首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synaptic activity promotes the regulated formation of lipid messengers through phospholipase-mediated cleavage of specific phospholipid reservoirs from membranes. Multiple effectors trigger the formation of lipid messengers, including neurotransmitters, membrane depolarization, ion channels, cytokines, and neurotrophic factors. Lipid messengers in turn modulate and interact with other signaling cascades, contributing to the development, differentiation, function (e.g., long-term potentiation [LTP] and memory), protection, and repair of cells in the nervous system. These relationships with other signaling cascades remain largely to be investigated. Oxidative stress disrupts lipid signaling, enhances lipid peroxidation, and initiates and propagates neurodegeneration. There is growing evidence that lipid messengers participate in the extensive interactions among neurons, astrocytes, oligodendrocytes, microglia, cells of the microvasculature, and other cells. This article provides an example of how signaling by lipids regulates critical events essential for neuronal survival and reviews the recent identification of a novel endogenous neuroprotective signaling pathway involving a docosahexaneoic acid-derived mediator.  相似文献   

2.
A product of lipoxygenase (LOX) oxidation of docosahexaenoic acid (DHA), 10,17-dihydro(pero)xydocosahexa-4Z,7Z,11E,13Z,15E,19Z-enoic acid [10,17(S)-diH(P)DHA] was obtained through various reaction pathways that involved DHA, 17(S)-hydro(pero)xydocosahexa-4Z,7Z,11Z,13Z,15E,19Z-enoic acid [17(S)-H(P)DHA], soybean lipoxygenase (sLOX), and potato tuber lipoxygenase (ptLOX) in various combinations. The structure of the product was confirmed by HPLC, ultraviolet (UV) light spectrometry, GC-MS, tandem MS, and NMR spectroscopy. It has been found that 10,17(S)-diH(P)DHA formed by sLOX through direct oxidation of either DHA or 17(S)-H(P)DHA was apparently identical to the product of ptLOX oxidation of the latter. The sLOX- and ptLOX-derived samples of 10,17-diHDHAs coeluted under the conditions of normal, reverse, and chiral phase HPLC analyses, displayed identical UV absorption spectra with maxima at 260, 270, and 280 nm, and had similar one-dimensional and two-dimensional proton NMR spectra. Analysis of their NMR spectra led to the conclusion that 10,17-diHDHA formed by sLOX had solely 11E,13Z,15E configuration of the conjugated triene fragment, which was identical to the previously published structure of its ptLOX-derived counterpart. Based on the cis,trans geometry of the reaction products, the conclusion is made that in the tested conditions sLOX catalyzed direct double dioxygenation of DHA. Compared with the previously described two-enzyme method that involved sLOX and ptLOX, the current simplified one-enzyme procedure uses only sLOX as the catalyst of both dioxygenation steps.  相似文献   

3.
4.
Inflammation has been known to play an important role in the pathogenesis after spinal cord injury (SCI). Microglia are activated after injury and produce a variety of proinflammatory factors such as tumor necrosis factor-α, interleukin-1β, cyclooxygenase-2, and reactive oxygen species leading to apoptosis of neurons and oligodendrocytes. In this study, we examined the neuroprotective effects of total ethanol extract of Scutellaria baicalensis (EESB) , after SCI. Using primary microglial cultures, EESB treatment significantly inhibited lipopolysaccharide-induced expression of such inflammatory mediators as tumor necrosis factor-α, IL-1β, IL-6, cyclooxygenase-2, and inducible nitric oxide synthase. Furthermore, reactive oxygen species and nitric oxide production were significantly attenuated by EESB treatment. For in vivo study, rats that had received a moderate spinal cord contusion injury at T9 received EESB orally at a dose of 100 mg/kg. EESB inhibited expression of proinflammatory factors and protein carbonylation and nitration after SCI. EESB also inhibited microglial activation at 4 h after injury. Furthermore, EESB significantly inhibited apoptotic cell death of neurons and oligodendrocytes and improved functional recovery after SCI. Lesion cavity and myelin loss were also reduced following EESB treatment. Thus, our data suggest that EESB significantly improve functional recovery by inhibiting inflammation and oxidative stress after injury.  相似文献   

