首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《The Journal of cell biology》1993,123(6):1649-1659
We have investigated a possible involvement of GTPases in nuclear protein import using an in vitro transport system involving digitonin- permeabilized cells supplemented with exogenous cytosol. Transport in this system was measured with a novel ELISA-based assay that allows rapid quantitative analysis. GTP gamma S and other nonhydrolyzable analogues of GTP were found to rapidly inhibit the rate of in vitro nuclear import. Transport inhibition by GTP gamma S was dependent on the concentrations of permeabilized cells and cytosol, and was strongly enhanced by a cytosolic factor(s). The predominant cytosolic component responsible for this inhibition was found in a 20-30-kD fraction in molecular sieving chromatography. Furthermore, a component(s) of this 20-30-kD fraction was itself required for efficient nuclear import. Biochemical complementation with bacterially expressed protein demonstrated that this essential GTP gamma S-sensitive transport factor was Ran/TC4, a previously described GTPase of the Ras superfamily found in both nucleus and cytoplasm. Ran/TC4 and its guanine nucleotide release protein RCC1 have previously been implicated in DNA replication, cell cycle checkpoint control, and RNA synthesis, processing and export. Our results suggest that Ran/TC4 serves to integrate nuclear protein import with these other nuclear activities.  相似文献   

2.
D Grlich  N Pant  U Kutay  U Aebi    F R Bischoff 《The EMBO journal》1996,15(20):5584-5594
The importin-alpha/beta heterodimer and the GTPase Ran play key roles in nuclear protein import. Importin binds the nuclear localization signal (NLS). Translocation of the resulting import ligand complex through the nuclear pore complex (NPC) requires Ran and is terminated at the nucleoplasmic side by its disassembly. The principal GTP exchange factor for Ran is the nuclear protein RCC1, whereas the major RanGAP is cytoplasmic, predicting that nuclear Ran is mainly in the GTP form and cytoplasmic Ran is in the GDP-bound form. Here, we show that nuclear import depends on cytoplasmic RanGDP and free GTP, and that RanGDP binds to the NPC. Therefore, import might involve nucleotide exchange and GTP hydrolysis on NPC-bound Ran. RanGDP binding to the NPC is not mediated by the Ran binding sites of importin-beta, suggesting that translocation is not driven from these sites. Consistently, a mutant importin-beta deficient in Ran binding can deliver its cargo up to the nucleoplasmic side of the NPC. However, the mutant is unable to release the import substrate into the nucleoplasm. Thus, binding of nucleoplasmic RanGTP to importin-beta probably triggers termination, i.e. the dissociation of importin-alpha from importin-beta and the subsequent release of the import substrate into the nucleoplasm.  相似文献   

3.
Ran/TC4, first identified as a well-conserved gene distantly related to H-RAS, encodes a protein which has recently been shown in yeast and mammalian systems to interact with RCC1, a protein whose function is required for the normal coupling of the completion of DNA synthesis and the initiation of mitosis. Here, we present data indicating that the nuclear localization of Ran/TC4 requires the presence of RCC1. Transient expression of a Ran/TC4 protein with mutations expected to perturb GTP hydrolysis disrupts host cell DNA synthesis. These results suggest that Ran/TC4 and RCC1 are components of a GTPase switch that monitors the progress of DNA synthesis and couples the completion of DNA synthesis to the onset of mitosis.  相似文献   

4.
TC4, a ras-like G protein, has been implicated in the feedback pathway linking the onset of mitosis to the completion of DNA replication. In this report we find distinct roles for TC4 in both nuclear assembly and cell cycle progression. Mutant and wild-type forms of TC4 were added to Xenopus egg extracts capable of assembling nuclei around chromatin templates in vitro. We found that a mutant TC4 protein defective in GTP binding (GDP-bound form) suppressed nuclear growth and prevented DNA replication. Nuclear transport under these conditions approximated normal levels. In a separate set of experiments using a cell-free extract of Xenopus eggs that cycles between S and M phases, the GDP- bound form of TC4 had dramatic effects, blocking entry into mitosis even in the complete absence of nuclei. The effect of this mutant TC4 protein on cell cycle progression is mediated by phosphorylation of p34cdc2 on tyrosine and threonine residues, negatively regulating cdc2 kinase activity. Therefore, we provide direct biochemical evidence for a role of TC4 in both maintaining nuclear structure and in the signaling pathways that regulate entry into mitosis.  相似文献   

