首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Heat shock, cold shock, ethanol, and alkaline shift, but not hydrogen peroxide, stimulate the accumulation of monoacetylspermidine in Escherichia coli. Acetylation occurs with nearly equal frequencies at both the N1 and N8 positions of this ubiquitous polycation. Spermidine acetylation does not appear to be associated with known stress regulons, such as htpR, oxyR, and SOS. E. coli, capable of acetylating spermidine, constitutively express a spermidine acetyltransferase activity during all phases of growth, and this activity is unaffected by cold shock. A mutant strain, incapable of acetylating spermidine, does not express this enzyme activity but grows at an identical rate as the parent strain at 37 degrees C. These results demonstrate that the monoacetylation of spermidine in E. coli is regulated by some mechanism other than a stress-inducible acetyltransferase and is not essential for growth of these cells. They suggest that polyamine acetylation is involved in the responses of these organisms to a variety of chemical and physical stresses.  相似文献   

2.
Effect of various polyamine analogs on in vitro polypeptide synthesis   总被引:2,自引:0,他引:2  
Various polyamine analogs were examined for their ability to stimulate and to function as sparing agents for the Mg2+ requirement in polypeptide synthesis at various temperatures in Escherichia coli (37 and 47 degrees C) and the extremely thermophilic Thermus thermophilus (60 and 70 degrees C) cell-free systems. The optimal concentration of each polyamine analog increased as the incubation temperature was elevated. At a fixed temperature, the optimal concentration of polyamine analogs was in the order diamines greater than triamines greater than tetraamines greater than pentaamines. All diamines tested stimulated polypeptide synthesis almost equally but lowered the optimal Mg2+ concentration in the order diaminopropane greater than putrescine greater than cadaverine. The degree of diamine stimulation was maximal at 37 degrees C. The effects of three triamines were very similar in the E. coli system but in the T. thermophilus system spermidine was most effective in stimulation of polypeptide synthesis. From the results of experiments using tetraamines and pentaamines, it was deduced that the presence of both aminobutyl and aminopropyl groups in polyamine analogs is important for stimulation of polypeptide synthesis. In the E. coli system, triamines were the most effective polyamines for stimulation of polyphenylalanine synthesis at both 37 and 47 degrees C, while, in the T. thermophilus system, thermospermine, a tetraamine, was most effective at 60 degrees C and 3,4,4,3-pentaamine was most effective at 70 degrees C.  相似文献   

3.
The effect of polyamines on the in vitro and in vivo synthesis and degradation on guanosine 5'-diphosphate 3'-diphosphate (ppGpp) has been studied in Escherichia coli. The presence of 2 mM spermidine lowered the optimal Mg2+ concentration for ppGpp formation from 17 mM to 11 mM. The formation of ppGpp in the presence of 2 mM spermidine and 11 mM Mg2+ was about 15% greater than that in the presence of 17 mM Mg2+. At a concentration of less than 11 mM Mg2+, spermidine was found to stimulate ppGpp formation greatly. Putrescine did not cause any effect. When a polyamine-requiring mutant of E. coli (EWH319) was starved for an amino acid by the addition of valine, spermidine stimulated ppGpp formation. The degradation of ppGpp was not influenced significantly by polyamines.  相似文献   

4.
The functions of acetylpolyamines were examined with respect to stimulation of protein synthesis and cell growth. Unlike polyamines, acetylpolyamines could not lower the optimal Mg2+ concentration of protein synthesis, and the degree of stimulation of protein synthesis by acetylpolyamines was small. The addition of N1-acetylspermine did not stimulate cell growth of a polyamine-requiring mutant of Escherichia coli MA261, although acetylspermine was accumulated in the cells. Acetylspermine did not interfere with polyamine stimulation of protein synthesis and cell growth of E. coli MA261. The binding of acetylpolyamines to RNA was very weak, and the binding of polyamines to RNA was not disturbed significantly by the presence of acetylpolyamines. When the growth of E. coli MA261 was stimulated by addition of polyamines, significant amounts of acetylpolyamines were also formed in the cells. These results suggest that acetylation of polyamines, together with polyamine excretion, may regulate the intracellular level of the parent polyamines when excess amounts of polyamines accumulate intracellularly.  相似文献   