5.
目的:研究局灶性脑缺血再灌注后细胞凋亡、HSP70蛋白表达时空规律以及外源VEGF及VEGF抗体对它们的影响,探讨VEGF对缺血再灌注损伤的保护作用及其机制.方法:采用原位末端标记(TUNEL)、免疫组化方法,研究局灶性脑缺血再灌注后细胞凋亡数及HSP70蛋白表达时空分布,采用脑表面使用VEGF及侧脑室注射VEGF抗体,观察内外源VEGF对它们的影响.结果:VEGF抗体能显著增加缺血侧脑组织凋亡细胞数(再灌注12h-7d)及HSP70表达量(再灌注1-3d),而外源VEGF因子能显著减少同侧脑组织凋亡细胞(再灌注全程)及HSP70表达量(再灌注1-3d).结论:VEGF因子可抑制缺血脑组织细胞凋亡及HSP70表达量,提示VEGF参与保护缺血性脑损伤.  相似文献   

6.
Free fatty acids (FFA) and lactic acid are markers of secondary cellular injury following traumatic brain injury (TBI). We previously showed that animals fed a creatine (Cr)-enriched diet are afforded neuroprotection following TBI. To further characterize the neuroprotective Cr diet, we studied neurochemical changes in cortex and hippocampus following a moderate injury. Adult rats were fed either a control or Cr-supplemented diet (0.5%, 1%) for 2 weeks before TBI. At 30 min or 6 h after injury, tissue was processed for quantitative analysis of neurochemical changes. Both lactate and FFA were significantly increased in all tissues ipsilateral to the injury. Cr-fed animals had significantly lower levels, although the levels were elevated compared to sham controls. Animals fed a 1% Cr-diet were afforded greater neuroprotection than animals fed a 0.5% Cr diet. These results support the idea that a Cr-enriched diet can provide substantial neuroprotection in part by suppressing secondary brain injury.  相似文献   

7.
目的:本研究旨在探讨中药熊果苷对缺血再灌注损伤后脑细胞的影响,为中药熊果苷的临床应用提供理论依据。方法:昆明种小鼠40只,随机分成4组,即空白组、模型组、药物预防组和药物治疗组。根据缺血时脑损伤原理制成脑缺血再灌注损伤模型,以TTC染色、HE染色观察细胞形态学变化,并检测脑组织中超氧化物歧化酶(SOD)活性、丙二醛(MDA)含量及谷胱甘肽过氧化物酶(GSH-Px)活性的变化。结果:与模型组相比,药物预防组和药物治疗组分别TTC染色缺血区域都不如模型组坏死明显,HE染色显示细胞损伤程度减轻,SOD、GSH—Px活性提高有显著性差异,MDA含量减少(均P〈0.05)。结论:药物熊果苷具有抗氧化作用,能有效地预防和保护脑细胞损伤。  相似文献   

8.
9.
10.
Oxidative stress is considered the common effector of the cascade of degenerative events in many neurological conditions. Thus, in this paper we tested different nutraceuticals in H2O2 in vitro model to understand if could represent an adjuvant treatment for neurological diseases. In this study, nutraceuticals bacopa, lycopene, astaxanthin, and vitamin B12 were used alone or in combination in human neuronal differentiated SH-SY5Y cells upon hydrogen peroxide-induced injury and neuroprotective, neuronal death pathways were analyzed. The nutraceuticals analyzed were able to protect H2O2 cytotoxic effects, through increasing cell viability and proteins involved in neuroprotection pathways and restoring proteins involved in cell death pathways. On this basis, it is possible to propose the use of these compounds as dietary supplement for the prevention or as adjuvant to the only symptomatic treatments so far available for neurodegenerative diseases.  相似文献   

11.
ABSTRACT

Cerebral ischemia reperfusion (I/R) is a therapeutic strategy for ischemia; however, it usually causes injury by the aspect of inflammation and neuron apoptosis. This investigation aims to investigate the protective effects of phytic acid (IP6) for cerebral I/R injury in vitro. PC-12 cells under Oxygen and glucose deprivation/reperfusion (OGD/R) were performed to mimic cerebral I/R. IP6 was pretreated before PC-12 cells under OGD/R treatment. The data showed that IP6 activated the expression of sestrin2 in OGD/R injured PC-12 cells. IP6 inhibited OGD/R induced inflammation, oxidative stress, and apoptosis by activating sestrin2. Besides, p38 MAPK may mediate the effects of sestrin2 activated by IP6. Therefore, IP6 can be a potential drug to prevent neurological damage in cerebral I/R injury.  相似文献   

