首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
CTP:phosphocholine cytidylyltransferase alpha (CCT alpha) is a nuclear enzyme that catalyzes the rate-limiting step in the CDP-choline pathway, the primary route for synthesis of phosphatidylcholine (PtdCho) in eukaryotic cells. Induction of apoptosis by farnesol (FOH) and other cytotoxic drugs has been shown to alter PtdCho synthesis via the CDP-choline pathway. Here we report that FOH-induced apoptosis in CHO cells caused a dose-dependent activation of CCT alpha and inhibition of the final step in the pathway, resulting in a biphasic effect on PtdCho synthesis. Activation of CCT alpha was accompanied by enzyme translocation to the nuclear envelope within 30 min of FOH addition to cells. Following translocation to membranes, CCT alpha was exported from the nucleus and underwent caspase-mediated proteolysis that coincided with poly(ADP-ribose) polymerase cleavage. Site-directed mutagenesis and in vivo and in vitro expression studies mapped a caspase 6 and/or 8 cleavage site to TEED(28 downward arrow)G, the final residue in the CCT alpha nuclear localization signal. Nuclear export of CCT alpha appeared to be an active process in FOH-treated CHO cells that was independent of caspase removal of the nuclear localization signal. Caspase cleavage of CCT alpha occurred during UV or chelerythrine-induced apoptosis; however, nuclear membrane translocation and nuclear export were not evident under these conditions. Thus, caspase cleavage of CCT alpha was a late feature of several apoptotic programs that occurred in the nucleus or at the nuclear envelope. Activation and nuclear export of CCT alpha were early events in FOH-induced apoptosis that contributed to altered PtdCho synthesis and, in conjunction with caspase cleavage, excluded CCT alpha from the nucleus.  相似文献   

5.
6.
7.
CTP:phosphocholine cytidylyltransferase is thought to be a rate-limiting enzyme in phosphatidylcholine synthesis. This enzyme has not been well studied in intestine. We found that activity was greater in the non-lipid stimulated state (cytosolic form of the enzyme) than any previous tissue investigated (2.7 nM/min per mg protein). On addition of lysophosphatidylethanolamine, the enzyme only increased in activity 2.4-fold which is less than any previously reported tissue on lipid stimulation. As compared to liver, the enzyme was resistant to inhibition by chlorpromazine (gut, 100% activity remaining at 80 microM; 14% in liver). Tetracaine and propranolol were found to be impotent as inhibitors of the intestinal enzyme. Octanol-water partitioning showed that both chlorpromazine and tetracaine were hydrophobic, propranolol was not. pKa studies demonstrated that at the reaction pH, chlorpromazine would be uncharged. Physiologic experiments in which de novo phosphatidylcholine synthesis was either stimulated by bile duct fistulization and triacylglycerol infusion or suppressed by including phosphatidylcholine in a lipid infusion demonstrated that the enzyme (cytosolic enzyme) responded by decreasing Vmax but that the Km remained the same. In sum, these studies suggest that CTP:phosphocholine cytidylyltransferase in intestine is unique as compared to other tissues and that its response to a physiological stimulus is counter to that which would be adaptive.  相似文献   

8.
CTP:phosphocholine cytidylyltransferase (CCT) is a rate-determining enzyme in de novo synthesis of phosphatidylcholine (PC). The lung requires a steady synthesis of PC for lung surfactant of which disaturated PC is the essential active agent. Surfactant synthesis occurs in alveolar type II cells. Studies with non-pulmonary cells have suggested that CCT is both a nuclear and cytoplasmic protein. The unusual requirements of the lung for PC synthesis and, therefore, CCT activity suggest a unique mechanism of regulation and possibly localization of CCT. The localization of CCT alpha in lung epithelial cells and, of greater consequence, lung tissues are yet unknown. Three isoforms of CCT have been identified. Herein we investigated the localization of the ubiquitously expressed CCT alpha isoform. To ascertain CCT alpha localization in lungs and lung-related epithelial cells, we employed a number of localization methods. Immunogold electron microscopy using polyclonal antibodies raised to either the carboxyl terminus, catalytic domain, or amino terminus of CCT alpha localized CCT alpha mostly to the exterior plasma membrane or regions of the endoplasmic reticulum (ER) in both A549 and MLE-15 epithelial lung cell lines and primary cultures of fetal rat lung epithelial cells. In contrast to other studies, little or no nuclear labeling was observed. Indirect immunofluorescence of these cells with anti-CCT alpha antibodies resulted in a similar distribution. Indirect visualization of both hemagglutinin- and FLAG-tagged CCT alpha as well as direct visualization of enhanced green fluorescence protein-CCT alpha fusion protein corroborated a cytoplasmic localization of CCT alpha in pulmonary cells. Moreover, analysis of lung tissue from fetal and adult mouse by either immunogold electron microscopy or indirect immunofluorescence yielded a strong cytoplasmic CCT alpha signal with virtually no nuclear localization in epithelial cells lining the airways. The cytoplasmic localization of CCT alpha in type II cells was further substantiated with transgenic mice overexpressing FLAG-tagged CCT alpha using the lung-specific human surfactant protein C (SP-C) promoter. We conclude that CCT alpha does not localize to the nucleus in pulmonary tissues, and, therefore, nuclear localization of CCT alpha is not a universal event.  相似文献   

