首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
During chemical denaturation different intermediate states are populated or suppressed due to the nature of the denaturant used. Chemical denaturation by guanidine-HCl (GuHCl) of human carbonic anhydrase II (HCA II) leads to a three-state unfolding process (Cm,NI=1.0 and Cm,IU=1.9 M GuHCl) with formation of an equilibrium molten-globule intermediate that is stable at moderate concentrations of the denaturant (1-2 M) with a maximum at 1.5 M GuHCl. On the contrary, urea denaturation gives rise to an apparent two-state unfolding transition (Cm=4.4 M urea). However, 8-anilino-1-naphthalene sulfonate (ANS) binding and decreased refolding capacity revealed the presence of the molten globule in the middle of the unfolding transition zone, although to a lesser extent than in GuHCl. Cross-linking studies showed the formation of moderate oligomer sized (300 kDa) and large soluble aggregates (>1000 kDa). Inclusion of 1.5 M NaCl to the urea denaturant to mimic the ionic character of GuHCl leads to a three-state unfolding behavior (Cm,NI=3.0 and Cm,IU=6.4 M urea) with a significantly stabilized molten-globule intermediate by the chloride salt. Comparisons between NaCl and LiCl of the impact on the stability of the various states of HCA II in urea showed that the effects followed what could be expected from the Hofmeister series, where Li+ is a chaotropic ion leading to decreased stability of the native state. Salt addition to the completely urea unfolded HCA II also led to an aggregation prone unfolded state, that has not been observed before for carbonic anhydrase. Refolding from this state only provided low recoveries of native enzyme.  相似文献   

2.
Most loss-of-function diseases are caused by aberrant folding of important proteins. These proteins often misfold due to mutations. The disease marble brain syndrome (MBS), known also as carbonic anhydrase II deficiency syndrome (CADS), can manifest in carriers of point mutations in the human carbonic anhydrase II (HCA II) gene. One mutation associated with MBS entails the His107Tyr substitution. Here, we demonstrate that this mutation is a remarkably destabilizing folding mutation. The loss-of-function is clearly a folding defect, since the mutant shows 64% of CO(2) hydration activity compared to that of the wild-type at low temperature where the mutant is folded. On the contrary, its stability towards thermal and guanidine hydrochloride (GuHCl) denaturation is highly compromised. Using activity assays, CD, fluorescence, NMR, cross-linking, aggregation measurements and molecular modeling, we have mapped the properties of this remarkable mutant. Loss of enzymatic activity had a midpoint temperature of denaturation (T(m)) of 16 degrees C for the mutant compared to 55 degrees C for the wild-type protein. GuHCl-denaturation (at 4 degrees C) showed that the native state of the mutant was destabilized by 9.2kcal/mol. The mutant unfolds through at least two equilibrium intermediates; one novel intermediate that we have termed the molten globule light state and, after further denaturation, the classical molten globule state is populated. Under physiological conditions (neutral pH; 37 degrees C), the His107Tyr mutant will populate the molten globule light state, likely due to novel interactions between Tyr107 and the surroundings of the critical residue Ser29 that destabilize the native conformation. This intermediate binds the hydrophobic dye 8-anilino-1-naphthalene sulfonic acid (ANS) but not as strong as the molten globule state, and near-UV CD reveals the presence of significant tertiary structure. Notably, this intermediate is not as prone to aggregation as the classical molten globule. As a proof of concept for an intervention strategy with small molecules, we showed that binding of the CA inhibitor acetazolamide increases the stability of the native state of the mutant by 2.9kcal/mol in accordance with its strong affinity. Acetazolamide shifts the T(m) to 34 degrees C that protects from misfolding and will enable a substantial fraction of the enzyme pool to survive physiological conditions.  相似文献   