5.
Escherichia coli CAG2242 cells are deficient in the speG gene encoding spermidine acetyltransferase. When these cells were cultured in the presence of 0.5 to 4 mM spermidine, their viability was greatly decreased through the inhibition of protein synthesis by overaccumulation of spermidine. When the cells were cultured with a high concentration of spermidine (4 mM), a revertant strain was obtained. We found that a 55-kDa protein, glycerol kinase, was overexpressed in the revertant and that synthesis of a ribosome modulation factor and the RNA polymerase sigma(38) subunit, factors important for cell viability, was increased in the revertant. Levels of L-glycerol 3-phosphate also increased in the revertant. Transformation of glpFK, which encodes a glycerol diffusion facilitator (glpF) and glycerol kinase (glpK), to E. coli CAG2242 partially prevented the cell death caused by accumulation of spermidine. It was also found that L-glycerol 3-phosphate inhibited spermidine binding to ribosomes and attenuated the inhibition of protein synthesis caused by high concentrations of spermidine. These results indicate that L-glycerol 3-phosphate reduces the binding of excess amounts of spermidine to ribosomes so that protein synthesis is recovered.  相似文献   

6.
Inhibitors of polyamine synthesis (alpha-methylornithine and 1,3-diaminopropan-2-ol) were used to study the relationship between polyamine synthesis and specific methylations of tRNA in Dictyostelium discoideum during vegetative growth. Polyamine concentrations were found to be 10 mM for putrescine, 1.6 mM for spermidine and 7 mM for 1,3-diaminopropane throughout the growth stage. On treatment of growing amoebae with alpha-methylornithine or with 1,3-diaminopropan-2-ol (each at 5 mM), the syntheses of putrescine, spermidine and 1,3-diaminopropane were arrested within 4h. After polyamine synthesis had ceased, the incorporation of methyl groups into tRNA was considerably decreased under conditions that had no effect on the incorporation of uridine into tRNA, or on net syntheses of protein and of DNA. The following nucleosides in tRNA were concerned: 1 methyladenosine, 5-methylcytidine, 7-methylguanosine, 2-methylguanosine, N2N2-dimethylguanosine and 5-methyluridine (ribosylthymine). The corresponding tRNA methyltransferases, determined in Mg2+-free enzyme extracts, proved to be inactive unless polyamines were added. Putrescine and/or spermidine at concentrations of 10 mM or 1-2 mM respectively stimulate the transmethylation reaction in vitro to a maximal rate and to an optimal extent at exactly the same concentrations as found in vegetative cells. In contrast, 1,3-diaminopropane, which is formed from spermidine, does not affect the methylation of tRNA in vitro at physiological concentrations. Putrescine and/or spermidine stabilize the tRNA methyltransferases in crude extracts in the presence but not in the absence of the substrate tRNA. The results support the view that S-adenosylmethionine-dependent transmethylation reactions can be regulated by alterations of polyamine concentrations in vivo.  相似文献   

7.
8.
Upon cold shock, Escherichia coli cell growth transiently stops. During this acclimation phase, specific cold shock proteins (CSPs) are highly induced. At the end of the acclimation phase, their synthesis is reduced to new basal levels, while the non-cold shock protein synthesis is resumed, resulting in cell growth reinitiation. Here, we report that polynucleotide phosphorylase (PNPase) is required to repress CSP production at the end of the acclimation phase. A pnp mutant, upon cold shock, maintained a high level of CSPs even after 24 h. PNPase was found to be essential for selective degradation of CSP mRNAs at 15 degrees C. In a poly(A) polymerase mutant and a CsdA RNA helicase mutant, CSP expression upon cold shock was significantly prolonged, indicating that PNPase in concert with poly(A) polymerase and CsdA RNA helicase plays a critical role in cold shock adaptation.  相似文献   

9.
To determine whether polyamine synthesis is dependent on deoxyribonucleic acid (DNA) synthesis, polyamine levels were estimated after infection of bacterial cells with ultraviolet-irradiated T4 or T4 am N 122, a DNA-negative mutant. Although phage DNA accumulation was restricted to various degrees in comparison to cells infected with T4D, nearly commensurate levels of putrescine and spermidine synthesis were observed after infection, regardless of the rate of phage DNA synthesis. We conclude from these data that polyamine synthesis after infection is independent of phage DNA synthesis.  相似文献   