9.
10.
Histone acetylation plays an important role in chromatin remodeling and gene expression. The molecular mechanisms involved in cell-specific expression of CTP:phosphocholine cytidylyltransferase alpha (CTalpha) are not fully understood. In this study, we investigated whether or not histone deacetylation is involved in repression of CTalpha expression in quiescent C3H10T1/2 mouse embryo fibroblasts. We have examined the contributions of the Sp1 and E2F binding sites in the repression of CTalpha gene expression. Immunoprecipitation experiments showed that histone deacetylase 1 (HDAC1) and HDAC activity are associated with Sp1 in serum-starved cells or during serum stimulation. However, HDAC1 association with E2F was only detected in serum-starved cells. By chromatin immunoprecipitation assays, we detected both direct and indirect association of HDAC1 with the CTalpha promoter. Treatment with the HDAC inhibitor trichostatin A induced CTalpha expression. Our data suggest that HDAC1 plays a critical role in CTalpha repression and that Sp1 and E2F may serve as key targets for HDAC1-mediated CTalpha repression in fibroblasts.  相似文献   

11.
The specificity of CTP:phosphocholine cytidylyltransferase from rat liver for phosphorylated bases has been investigated. The apparent Km for phosphocholine was 0.17 mM. As the number of methyl substituents on the phospho-base decreased, the apparent Km increased: 4.0 mM for phosphodimethylethanolamine, 6.9 for phosphomonomethylethanolamine and 68.4 for phosphoethanolamine. The Vmax for the reaction was similar for phosphocholine (12.6 mumol/min per mg protein), phosphomonomethylethanolamine (13.5 mumol/min per mg protein) and phosphoethanolamine (9.2 mumol/min per mg protein). When phosphodimethylethanolamine was the substrate, the Vmax was 3-fold higher (40.3 mumol/min per mg protein). Phosphoethanolamine, phosphomonomethylethanolamine and phosphodimethylethanolamine were competitive inhibitors of the cytidylyltransferase when phosphocholine was used as substrate with Ki values of 18.5 mM, 9.3 mM and 1.5 mM, respectively. The results show that the cytidylyltransferase is highly specific for phosphocholine.  相似文献   

12.
13.
CTP:phosphocholine cytidylyltransferase (CCTalpha) is a rate-regulatory enzyme required for phosphatidylcholine (PtdCho) synthesis. CCTalpha is also a phosphoenzyme, but the physiologic role of kinases on enzyme function remains unclear. We report high-level expression of two major isoforms of the c-Jun N-terminal kinase family (JNK1 and JNK2) in murine lung epithelia. Further, JNK1 and JNK2 phosphorylated purified CCTalpha in vitro, and this was associated with a dose-dependent decrease (approximately 40%) in CCT activity. To evaluate JNK in vivo, lung epithelial cells were infected with a replication defective adenoviral vector encoding murine JNK2 (Adv-JNK2) or an empty vector. Adv-JNK2 infection, unlike the empty vector, markedly increased JNK2 expression concomitant with increased incorporation of [32P]orthophosphate into endogenous CCTalpha. Although Adv-JNK2 infection only modestly reduced CCT activity, it reduced PtdCho synthesis by approximately 30% in cells. These observations suggest a role for JNK kinases as negative regulators of phospholipid synthesis in murine lung epithelia.  相似文献   

14.
The licC gene product of Streptococcus pneumoniae was expressed and characterized. LicC is a nucleoside triphosphate transferase family member and possesses CTP:phosphocholine cytidylyltransferase activity. Phosphoethanolamine is a poor substrate. The LicC protein plays a role in the biosynthesis of the phosphocholine-derivatized cell wall constituents that are critical for cell separation and pathogenesis.  相似文献   