3.
We report the X-ray crystal structures and rate constants for proton transfer in site-specific mutants of human carbonic anhydrase III (HCA III) that place a histidine residue in the active-site cavity: K64H, R67H, and K64H-R67N HCA III. Prior evidence from the exchange of 18O between CO2 and water measured by mass spectrometry shows each mutant to have enhanced proton transfer in catalysis compared with wild-type HCA III. However, His64 in K64H and K64H-R67N HCA III have at most a capacity for proton transfer that is only 13% that of His64 in HCA II. This reduced rate in mutants of HCA III is associated with a constrained side-chain conformation of His64, which is oriented outward, away from the active-site zinc in the crystal structures. This conformation appears stabilized by a prominent pi stacking interaction of the imidazole ring of His64 with the indole ring of Trp5 in mutants of HCA III. This single orientation of His64 in K64H HCA III predominates also in a double mutant K64H-R67N HCA III, indicating that the positive charge of Arg67 does not influence the observed conformation of His64 in the crystal structure. Hence, the structures and catalytic activity of these mutants of HCA III containing His64 account only in small part for the lower activity of this isozyme compared with HCA II. His67 in R67H HCA III was also shown to be a proton shuttle residue, having a capacity for proton transfer that was approximately four times that of His64 in K64H HCA III. This is most likely due to its proximity and orientation inward towards the zinc-bound solvent. These results emphasize the significance of side chain orientation and range of available conformational states as characteristics of an efficient proton shuttle in carbonic anhydrase.  相似文献   

4.
Zheng J  Avvaru BS  Tu C  McKenna R  Silverman DN 《Biochemistry》2008,47(46):12028-12036
Catalysis by the zinc metalloenzyme human carbonic anhydrase II (HCA II) is limited in maximal velocity by proton transfer between His64 and the zinc-bound solvent molecule. Asn62 extends into the active site cavity of HCA II adjacent to His64 and has been shown to be one of several hydrophilic residues participating in a hydrogen-bonded solvent network within the active site. We compared several site-specific mutants of HCA II with replacements at position 62 (Ala, Val, Leu, Thr, and Asp). The efficiency of catalysis in the hydration of CO 2 for the resulting mutants has been characterized by (18)O exchange, and the structures of the mutants have been determined by X-ray crystallography to 1.5-1.7 A resolution. Each of these mutants maintained the ordered water structure observed by X-ray crystallography in the active site cavity of wild-type HCA II; hence, this water structure was not a variable in comparing with wild type the activities of mutants at residue 62. Crystal structures of wild-type and N62T HCA II showed both an inward and outward orientation of the side chain of His64; however, other mutants in this study showed predominantly inward (N62A, N62V, N62L) or predominantly outward (N62D) orientations of His64. A significant role of Asn62 in HCA II is to permit two conformations of the side chain of His64, the inward and outward, that contributes to maximal efficiency of proton transfer between the active site and solution. The site-specific mutant N62D had a mainly outward orientation of His64, yet the difference in p K a between the proton donor His64 and zinc-bound hydroxide was near zero, as in wild-type HCA II. The rate of proton transfer in catalysis by N62D HCA II was 5% that of wild type, showing that His64 mainly in the outward orientation is associated with inefficient proton transfer compared with His64 in wild type which shows both inward and outward orientations. These results emphasize the roles of the residues of the hydrophilic side of the active site cavity in maintaining efficient catalysis by carbonic anhydrase.  相似文献   