10.
Polyamine depletion produced by exogenous arginine in Escherichia coliK-12 cultures defective in agmatine ureohydrolase activity resulted in a marked inhibition of the rates of growth and nucleic acid synthesis. Addition of putrescine or spermidine to such depleted cultures restored the control rate of growth and nucleic acid accumulation. The omission of lysine resulted in a further decrease in the rates of growth and nucleic acid synthesis in polyamine-depleted cells. The addition of exogenous cadaverine increased the rates of growth and ribonucleic acid synthesis to those observed in lysine-supplemented cultures, suggesting that lysine or a derivative of lysine serves a function similar to cadaverine. Addition of lysine to polyamine-depleted cultures at neutral pH results in the synthesis of cadaverine and a new spermidine analogue, both containing lysine carbon. This new metabolite has been isolated and identified as N-3-aminopropyl-1, 5-diaminopentane. T4D infection of the polyamine-depleted mutant resulted in a very low rate of DNA synthesis and phage maturation. The addition of putrescine or spermidine 15 min before infection restored phage DNA synthesis and phage maturation to control rates, i.e., rates observed in infected cells grown in the absence of arginine.  相似文献   

11.
Escherichia coli W3110 was grown in a chemostat under conditions of carbon limitation at various temperatures and specific growth rates (mu). Exponential survivor-time curves following cold osmotic shock were biphasic. These could be described by the sum of two exponential functions representing the survival of sensitive and resistant fractions of the population where the size of the sensitive fraction was directly proportional to mu. Decimal reduction times for the more resistant fraction were unaffected by mu yet decreased with increasing growth temperature. Sensitivity to cold shock was evaluated for an E. coli CR34 mutant, temperature-sensitive in initiation of DNA replication. When grown in the chemostat at the non-restrictive temperature (30 degrees C) sensitivity was directly proportional to mu. Following a rise in the incubation temperature to 42 degrees C, sensitivity decreased markedly and reached a minimum 45 to 60 min after the temperature increase. Sensitivity of the E. coli mutant grown at 30 degrees C and raised to 42 degrees C for 1 h was low and relatively unaffected by growth rate.  相似文献   

12.
The in vivo function of polyamine binding protein D (PotD) in Synechocystis sp. PCC 6803 for the transport of spermidine was investigated using Synechocystis mutant disrupted in potD gene. The growth rate of potD mutant was similar to that of wild-type when grown in BG11 medium. However, the mutant exhibited severely reduced growth compared to the wild-type when BG11 medium was supplemented with 0.5 mM spermidine. The mutant accumulated a higher spermidine level than the wild-type when grown in the medium with or without spermidine. Transport experiments revealed that the mutant had a reduction in both the uptake and the excretion of spermidine. Moreover, [14C]spermidine-loaded wild-type and mutant cells showed a decrease of [14C]spermidine excretion when the assay medium contained exogenous spermidine. These data suggest that PotD is involved in both the uptake and the excretion of spermidine in Synechocystis cells.  相似文献   

13.
CspA, CspB, and CspG, the major cold shock proteins of Escherichia coli, are dramatically induced upon temperature downshift. In this report, we examined the effects of kanamycin and chloramphenicol, inhibitors of protein synthesis, on cold shock inducibility of these proteins. Cell growth was completely blocked at 37 degrees C in the presence of kanamycin (100 microgram/ml) or chloramphenicol (200 microgram/ml). After 10 min of incubation with the antibiotics at 37 degrees C, cells were cold shocked at 15 degrees C and labeled with [35S]methionine at 30 min after the cold shock. Surprisingly, the synthesis of all these cold shock proteins was induced at a significantly high level virtually in the absence of synthesis of any other protein, indicating that the cold shock proteins are able to bypass the inhibitory effect of the antibiotics. Possible bypass mechanisms are discussed. The levels of cspA and cspB mRNAs for the first hour at 15 degrees C were hardly affected in the absence of new protein synthesis caused either by antibiotics or by amino acid starvation.  相似文献   

14.
Based on their activity as effectors for the ATPase activity of Escherichia coli replication factor Y and as templates for primosome-directed DNA synthesis, single-point mutations in the L- and H-strand primosome assembly sites from pBR322 DNA have been grouped into four classes (Abarzúa, P., Soeller, W., and Marians, K. (1984) J. Biol. Chem. 259, 14286-14292). In this report, the effect of various ligands on the characteristic activities of primosome assembly site class II mutants has been examined. Both Mn2+ and spermidine can, at low levels, substitute for Mg2+ in the activation of wild-type sites as effectors for factor Y-catalyzed hydrolysis of ATP. Class II mutant sites characteristically require higher levels of these ligands for activation, suggesting that the specific higher order structure of an active primosome assembly site is maintained through base pairing within the single-stranded DNA sequence. This conclusion is supported by the following. 1) Excess levels of the E. coli single-stranded DNA-binding protein can inactivate wild-type sites at 1 mM Mg2+. Either the addition of NaCl to 80 mM or an increase in the Mg2+ concentration to 5 mM protects against this inactivation. Class II mutant sites, however, cannot be stabilized by 80 mM NaCl at 1 mM Mg2+, and only some class II mutants can be stabilized at 5 mM Mg2+. 2) Active second-site revertants, isolated in vivo and in vitro, of inactive primosome assembly sites containing multiple-base substitutions have mutated to restore lost base pairs in the proposed stem and loop structure of the sites.  相似文献   