12.
Carnosine, a specific constituent of excitable tissues of vertebrates, exhibits a significant antioxidant protecting effect on the brain damaged by ischemic-reperfusion injury when it was administered to the animals before ischemic episode. In this study, the therapeutic effect of carnosine was estimated on animals when this drug was administered intraperitoneally (100 mg/kg body weight) after ischemic episode induced by experimental global brain ischemia. Treatment of the animals with carnosine after ischemic episode under long-term (7–14 days) reperfusion demonstrated its pronounced protective effect on neurological symptoms and animal mortality. Carnosine also prevented higher lipid peroxidation of brain membrane structures and increased a resistance of neuronal membranes to the in vitro induced oxidation. Measurements of malonyl dialdehyde (MDA) in brain homogenates showed its increase in the after brain stroke animals and decreased MDA level in the after brain stroke animals treated with carnosine. We concluded that carnosine compensates deficit in antioxidant defense system of brain damaged by ischemic injury. The data presented demonstrate that carnosine is effective in protecting the brain in the post-ischemic period. Special issue dedicated to Dr. Bernd Hamprecht  相似文献   

13.
During aerobic oxidation of docosahexaenoic acid (DHA), soybean lipoxygenase (sLOX) has been shown to form 7,17(S)-dihydro(pero)xydocosahexaenoic acid [7,17(S)-diH(P)DHA] along with its previously described positional isomer, 10,17(S)-dihydro(pero)xydocosahexa-4Z,7Z,11E,13Z,15E,19Z-enoic acid. 7,17(S)-diH(P)DHA was also obtained via sLOX-catalyzed oxidation of either 17(S)-hydroperoxydocosahexaenoic acid [17(S)-HPDHA] or 17(S)-hydroxydocosahexaenoic acid [17(S)-HDHA]. The structures of the products were elucidated by normal-phase, reverse-phase, and chiral-phase HPLC analyses and by ultraviolet, NMR, and tandem mass spectroscopy and GC-MS. 7,17(S)-diH(P)DHA was shown to have 4Z,8E,10Z,13Z,15E,19Z geometry of the double bonds. In addition, a compound apparently identical to the sLOX-derived 7,17(S)-diH(P)DHA was produced by another enzyme, potato tuber LOX, in the reactions of oxygenation of either 17(S)-HPDHA or 17(S)-HDHA. All of the dihydroxydocosahexaenoic acids (diHDHAs) formed by either of the enzymes were clearly produced through double lipoxygenation of the corresponding substrate. 7,17(S)-diHDHA inhibited human recombinant 5-lipoxygenase in the reaction of arachidonic acid (AA) oxidation. In standard conditions with 100 microM AA as substrate, the IC(50) value for 7,17(S)-diHDHA was found to be 7 microM, whereas IC(50) for 10,17(S)-DiHDHA was 15 microM. Similar inhibition by the diHDHAs was observed with sLOX, a quintessential 15LOX, although the strongest inhibition was produced by 10,17(S)-diHDHA (IC(50) = 4 microM). Inhibition of sLOX by 7,17(S)-diHDHA was slightly less potent, with an IC(50) value of 9 microM. These findings suggest that 7,17(S)-diHDHA along with its 10,17(S) counterpart might have anti-inflammatory and anticancer activities, which could be exerted, at least in part, through direct inhibition of 5LOX and 15LOX.  相似文献   

14.
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by a progressive loss of dopaminergic neurons in the substantia nigra (SN). The present study was designed to examine the therapeutic effect of hydrogen sulfide (H2S, a novel biological gas) on PD. The endogenous H2S level was markedly reduced in the SN in a 6‐hydroxydopamine (6‐OHDA)‐induced PD rat model. Systemic administration of NaHS (an H2S donor) dramatically reversed the progression of movement dysfunction, loss of tyrosine‐hydroxylase positive neurons in the SN and the elevated malondialdehyde level in injured striatum in the 6‐OHDA‐induced PD model. H2S specifically inhibited 6‐OHDA evoked NADPH oxidase activation and oxygen consumption. Similarly, administration of NaHS also prevented the development of PD induced by rotenone. NaHS treatment inhibited microglial activation in the SN and accumulation of pro‐inflammatory factors (e.g. TNF‐α and nitric oxide) in the striatum via NF‐κB pathway. Moreover, significantly less neurotoxicity was found in neurons treated with the conditioned medium from microglia incubated with both NaHS and rotenone compared to that with rotenone only, suggesting that the therapeutic effect of NaHS was, at least partially, secondary to its suppression of microglial activation. In summary, we demonstrate for the first time that H2S may serve as a neuroprotectant to treat and prevent neurotoxin‐induced neurodegeneration via multiple mechanisms including anti‐oxidative stress, anti‐inflammation and metabolic inhibition and therefore has potential therapeutic value for treatment of PD.  相似文献   