5.
Catalysis of the hydration of CO2 by human carbonic anhydrase isozyme II (HCA II) is sustained at a maximal catalytic turnover of 1 mus-1 by proton transfer between a zinc-bound solvent and bulk solution. This mechanism of proton transfer is facilitated via the side chain of His64, which is located 7.5 A from the zinc, and mediated via intervening water molecules in the active-site cavity. Three hydrophilic residues that have previously been shown to contribute to the stabilization of these intervening waters were replaced with hydrophobic residues (Y7F, N62L, and N67L) to determine their effects on proton transfer. The structures of all three mutants were determined by X-ray crystallography, with crystals equilibrated from pH 6.0 to 10.0. A range of changes were observed in the ordered solvent and the conformation of the side chain of His64. Correlating these structural variants with kinetic studies suggests that the very efficient proton transfer (approximately 7 micros-1) observed for Y7F HCA II in the dehydration direction, compared with the wild type and other mutants of this study, is due to a combination of three features. First, in this mutant, the side chain of His64 showed an appreciable inward orientation pointing toward the active-site zinc. Second, in the structure of Y7F HCA II, there is an unbranched chain of hydrogen-bonded waters linking the proton donor His64 and acceptor zinc-bound hydroxide. Finally, the difference in pKa of the donor and acceptor appears favorable for proton transfer. The data suggest roles for residues 7, 62, and 67 in fine-tuning the properties of His64 for optimal proton transfer in catalysis.  相似文献   

6.
Among the isozymes of carbonic anhydrase, isozyme III is the least efficient in the catalysis of the hydration of CO2 and was previously thought to be unaffected by proton transfer from buffers to the active site. We report that buffers of small size, especially imidazole, increase the rate of catalysis by human carbonic anhydrase III (HCA III) of (1) 18O exchange between HCO3- and water measured by membrane-inlet mass spectrometry and (2) the dehydration of HCO3- measured by stopped-flow spectrophotometry. Imidazole enhanced the rate of release of 18O-labeled water from the active site of wild-type carbonic anhydrase III and caused a much greater enhancement, up to 20-fold, for the K64H, R67H, and R67N mutants of this isozyme. Imidazole had no effect on the rate of interconversion of CO2 and HCO3- at chemical equilibrium. Steady-state measurements showed that the addition of imidazole resulted in increases in the turnover number (kcat) for the hydration of CO2 catalyzed by HCA III and for the dehydration of HCO3- catalyzed by R67N HCA III. These results are consistent with the transfer of a proton from the imidazolium cation to the zinc-bound hydroxide at the active site, a step required to regenerate the active form of enzyme in the catalytic cycle. Like isozyme II of carbonic anhydrase, isozyme III can be enhanced in catalytic rate by the presence of small molecule buffers in solution.  相似文献   

7.
The Hsp60-type chaperonin GroEL assists in the folding of the enzyme human carbonic anhydrase II (HCA II) and protects it from aggregation. This study was aimed to monitor conformational rearrangement of the substrate protein during the initial GroEL capture (in the absence of ATP) of the thermally unfolded HCA II molten-globule. Single- and double-cysteine mutants were specifically spin-labeled at a topological breakpoint in the β-sheet rich core of HCA II, where the dominating antiparallel β-sheet is broken and β-strands 6 and 7 are parallel. Electron paramagnetic resonance (EPR) was used to monitor the GroEL-induced structural changes in this region of HCA II during thermal denaturation. Both qualitative analysis of the EPR spectra and refined inter-residue distance calculations based on magnetic dipolar interaction show that the spin-labeled positions F147C and K213C are in proximity in the native state of HCA II at 20 °C (as close as ~8 Å), and that this local structure is virtually intact in the thermally induced molten-globule state that binds to GroEL. In the absence of GroEL, the molten globule of HCA II irreversibly aggregates. In contrast, a substantial increase in spin–spin distance (up to >20 Å) was observed within minutes, upon interaction with GroEL (at 50 and 60 °C), which demonstrates a GroEL-induced conformational change in HCA II. The GroEL binding-induced disentanglement of the substrate protein core at the topological break-point is likely a key event for rearrangement of this potent aggregation initiation site, and hence, this conformational change averts HCA II misfolding.  相似文献   

