetic relationships due to convergent evolution of morphological features. Using comparative sequencing of the chloroplast trnK intron, the monophyly of this complex family and hypotheses of infrageneric relationships were tested. Sequences from 71 Nepenthes taxa, representing all groups and two taxa of the closely related Ancistrocladaceae and Dioncophyllaceae as outgroup, were determined and analysed using maximum parsimony methods. Results of this analysis show that the isolated taxa N. distillatoria (Sri Lanka) and N. pervillei (Seychelles) are the most basal, clearly separated from the Madagascan taxa N. madagascariensis and N. masoalensis which are placed in a distinct subclade. This corresponds with some plesiomorphic characters shared by these taxa. N. khasiana (North India) has an intermediate position between these relic Western species and the remaining taxa. The species of the Malay Archipelago can be referred to three distinct lineages which indicate a correlation to biogeography. Thus the recent disjunct distribution of Nepenthes is interpreted as a result of an incisive extinction of progenitors, a process of migration and a subsequent diversification on the islands of Borneo, Sumatra, Sulawesi and New Guinea. Based on our molecular data, two interpretations concerning the origin of Nepenthes are possible: i) evolution in the Northern Tethys which is supported by fossil pollen records from the European Focene, or, ii) a Gondwanaland origin at a time when the Indian plate was separated from Madagascar. Molecular data indicate that colonization of SE Asia started from an ancient Indian stock. Subsequently, in the Malay Archipelago a new secondary centre of diversity developed. Madagascar, the Seychelles and New Caledonia were probably reached by migration via land bridges, starting from widespead common ancestors with subsequent extinction leaving the current taxa. There is no evidence for long‐distance dispersal. Current infragenic classification of Nepenthes is only partly in accordance with the phylogeny inferred from trnK intron data.  相似文献   

18.
19.
The plastid trnL-F region has proved useful in molecular phylogenetic studies addressing diverse evolutionary questions from biogeographic history to character evolution in a broad range of plant groups. An important assumption for phylogenetic reconstruction is that data used in combined analyses contain the same phylogenetic signal. The trnL-F region is often used in combined analyses of multiple chloroplast markers. These markers are assumed to contain congruent phylogenetic signal due to lack of recombination. Here we show that trnL-F sequences display a phylogenetic signal conflicting with that of other chloroplast markers in Annonaceae, and we demonstrate that this conflict results from ancient paralogy. TrnL-F copy 2 diverged from trnL-F copy 1 (as used in family-wide phylogenetic analyses) in a direct ancestor of the Annonaceae. Although this divergence dates back 88 million years or more, the exons of both copies appear to be intact. In this case, assuming that (putative) chloroplast markers contain the same phylogenetic signal results in an incorrect topology and an incorrect estimate of ages. Our study demonstrates that researchers should be cautious when interpreting gene phylogenies, irrespective of the genome from which they are presumed to have been sampled.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号