5.
The nuclear accumulation of beta-catenin plays an important role in the Wingless/Wnt signaling pathway. This study describes an examination of the nuclear import of beta-catenin in living mammalian cells and in vitro semi-intact cells. When injected into the cell cytoplasm, beta-catenin rapidly migrated into the nucleus in a temperature-dependent and wheat germ agglutinin-sensitive manner. In the cell-free import assay, beta-catenin rapidly migrates into the nucleus without the exogenous addition of cytosol, Ran, or ATP/GTP. Cytoplasmic injection of mutant Ran defective in its GTP hydrolysis did not prevent beta-catenin import. Studies using tsBN2, a temperature-sensitive mutant cell line that possesses a point mutation in the RCC1 gene, showed that the import of beta-catenin is insensitive to nuclear Ran-GTP depletion. These results show that beta-catenin possesses the ability to constitutively translocate through the nuclear pores in a manner similar to importin beta in a Ran-unassisted manner. We further showed that beta-catenin also rapidly exits the nucleus in homokaryons, suggesting that the regulation of nuclear levels of beta-catenin involves both nuclear import and export of this molecule.  相似文献   

6.
The Ran/TC4 GTPase is required for the nuclear accumulation of artificial karyophiles in permeabilized cell assays. To investigate Ran function in a physiologically intact setting using mammalian cells, we examined the effects of several Ran mutants on cell growth and on the nuclear translocation of a glucocorticoid receptor-green fluorescent protein fusion (GR-GFP). Glucocorticoid receptor is cytosolic in the absence of ligand, but translocates to the nucleus on binding the agonist dexamethasone. After transfection into baby hamster kidney cells (BHK21), GR-GFP was detectable in living cells by direct fluorescence microscopy. Addition of dexamethasone caused a rapid translocation of the chimeric protein from the cytosol into the nucleus (t1/2 approximately 5 min). Cotransfection with epitope-tagged, wild- type Ran led to expression of HA1-Ran that was approximately 1.6-fold higher than the level of the endogenous protein, but it had no deleterious effect on nuclear import of the GR-GFP. However, expression of the Ran mutants G19V, T24N, or a COOH-terminal deletion (delta C) mutant dramatically reduced the accumulation of GR-GFP in the nuclei. An L43E mutant of Ran was without significant effect on nuclear GR-GFP import. Identical results were obtained following micro-injection of recombinant Ran mutants into cells expressing GR-GFP. Significantly, all of the Ran mutants, including L43E, strongly inhibited cell growth. These results demonstrate the use of GR-GFP in real-time imaging of nuclear transport. They also show that multiple types of Ran mutant exert dominant effects on this process, and that normal Ran function requires cycling between the GTP- and GDP-bound states of the protein. Most importantly, the results with the L43E Ran mutant provide strong evidence that Ran mediates a function essential to cell viability that is independent of nuclear protein import.  相似文献   

7.
K Weis  C Dingwall    A I Lamond 《The EMBO journal》1996,15(24):7120-7128
The small nuclear GTP binding protein Ran is required for transport of nuclear proteins through the nuclear pore complex (NPC). Although it is known that GTP hydrolysis by Ran is essential for this reaction, it has been unclear whether additional energy-consuming steps are also required. To uncouple the energy requirements for Ran from other nucleoside triphosphatases, we constructed a mutant derivative of Ran that has an altered nucleotide specificity from GTP to xanthosine 5' triphosphate. Using this Ran mutant, we demonstrate that nucleotide hydrolysis by Ran is sufficient to promote efficient nuclear protein import in vitro. Under these conditions, protein import could no longer be inhibited with non-hydrolysable nucleotide analogues, indicating that no Ran-independent energy-requiring steps are essential for the protein translocation reaction through the NPC. We further provide evidence that nuclear protein import requires Ran in the GDP form in the cytoplasm. This suggests that a coordinated exchange reaction from Ran-GDP to Ran-GTP at the pore is necessary for translocation into the nucleus.  相似文献   