8.
We have prepared a site-specific mutant of human carbonic anhydrase (HCA) II with histidine residues at positions 7 and 64 in the active site cavity. Using a different isozyme, we have placed histidine residues in HCA III at positions 64 and 67 and in another mutant at positions 64 and 7. Each of these histidine residues can act as a proton transfer group in catalysis when it is the only nonliganding histidine in the active site cavity, except His(7) in HCA III. Using an (18)O exchange method to measure rate constants for intramolecular proton transfer, we have found that inserting two histidine residues into the active site cavity of either isozyme II or III of carbonic anhydrase results in rates of proton transfer to the zinc-bound hydroxide that are antagonistic or suppressive with respect to the corresponding single mutants. The crystal structure of Y7H HCA II, which contains both His(7) and His(64) within the active site cavity, shows the conformation of the side chain of His(64) moved from its position in the wild type and hydrogen-bonded through an intervening water molecule with the side chain of His(7). This suggests a cause of decreased proton transfer in catalysis.  相似文献   

9.
In the site-specific mutant of human carbonic anhydrase in which the proton shuttle His64 is replaced with alanine, H64A HCA II, catalysis can be activated in a saturable manner by the proton donor 4-methylimidazole (4-MI). From 1H NMR relaxivities, we found 4-MI bound as a second-shell ligand of the tetrahedrally coordinated cobalt in Co(II)-substituted H64A HCA II, with 4-MI located about 4.5 A from the metal. Binding constants of 4-MI to H64A HCA II were estimated from: (1) NMR relaxation of the protons of 4-MI by Co(II)-H64A HCA II, (2) the visible absorption spectrum of Co(II)-H64A HCA II in the presence of 4-MI, (3) the inhibition by 4-MI of the catalytic hydration of CO2, and (4) from the catalyzed exchange of 18O between CO2 and water. These experiments along with previously reported crystallographic and catalytic data help identify a range of distances at which proton transfer is efficient in carbonic anhydrase II.  相似文献   

10.
The development of commercial biosensors based on surface plasmon resonance has made possible careful characterization of biomolecular interactions. Here, a set of destabilized human carbonic anhydrase II (HCA II) mutants was investigated with respect to their interaction kinetics with two different immobilized benzenesulfonamide inhibitors. Point mutations were located distantly from the active site, and the destabilization energies were up to 23 kJ/mol. The dissociation rate of wild-type HCA II, as determined from the binding to the inhibitor with higher affinity, was 0.019 s(-1). For the mutants, dissociation rates were faster (0.022-0.025 s(-1)), and a correlation between faster dissociation and a high degree of destabilization was observed. We interpreted these results in terms of increased dynamics of the tertiary structures of the mutants. This interpretation was supported by entropy determinations, showing that the entropy of the native structure significantly increased upon destabilization of the protein molecule. Our findings demonstrate the applicability of modern biosensor technology in the study of subtle details in molecular interaction mechanisms, such as the long-range effect of point mutations on interaction kinetics.  相似文献   

11.
The presence of aromatic clusters has been found to be an integral feature of many proteins isolated from thermophilic microorganisms. Residues found in aromatic cluster interact via π–π or C–H?π bonds between the phenyl rings, which are among the weakest interactions involved in protein stability. The lone aromatic cluster in human carbonic anhydrase II (HCA II) is centered on F226 with the surrounding aromatics F66, F95 and W97 located 12 Å posterior the active site; a location which could facilitate proper protein folding and active site construction. The role of F226 in the structure, catalytic activity and thermostability of HCA II was investigated via site-directed mutagenesis of three variants (F226I/L/W) into this position. The measured catalytic rates of the F226 variants via 18O-mass spectrometry were identical to the native enzyme, but differential scanning calorimetry studies revealed a 3–4 K decrease in their denaturing temperature. X-ray crystallographic analysis suggests that the structural basis of this destabilization is via disruption and/or removal of weak C–H?π interactions between F226 to F66, F95 and W97. This study emphasizes the importance of the delicate arrangement of these weak interactions among aromatic clusters in overall protein stability.  相似文献   