15.
The sensitivity of Escherichia coli to several aminoglycoside antibiotics was examined with E. coli DR112 transformed by the gene for polyamine-induced protein (oligopeptide-binding [OppA] protein) or polyamine transport proteins. The results clearly showed that sensitivity to aminoglycoside antibiotics (gentamicin, isepamicin, kanamycin, neomycin, paromomycin, and streptomycin) increased due to the highly expressed OppA protein. When the gene for OppA protein was deleted, sensitivity to aminoglycoside antibiotics was greatly decreased. It was also shown that isepamicin could bind to OppA protein with a binding affinity constant of 8.5 x 10(3) M-1 under the ionic conditions of 50 mM K+ and 1 mM Mg2+ at pH 7.5, and isepamicin uptake into cells was greatly stimulated by the OppA protein. These results, taken together, show that the OppA protein increases the uptake of aminoglycoside antibiotics. In addition, the OppA protein increased the transport of spermidine and an oligopeptide (Gly-Leu-Tyr). The uptake of isepamicin into cells was partially inhibited by spermidine, suggesting that the binding site for isepamicin overlaps that for spermidine on the OppA protein. Spermidine uptake activity by the OppA protein was less than 1% of that of the ordinary spermidine uptake system. Aminoglycoside antibiotics neither stimulated the synthesis of OppA protein nor increased spermidine uptake.  相似文献   

16.
Growth of P. aeruginosa, slowed by the addition of monofluoromethylornithine, difluoromethylarginine and dicyclohexylammonium sulfate, could be restored by addition of 0.1 mM putrescine plus 0.1 muM spermidine, or 0.1 mM spermidine or 5 mM putrescine by themselves. Lower concentrations of putrescine (0.1 mM - 1 mM) also partially reversed the growth inhibition. Conversion of putrescine to spermidine continued, although at a markedly reduced ratio, in the drug-inhibited cells, but intracellular spermidine concentrations remained depressed suggesting that reversal of inhibition by putrescine may be a direct effect. There was appreciable back-conversion of any added spermidine to putrescine with a demonstrable increase in total intracellular putrescine levels, making conclusions on the effects of spermidine ambiguous. Spermine (0.1 mM), a polyamine not present in bacteria, was also effective in reversing growth inhibition, probably because of its conversion into spermidine and putrescine. The effects of putrescine, spermidine and spermine were specific in that the non-physiological amines, 1,3-diaminopropane, 1,5-diaminopentane (cadaverine), 1,6-diaminohexane, or 1,7-diaminoheptane could not reverse the effects of the three drugs. Rates of total protein, RNA and DNA synthesis were all slowed to the same extent as growth rate and showed similar recovery with the addition of putrescine or spermidine. A role for putrescine in P. aeruginosa growth processes is suggested.  相似文献   

17.
The possibility that a loss of pollen viability during dry storage in a freezer is caused by the reduced pollen capacity to enhance polyamine biosynthetic enzyme activity after rehydration was investigated using pollen grains of tomato (Solanum lycopersicum=Lycopersicon esculentum) stored at -30 degrees C under dry conditions for up to 42 months. Pollen grains showed normal germinability for at least 12 months in storage, but those stored for longer than 24 months exhibited a significant reduction in germinability and fruit-setting ability. This age-dependent reduction in pollen viability coincided with the extent to which the pollen lost the capacity to increase arginine decarboxylase (ADC) and S-adenosylmethionine decarboxylase (SAMDC) activities and polyamine contents upon rehydration. Immunoblot analysis indicated that the capacity of pollen to translate ADC and SAMDC mRNAs was impaired in accordance with the loss of viability. Also, the capacity to synthesize proteins in general decreased with the increase in storage duration. The addition of 1 mM putrescine, spermidine, or spermine to incubation medium promoted germination, impregnation of pollen grains with 1 mM spermidine restored fertilization ability, and the addition of 1 mM spermidine to incubation medium promoted protein synthesis exclusively in pollen grains which had been stored for a long time. These results indicate that the reduction in viability of tomato pollen during long-term dry storage in a freezer involves a decline in the capacity to enhance gene translation for polyamine biosynthetic enzymes upon rehydration.  相似文献   