15.
To probe the mechanism of lipid activation of CTP:phosphocholine cytidylyltransferase (CCTalpha), we have characterized a catalytic fragment of the enzyme that lacks the membrane-binding segment. The kinetic properties of the purified fragment, CCTalpha236, were characterized, as well as the effects of expressing the fragment in cultured cells. CCTalpha236 was truncated after residue 236, which corresponds to the end of the highly conserved catalytic domain. The activity of purified CCTalpha236 was independent of lipids and about 50-fold higher than the activity of wild-type CCTalpha assayed in the absence of lipids, supporting a model in which the membrane-binding segment functions as an inhibitor of the catalytic domain. The kcat/Km values for CCTalpha236 were only slightly lower than those for lipid-activated CCTalpha. The importance of the membrane-binding segment in vivo was tested by expression of CCTalpha236 in CHO58 cells, a cell line that is temperature-sensitive for growth and CCTalpha activity. Expression of wild-type CCTalpha in these cells complemented the defective growth phenotype when the cells were cultured in complete or delipidated fetal bovine serum. Expression of CCTalpha236, however, did not complement the growth phenotype in the absence of serum lipids. These cells were capable of making phosphatidylcholine in the delipidated medium, so the inability of the cells to grow was not due to defective phosphatidylcholine synthesis. Supplementation of the delipidated medium with an unsaturated fatty acid allowed growth of CHO58 cells expressing CCTalpha236. These results indicate that the membrane-binding segment of CCTalpha has an important role in cellular lipid metabolism.  相似文献   

16.
17.
The role of phosphorylation/dephosphorylation in the regulation of CTP:phosphocholine cytidylyltransferase activity was investigated. Incubation of post mitochondrial supernatant with cAMP-dependent protein kinase (50 units) led to an increased (28%) recovery of the cytidylyltransferase in the cytosolic fraction, while incubation with an intestinal alkaline phosphatase (20 units) led to an increased (61%) recovery in the microsomal fraction. When pure cytidylyltransferase was incubated with washed microsomes in the presence of cAMP-dependent protein kinase (133 units), the enzyme associated with the supernatant fraction increased (3.12 +/- 0.02 to 3.77 +/- 0.03 nmol/min/ml) while that of the microsomal fraction decreased (1.36 +/- 0.01 to 0.56 +/- 0.05 nmol/min/ml) by 2.5-fold. The increase in the cytidylyltransferase activity in the supernatant corresponded to an increase in 32P incorporation into the cytidylyltransferase. Treatment with alkaline phosphatase (40 units) decreased the cytidylyltransferase activity in the supernatant (3.61 +/- 0.08 to 2.88 +/- 0.07 nmol/min/ml) while the activity in the microsomal fraction increased (0.56 +/- 0.08 to 1.16 +/- 0.06 nmol/min/ml) by 2-fold. The decrease in the cytidylyltransferase activity in the supernatant corresponded to a decrease in 32P incorporation into the cytidylyltransferase. Incubation of cytidylyltransferase with phosphatidylcholine vesicles in the presence of cAMP-dependent protein kinase (110 units) decreased the cytidylyltransferase activity by 30%. The decrease in cytidylyltransferase activity corresponded to an increase in 32P incorporation into the cytidylyltransferase. Treatment with alkaline phosphatase (20 units) resulted in a 41% increase in the cytidylyltransferase activity. The increase in cytidylyltransferase activity corresponded to a decrease in 32P incorporation into the cytidylyltransferase. Incubation of the cytidylyltransferase with [gamma-32P] ATP and cAMP-dependent protein kinase led to incorporation of 32P into the serine residues of cytidylyltransferase. If the cytidylyltransferase were preincubated with alkaline phosphatase prior to incubation with cAMP-dependent protein kinase, 2-fold more 32P (0.2 mol P/mol cytidylyltransferase) was incorporated into the cytidylyltransferase. Collectively, this data is in agreement with a role for reversible phosphorylation in the regulation of cytidylyltransferase.  相似文献   