12.
A new affinity gel for purification of carbonic anhydrase isozymes was prepared using EUPERGIT C-250L derivatized with p-aminobenzenesulfonamide, an inhibitor of carbonic anhydrase. The binding capacity of the affinity gel was determined at different temperatures, pH values, elution buffers, and ionic strengths. Human carbonic anhydrase isozymes (HCA I and HCA II) and bovine carbonic anhydrase (BCA) were purified in high yields from erythrocytes.  相似文献   

13.
In the catalysis of the hydration of carbon dioxide and dehydration of bicarbonate by human carbonic anhydrase II (HCA II), a histidine residue (His64) shuttles protons between the zinc-bound solvent molecule and the bulk solution. To evaluate the effect of the position of the shuttle histidine and pH on proton shuttling, we have examined the catalysis and crystal structures of wild-type HCA II and two double mutants: H64A/N62H and H64A/N67H HCA II. His62 and His67 both have their side chains extending into the active-site cavity with distances from the zinc approximately equivalent to that of His64. Crystal structures were determined at pH 5.1-10.0, and the catalysis of the exchange of (18)O between CO(2) and water was assessed by mass spectrometry. Efficient proton shuttle exceeding a rate of 10(5) s(-)(1) was observed for histidine at positions 64 and 67; in contrast, relatively inefficient proton transfer at a rate near 10(3) s(-)(1) was observed for His62. The observation, in the crystal structures, of a completed hydrogen-bonded water chain between the histidine shuttle residue and the zinc-bound solvent does not appear to be required for efficient proton transfer. The data suggest that the number of intervening water molecules between the donor and acceptor supporting efficient proton transfer in HCA II is important, and furthermore suggest that a water bridge consisting of two intervening water molecules is consistent with efficient proton transfer.  相似文献   

14.
This study finds lengthened circadian period in a congenic strain of mice homozygous for a null mutation in carbonic anhydrase isoenzyme-II gene on proximal Chromosome 3. Carbonic anhydrase II has the highest turnover rate of any constitutive enzyme. It catalyzes the reversible hydration of carbon dioxide to control intercellular acid/base balance. A strain of congenic mice has a carbonic anhydrase II null mutation within a DBA/2J inbred strain insert on a C57BL/6J inbred strain background. The locomotor activity levels and period of circadian rhythms were examined in the homozygous null mutants and their progenitors, mice heterozygous for the region around the carbonic anhydrase gene. The heterozygous mice siblings and the wild-type siblings served as the controls. During behavioral studies, male and female offspring and parents were housed singly in constant darkness. Locomotor activity was monitored using an infrared photobeam array. Mice homozygous for the carbonic anhydrase null mutation had a longer circadian period than either heterozygote or wild type littermates. Carbonic anhydrase null mutants also had low locomotor activity compared to either heterozygous or wild-type litter mates. This implies that either the physiological changes resulting from absence of carbonic anhydrase II isozyme or the presence of DBA/2J alleles around the carbonic anhydrase locus influence the circadian period and level of locomotor activity in laboratory mice.  相似文献   

15.
Nine single-cysteine mutants were labeled with 5-(2-iodoacetylaminoethylamino)naphthalene-1-sulfonic acid, an efficient acceptor of Trp fluorescence in fluorescence resonance energy transfer. The ratio between the fluorescence intensity of the 5-(2-acetylaminoethylamino)naphthalene-1-sulfonic acid (AEDANS) moiety excited at 295 nm (Trp absorption) and 350 nm (direct AEDANS absorption) was used to estimate the average distances between the seven Trp residues in human carbonic anhydrase II (HCA II) and the AEDANS label. Guanidine HCl denaturation of the HCA II variants was also performed to obtain a curve that reflected the compactness of the protein at various stages of the unfolding, which could serve as a scale of the expansion of the protein. This approach was developed in this study and was used to estimate the compactness of HCA II during heat denaturation and interaction with GroEL. It was shown that thermally induced unfolding of HCA II proceeded only to the molten globule state. Reaching this state was sufficient to allow HCA II to bind to GroEL, and the volume of the molten globule intermediate increased approximately 2.2-fold compared with that of the native state. GroEL-bound HCA II expands to a volume three to four times that of the native state (to approximately 117,000 A(3)), which correlates well with a stretched and loosened-up HCA II molecule in an enlarged GroEL cavity. Recently, we found that HCA II binding causes such an inflation of the GroEL molecule, and this probably represents the mechanism by which GroEL actively stretches its protein substrates apart (Hammarstr?m, P., Persson, M., Owenius, R., Lindgren, M., and Carlsson, U. (2000) J. Biol. Chem. 275, 22832-22838), thereby facilitating rearrangement of misfolded structure.  相似文献   