15.
目的:研究芸香苷对慢性脑低灌注导致大鼠认知功能障碍和脑损伤的影响。方法:采用双侧颈总动脉结扎法(bilateral common carotid artery occlusion,BCCAO)建立慢性脑低灌注大鼠模型,随机分为4组(n=10):生理盐水治疗模型组、芸香苷治疗模型组、生理盐水治疗假手术组、芸香苷治疗假手术组;连续腹腔注射芸香苷和生理盐水共12周。采用Morris水迷宫评定大鼠学习和记忆能力。采用分光光度法检测脑组织中枢胆碱能相关指标和氧化应激指标。应用免疫组织化学和El ISA方法检测脑组织炎症反应。采用Nissl染色法检测脑组织神经元缺失。结果:芸香苷治疗模型组大鼠的逃脱潜伏期较生理盐水治疗模型组明显减少(P0.01)。与生理盐水治疗模型组相比,芸香苷治疗后显著提高了BCCAO大鼠脑组织中ACh水平(P0.01)和Ch AT活性(P0.01),并降低了ACh E活性(P0.01)。与生理盐水治疗模型组相比,芸香苷治疗模型组显著增加了大鼠脑组织中SOD活性(P0.01)和GPX活性(P0.01),降低了MDA水平(P0.01)和蛋白质羰基化合物水平(P0.01)。芸香苷治疗模型组大鼠海马区GFAP-免疫阳性星型胶质细胞(P0.01)和Iba1-免疫阳性小胶质细胞(P0.01)面积百分比较生理盐水治疗模型组显著减少。芸香苷治疗模型组大鼠海马区正常神经元的数量较生理盐水治疗模型组大鼠显著增加(P0.01)。结论:芸香苷可改善慢性脑低灌注引起的大鼠认知功能障碍和脑损伤。  相似文献   

16.
Accumulating evidence indicates that autophagy and inflammatory responses contributes to secondary brain injury after traumatic brain injury (TBI), and toll-like receptor 4 (TLR4) is considered to involvement of this cascade and plays an important role. The present study was designed to determine the hypothesis that administration of resatorvid (TAK-242), a TLR4 antagonist, might provide a neuroprotective effect by inhibit TLR4-mediated pathway in a TBI rat model. Rat subjected to controlled cortical impact injury were injected with TAK-242 (0.5 mg/kg, i.v. injected) 10 min prior to injury. The results demonstrated that TAK-242 treatment significantly attenuated TBI-induced neurons loss, brain edema, and neurobehavioral impairment in rats. Immunoblotting analysis showed that TAK-242 treatment reduced TBI-induced TLR4, Beclin 1, and LC3-II levels, and maintained p62 levels at 24 h. Double immunolabeling demonstrated that LC3 dots co-localized with the hippocampus pyramidal neurons, and TLR4 was localized with the hippocampus neurons and astrocytes. In addition, the expression of TLR4 downstream signaling molecules, including MyD88, TRIF, NF-κB, TNF-α, and IL-1β, was significantly downregulated in hippocampus tissue by Western blot analysis. In conclusion, our findings indicate that pre-injury treatment with TAK-242 could inhibit neuronal autophagy and neuroinflammation responses in the hippocampus in a rat model of TBI. The neuroprotective effects of TAK-242 may be related to modulation of the TLR4-MyD88/TRIF-NF-κB signaling pathway. Furthermore, the study also suggests that TAK-242, an attractive potential drug, may be a promising drug candidate for TBI.  相似文献   