18.
A transport system for polyamines was studied with both intact cells and membrane vesicles of an Escherichia coli polyamine-deficient mutant. Polyamine uptake by intact cells and membrane vesicles was inhibited by various protonophores, and polyamines accumulated in membrane vesicles when D-lactate was added as an energy source or when a membrane potential was imposed artificially by the addition of valinomycin to K+-loaded vesicles. These results show that the uptake was dependent on proton motive force. Transported [14C]putrescine and [14C]spermidine were not excreted by intact cells upon the addition either of carbonyl cyanide m-chlorophenylhydrazone, A23187, and Ca2+ or of an excess amount of nonlabeled polyamine. However, they were excreted by membrane vesicles, although the degree of spermidine efflux was much lower than that of putrescine efflux. These results suggest that the apparent unidirectionality in intact cells has arisen from polyamine binding to nucleic acids, thus giving rise to a negligible free intracellular concentration of polyamines. Polyamine uptake, especially putrescine uptake, was inhibited strongly by monovalent cations. The Mg2+ ion inhibited spermidine and spermine uptake but not putrescine uptake.  相似文献   

19.
The DNA-dependent syntheses of different enzymes of the bacteriophages T3 and T7 were studied in an Escherichia coli system in vitro with respect to the optimal Mg2+ concentration and its interdependence with substituting (e.g. spermidine) and complexing agents (e.g. phosphoenolpyruvate). The following results were obtained. 1. The optimal conditions for the syntheses of the different enzymes were not identical. The optima for RNA polymerase synthesis were 8 mM Mg2+, 10 mM P-pyruvate and 3 mM spermidine; for S-adenosyl-L-methionine cleaving enzyme synthesis, 6 mM Mg2+, 6 mM P-pyruvate and 3 mM spermidine; and for lysozyme synthesis, 13-18 mM Mg2+, 28 mM P-pyruvate and 3-0 mM spermidine. 2. The optimal conditions for the synthesis of analog enzymes (RNA polymerases and lysozymes) from the two templates were identical with experimental error. 3. Mg2+ and spermidine substituted for each other in relation to the number of their charges. 4. The apparent complexing of one Mg2+ molecule required the addition of 3-5 P pyruvate molecules. 5. Under the optimal conditions the enzyme-synthesizing activity was higher by more than a factor of 10 compared to previously described systems.  相似文献   

20.
This study was conducted to determine whether a cortisol surge mediates the enhanced expression of intestinal ornithine decarboxylase (ODC) in weanling pigs. Piglets were nursed by sows until 21 days of age, when 40 pigs were randomly assigned into one of four groups (10 animals/group). Group 1 continued to be fed by sows, whereas groups 2-4 were weaned to a corn and soybean meal-based diet. Weanling pigs received intramuscular injections of vehicle solvent (sesame oil), RU-486 (a potent blocker of glucocorticoid receptors; 10 mg/kg body wt), and metyrapone (an inhibitor of adrenal cortisol synthesis; 5 mg/kg body wt), respectively, 5 min before weaning and 24 and 72 h later. At 29 days of age, pigs were used to prepare jejunal enterocytes for ODC assay and metabolic studies. To determine polyamine (putrescine, spermidine, and spermine) synthesis, enterocytes were incubated for 45 min at 37 degrees C in 2 ml Krebs-bicarbonate buffer containing 1 mM [U-(14)C]arginine, 1 mM [U-(14)C]ornithine, 1 mM [U-(14)C]glutamine, or 1 mM [U-(14)C]proline plus 1 mM glutamine. Weaning increased intestinal ODC activity by 230% and polyamine synthesis from ornithine, arginine, and proline by 72-157%. Arginine was a quantitatively more important substrate than proline for intestinal polyamine synthesis in weaned pigs. Administration of RU-486 or metyrapone to weanling pigs prevented the increases in intestinal ODC activity and polyamine synthesis, reduced intracellular polyamine concentrations, and decreased villus heights and intestinal growth. Our results demonstrate an essential role for a cortisol surge in enhancing intestinal polyamine synthesis during weaning, which may be of physiological importance for intestinal adaptation and remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号