16.
This study finds lengthened circadian period in a congenic strain of mice homozygous for a null mutation in carbonic anhydrase isoenzyme-II gene on proximal Chromosome 3. Carbonic anhydrase II has the highest turnover rate of any constitutive enzyme. It catalyzes the reversible hydration of carbon dioxide to control intercellular acid/base balance. A strain of congenic mice has a carbonic anhydrase II null mutation within a DBA/2J inbred strain insert on a C57BL/6J inbred strain background. The locomotor activity levels and period of circadian rhythms were examined in the homozygous null mutants and their progenitors, mice heterozygous for the region around the carbonic anhydrase gene. The heterozygous mice siblings and the wild-type siblings served as the controls. During behavioral studies, male and female offspring and parents were housed singly in constant darkness. Locomotor activity was monitored using an infrared photobeam array. Mice homozygous for the carbonic anhydrase null mutation had a longer circadian period than either heterozygote or wild type littermates. Carbonic anhydrase null mutants also had low locomotor activity compared to either heterozygous or wild-type litter mates. This implies that either the physiological changes resulting from absence of carbonic anhydrase II isozyme or the presence of DBA/2J alleles around the carbonic anhydrase locus influence the circadian period and level of locomotor activity in laboratory mice.  相似文献   

17.
The nature of denatured ensembles of the enzyme human carbonic anhydrase (HCA) has been extensively studied by various methods in the past. The protein constitutes an interesting model for folding studies that does not unfold by a simple two-state transition, instead a molten globule intermediate is highly populated at 1.5 M GuHCl. In this work, NMR and H/D exchange studies have been conducted on one of the isozymes, HCA I. The H/D exchange studies, which were enabled by the previously obtained resonance assignment of HCA I, have been used to identify unfolded forms that are accessible from the native state. In addition, the GuHCl-induced unfolded states of HCA I have also been characterized by NMR at GuHCl concentrations in the 0-5 M range. The most important findings in this work are as follows: (1) Amide protons located in the center of the beta-sheet require global unfolding events for efficient H/D exchange. (2) The molten globule and the native state give similar protection against H/D exchange for all of the observable amide protons (i.e., water seems not to efficiently penetrate the interior of the molten globule). (3) At high protein concentrations, the molten globule can form large aggregates, which are not detectable by solution-state NMR methods. (4) The unfolded state (U), present at GuHCl concentrations above 2 M, is composed of an ensemble of conformations having residual structures with different stabilities.  相似文献   

18.
The refolding of human carbonic anhydrase II is a sequential process. The slowest step involved is the recovery of enzymic activity (t1/2 = 9 min). Kinetic data from 'double-jump' measurements indicate that proline isomerization might be rate determining in the reactivation of the denatured enzyme. Proof of this is provided by the effect of proline isomerase on the reactivation kinetics: the presence of isomerase during reactivation lowers the half-time of the reaction to 4 min, and inhibition of proline isomerase completely abolishes this kinetic effect. A similar acceleration of the refolding process by proline isomerase is also observed for bovine carbonic anhydrase II, in contrast to what has previously been reported. In human carbonic anhydrase II there are two cis-peptidyl-Pro bonds at Pro30 and Pro202. Two asparagine single mutants (P30N and P202N) and a glycine double mutant (P30G/P202G) were constructed to investigate the role of these prolines in the rate limitation of the reactivation process. Both in the presence and absence of PPIase the P202N mutant behaved exactly like the unmutated enzyme. Thus, cis-trans isomerization of the Pro202 cis-peptidyl bond is not rate determining in the reactivation process. The mutations at position 30 led to such extensive destabilization of the protein that the refolding reaction could not be studied.  相似文献   