18.
In addition to suppressing cholesterol synthesis and uptake, oxysterols also activate glycerophospholipid and SM (sphingomyelin) synthesis, possibly to buffer cells from excess sterol accumulation. In the present study, we investigated the effects of oxysterols on the CDP-choline pathway for PtdCho (phosphatidylcholine) synthesis using wild-type and sterol-resistant CHO (Chinese-hamster ovary) cells expressing a mutant of SCAP [SREBP (sterol-regulatory-element-binding protein) cleavage-activating protein] (CHO-SCAP D443N). [(3)H]Choline-labelling experiments showed that 25OH (25-hydroxycholesterol), 22OH (22-hydroxycholesterol) and 27OH (27-hydroxycholesterol) increased PtdCho synthesis in CHO cells as a result of CCTalpha (CTP:phosphocholine cytidylyltransferase alpha) translocation and activation at the NE (nuclear envelope). These oxysterols also activate PtdCho synthesis in J774 macrophages. in vitro, CCTalpha activity was stimulated 2- to 2.5-fold by liposomes containing 5 mol% 25OH, 22OH or 27OH. Inclusion of up to 5 mol% cholesterol did not further activate CCTalpha. 25OH activated CCTalpha in CHO-SCAP D443N cells leading to a transient increase in PtdCho synthesis and accumulation of CDP-choline. CCTalpha translocation to the NE and intranuclear tubules in CHO-SCAP D443N cells was complete after 1 h exposure to 25OH compared with only partial translocation by 4-6 h in CHO-Mock cells. These enhanced responses in CHO-D443N cells were sterol-dependent since depletion with cyclodextrin or lovastatin resulted in reduced sensitivity to 25OH. However, the lack of effect of cholesterol on in vitro CCT activity indicates an indirect relationship or involvement of other sterols or oxysterol. We conclude that translocation and activation of CCTalpha at nuclear membranes by side-chain hydroxylated sterols are regulated by the cholesterol status of the cell.  相似文献   

19.
We have studied the binding of CTP: phosphocholine cytidylyltransferase from HeLa cell cytosol to large unilamellar vesicles of egg phosphatidylcholine (PC) or HeLa cell phospholipids that contain various amounts of oleic acid. A fatty acid/phospholipid molar ratio exceeding 10% was required for CTP: phosphocholine cytidylyltransferase binding to liposomes. At a fatty acid/phospholipid molar ratio of 1; 85% of the cytosolic CTP: phosphocholine cytidylyltransferase was bound. The enzyme also bound to liposomes with at least 20 mol% palmitic acid, monoolein, diolein or oleoylacetylglycerol. Oleoyl-CoA did not promote enzyme binding to liposomes. Binding to oleate-PC vesicles was blocked by Triton X-100 but not by 1 M KCl, and was reversed by incubation of the vesicles with bovine serum albumin. Cytidylyltransferase bound to egg PC vesicles that contained 33 mol% oleic acid equally well at 4 degrees C and 37 degrees C. The enzyme also bound to dimyristoyl- and dipalmitoylphosphatidylcholine vesicles containing oleic acid at temperatures below the phase transition for these liposomes. Binding of the cytidylyltransferase to egg PC vesicles containing oleic acid, monoolein, oleoylacetylglycerol or diolein resulted in enzyme activation, as did binding to dipalmitoylPC-oleic acid vesicles. However, binding to egg PC-palmitic acid vesicles did not fully activate the transferase. Various mechanisms for cytidylyltransferase interaction with membranes are discussed.  相似文献   

20.
We investigated the effects of tumor necrosis factor alpha (TNFalpha), a key cytokine involved in inflammatory lung disease, on phosphatidylcholine (PtdCho) biosynthesis in a murine alveolar type II epithelial cell line (MLE-12). TNFalpha significantly inhibited [(3)H]choline incorporation into PtdCho after 24 h of exposure. TNFalpha reduced the activity of CTP:phosphocholine cytidylyltransferase (CCT), the rate-regulatory enzyme within the CDP-choline pathway, by 40% compared with control, but it did not alter activities of choline kinase or cholinephosphotransferase. Immunoblotting revealed that TNFalpha inhibition of CCT activity was associated with a uniform decrease in the mass of CCTalpha in total cell lysates, cytosolic, microsomal, and nuclear subfractions of MLE cells. Northern blotting revealed no effects of the cytokine on steady-state levels of CCTalpha mRNA, and CCTbeta mRNA was not detected. Incorporation of [(35)S]methionine into immunoprecipitable CCTalpha protein in pulse and pulse-chase studies revealed that TNFalpha did not alter de novo synthesis of enzyme, but it substantially accelerated turnover of CCTalpha. Addition of N-acetyl-Leu-Leu-Nle-CHO (ALLN), the calpain I inhibitor, or lactacystin, the 20 S proteasome inhibitor, blocked the inhibition of PtdCho biosynthesis mediated by TNFalpha. TNFalpha-induced degradation of CCTalpha protein was partially blocked by ALLN or lactacystin. CCT was ubiquitinated, and ubiquitination increased after TNFalpha exposure. m-Calpain degraded both purified CCT and CCT in cellular extracts. Thus, TNFalpha inhibits PtdCho synthesis by modulating CCT protein stability via the ubiquitin-proteasome and calpain-mediated proteolytic pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号