17.
摘要 目的:探讨香草醛对新生大鼠缺氧缺血性脑损伤(HIBI)的神经保护作用及机制。方法:参考Rice-Vannucci方法建立HIBI大鼠模型。HIBI大鼠建模后立即腹腔注射20 mg/kg(HIBI+20Van组)或40 mg/kg(HIBI+40Van组)的香草醛,每隔12 h给药,连续7 d。然后评估大鼠的神经行为及脑组织中IL-1β、IL-6和TNF-α的水平。对BV2小胶质细胞进行氧糖剥夺/复氧(OGD/R)处理,并用20 μM香草醛培养。通过Western blot及免疫荧光检测HMGB1、NF-κB p65、SIRT1、MyD88和TLR4的表达水平。通过乳酸脱氢酶(LDH)释放测定试剂盒测定用不同BV2细胞培养基处理的原代神经元的LDH释放。结果:与HIBI组比较,HIBI+20Van组和HIBI+50Van组新生大鼠的前肢悬吊时间和旷场得分均升高,脑组织中的IL-1β、IL-6和TNF-α的水平均降低。香草醛均升高了HIBI大鼠和OGD/R处理的BV2细胞质中的SIRT1的表达水平,降低了TLR4、MyD88和HMGB1的表达水平及细胞核中NF-κB p65的表达水平(P<0.05)。香草醛降低了原代神经元的LDH释放量(P<0.05)。结论:香草醛通过调节SIRT1/HMGB1/TLR4/MyD88/NF-κB信号通路抑制HIBI引起的神经炎症,从而提高HIBI大鼠的神经功能。  相似文献   

18.
Neuroprotective effects have been described for many cannabinoids in several neurotoxicity models. However, the exact mechanisms have not been clearly understood yet. In the present study, antioxidant neuroprotective effects of cannabinoids and the involvement of the cannabinoid receptor 1 (CB1) were analysed in detail employing cell-free biochemical assays and cultured cells. As it was reported for oestrogens that the phenolic group is a lead structure for antioxidant neuroprotective effects, eight compounds were classified into three groups. Group A: phenolic compounds that do not bind to CB1. Group B: non-phenolic compounds that bind to CB1. Group C: phenolic compounds that bind to CB1. In the biochemical assays employed, a requirement of the phenolic lead structure for antioxidant activity was shown. The effects paralleled the protective potential of group A and C compounds against oxidative neuronal cell death using the mouse hippocampal HT22 cell line and rat primary cerebellar cell cultures. To elucidate the role of CB1 in neuroprotection, we established stably transfected HT22 cells containing CB1 and compared the protective potential of cannabinoids with that observed in the control transfected HT22 cell line. Furthermore, oxidative stress experiments were performed in cultured cerebellar granule cells, which were derived either from CB1 knock-out mice or from control wild-type littermates. The results strongly suggest that CB1 is not involved in the cellular antioxidant neuroprotective effects of cannabinoids.  相似文献   

19.
Neural membrane phospholipids are hydrolyzed by a group of enzymes known as phospholipases. This process results in the generation of second messengers such as arachidonic acid, eicosanoids, platelet activating factor, and diacylglycerols. High levels of these metabolites are neurotoxic and are associated with neurodegeneration. The collective evidence from many studies suggests that neural membrane phospholipid metabolism is disturbed in neural trauma and neurodegenerative diseases. This disturbance is caused by the stimulation of phospholipases A2. Stimulation of these enzymes produces changes in membrane permeability, fluidity, and alteration in ion homeostasis. Low calcium influx produces mild oxidative stress and results in neurodegeneration promoted by apoptosis, whereas a calcium overload generates high oxidative stress and causes neurodegeneration associated with necrosis. Alterations in phospholipid metabolism along with the accumulation of lipid peroxides and compromised energy metabolism may be responsible for neurodegeneration in ischemia, spinal cord trauma, head injury, and Alzheimer disease. The synthesis of phospholipases A2 inhibitors that cross the blood-brain barrier without harm may be useful for the treatment of acute neural trauma and neurodegenerative diseases.Special issue dedicated to Dr. Lawrence F. Eng.  相似文献   

20.
This study was carried out to evaluate the neuroprotective activity of polysaccharide extracts isolated from Perilla frutescens (PEPF) in H2O2-treated HT22 hippocampus cells. The PEPF treatment was found to increase the anti-oxidant activities of HT22 hippocampus cells. PEPF treatment resulted in a significant protection of HT22 hippocampus cells against H2O2-induced neurotoxicity, this protection ultimately occurred through an inhibition of ROS-mediated intracellular Ca2+ levels leading to MAPKs and NF-κB, as well as the accumulation of PI3K/AKT and Nrf2-mediated HO-1/NQO1 pathways. Furthermore, PEPF not only decreased the expression of Bax, cytochrome c, and cleaved caspases-3, -8, and -9, but also increased the expression of PARP and Bcl-2 in the H2O2-treated HT22 hippocampus cells, which overall contributed to the neuroprotective action. PEPF retains its mitochondrial membrane potential and reduces the elevated levels of sub-G1 phase and apoptotic morphological features induced by H2O2. It also reduces the malondialdehyde levels and enhances the intracellular SOD activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号