19.
Among the seven known isozymes of carbonic anhydrase in higher vertebrates, isozyme III is the least efficient in catalytic hydration of CO2 and the least susceptible to inhibition by sulfonamides. We have investigated the role of two basic residues near the active site of human carbonic anhydrase III (HCA III), lysine 64 and arginine 67, to determine whether they can account for some of the unique properties of this isozyme. Site-directed mutagenesis was used to replace these residues with histidine 64 and asparagine 67, the amino acids present at the corresponding positions of HCA II, the most efficient of the carbonic anhydrase isozymes. Catalysis by wild-type HCA III and mutants was determined from the initial velocity of hydration of CO2 at steady state by stopped-flow spectrophotometry and from the exchange of 18O between CO2 and water at chemical equilibrium by mass spectrometry. We have shown that histidine 64 functions as a proton shuttle in carbonic anhydrase by substituting histidine for lysine 64 in HCA III. The enhanced CO2 hydration activity and pH profile of the resulting mutant support this role for histidine 64 in the catalytic mechanism and suggest an approach that may be useful in investigating the mechanistic roles of active-site residues in other isozyme groups. Replacing arginine 67 in HCA III by asparagine enhanced catalysis of CO2 hydration 3-fold compared with that of wild-type HCA III, and the pH profile of the resulting mutant was consistent with a proton transfer role for lysine 64. Neither replacement enhanced the weak inhibition of HCA III by acetazolamide or the catalytic hydrolysis of 4-nitrophenyl acetate.  相似文献   

20.
A single mutation, involving the replacement of an arginine residue with histidine to reconstruct a zinc-binding site, suffices to change a catalytically inactive murine carbonic anhydrase-related protein (CARP) to an active carbonic anhydrase with a CO2-hydration turnover number of 1.2 x 104 s-1. Further mutations, leading to a more 'carbonic anhydrase-like' active-site cavity, results in increased activity. A quintuple mutant having His94, Gln92, Val121, Val143, and Thr200 (human carbonic anhydrase I numbering system) shows kcat = 4 x 104 s-1 and kcat/Km = 2 x 107 M-1.s-1, greatly exceeding the corresponding values for carbonic anhydrase isozyme III and approaching those characterizing carbonic anhydrase I. In addition, a buffer change from 50 mM Taps/NaOH to 50 mM 1, 2-dimethylimidazole/H2SO4 at pH 9 results in a 14-fold increase in kcat for this quintuple mutant. The CO2-hydrating activity of a double mutant with His94 and Gln92 shows complex pH-dependence, but the other mutants investigated behave as if the activity (kcat/Km) is controlled by the basic form of a single group with pKa near 7.7. In a similar way to human carbonic anhydrase II, the buffer behaves formally as a second substrate in a ping-pong pattern, suggesting that proton transfer between a zinc-bound water molecule and buffer limits the maximal rate of catalysis in both systems at low buffer concentrations. However, the results of isotope-exchange kinetic studies suggest that proton shuttling via His64 is insignificant in the CARP mutant in contrast with carbonic anhydrase II. The replacement of Ile residues with Val in positions 121 or 143 results in measurable 4-nitrophenyl acetate hydrolase activity. The pH-rate profile for this activity has a similar shape to those of carbonic anhydrase I and II. CD spectra of the double mutant with His94 and Gln92 are variable, indicating an equilibrium between a compact form of the protein and a 'molten globule'-like form. The introduction of Thr200 seems to stabilize the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号