8.
The Ran binding protein RanBP1 is localized to the cytosol of interphase cells. A leucine-rich nuclear export signal (NES) near the C terminus of RanBP1 is essential to maintain this distribution. We now show that RanBP1 accumulates in nuclei of cells treated with the export inhibitor, leptomycin B, and collapse of the nucleocytoplasmic Ran:GTP gradient leads to equilibration of RanBP1 across the nuclear envelope. Low temperature prevents nuclear accumulation of RanBP1, suggesting that import does not occur via simple diffusion. Glutathione S-transferase (GST)-RanBP1(1-161), which lacks the NES, accumulates in the nucleus after cytoplasmic microinjection. In permeabilized cells, nuclear accumulation of GST-RanBP1(1-161) requires nuclear Ran:GTP but is not inhibited by a dominant interfering G19V mutant of Ran. Nuclear accumulation is enhanced by addition of exogenous karyopherins/importins or RCC1, both of which also enhance nuclear Ran accumulation. Import correlates with Ran concentration. Remarkably, an E37K mutant of RanBP1 does not import into the nuclei under any conditions tested despite the fact that it can form a ternary complex with Ran and importin beta. These data indicate that RanBP1 translocates through the pores by an active, nonclassical mechanism and requires Ran:GTP for nuclear accumulation. Shuttling of RanBP1 may function to clear nuclear pores of Ran:GTP, to prevent premature release of import cargo from transport receptors.  相似文献   

9.
Kinetic competition experiments have demonstrated that at least some factors required for the nuclear import of proteins and U snRNPs are distinct. Both import processes require energy, and in the case of protein import, the energy requirement is known to be at least partly met by GTP hydrolysis by the Ran GTPase. We have compared the effects of nonhydrolyzable GTP analogues and two mutant Ran proteins on the nuclear import of proteins and U snRNPs in vitro. The mutant Ran proteins have different defects; Q69L (glutamine 69 changed to leucine) is defective in GTP hydrolysis while T24N (threonine 24 changed to asparagine) is defective in binding GTP. Both protein and snRNP import are sensitive either to the presence of the two mutant Ran proteins, which act as dominant negative inhibitors of nuclear import, or to incubation with nonhydrolyzable GTP analogues. This demonstrates that there is a requirement for a GTPase activity for the import of U snRNPs, as well as proteins, into the nucleus. The dominant negative effects of the two mutant Ran proteins indicate that the pathways of protein and snRNP import share at lease one common component.  相似文献   

10.
The small Ras-related GTP binding and hydrolyzing protein Ran has been implicated in a variety of processes, including cell cycle progression, DNA synthesis, RNA processing, and nuclear-cytosolic trafficking of both RNA and proteins. Like other small GTPases, Ran appears to function as a switch: Ran-GTP and Ran-GDP levels are regulated both by guanine nucleotide exchange factors and GTPase activating proteins, and Ran-GTP and Ran-GDP interact differentially with one or more effectors. One such putative effector, Ran-binding protein 1 (RanBP1), interacts selectively with Ran-GTP. Ran proteins contain a diagnostic short, acidic, carboxyl-terminal domain, DEDDDL, which, at least in the case of human Ran, is required for its role in cell cycle regulation. We show here that this domain is required for the interaction between Ran and RanBP1 but not for the interaction between Ran and a Ran guanine nucleotide exchange factor or between Ran and a Ran GTPase activating protein. In addition, Ran lacking this carboxyl-terminal domain functions normally in an in vitro nuclear protein import assay. We also show that RanBP1 interacts with the mammalian homolog of yeast protein RNA1, a protein involved in RNA transport and processing. These results are consistent with the hypothesis that Ran functions directly in at least two pathways, one, dependent on RanBP1, that affects cell cycle progression and RNA export, and another, independent of RanBP1, that affects nuclear protein import.  相似文献   

11.
We have cloned a novel cDNA (Spa-1) which is little expressed in the quiescent state but induced in the interleukin 2-stimulated cycling state of an interleukin 2-responsive murine lymphoid cell line by differential hybridization. Spa-1 mRNA (3.5 kb) was induced in normal lymphocytes following various types of mitogenic stimulation. In normal organs it is preferentially expressed in both fetal and adult lymphohematopoietic tissues. A Spa-1-encoded protein of 68 kDa is localized mostly in the nucleus. Its N-terminal domain is highly homologous to a human Rap1 GTPase-activating protein (GAP), and a fusion protein of this domain (SpanN) indeed exhibited GAP activity for Rap1/Rsr1 but not for Ras or Rho in vitro. Unlike the human Rap1 GAP, however, SpanN also exhibited GAP activity for Ran, so far the only known Ras-related GTPase in the nucleus. In the presence of serum, stable Spa-1 cDNA transfectants of NIH 3T3 cells (NIH/Spa-1) hardly overexpressed Spa-1 (p68), and they grew as normally as did the parental cells. When NIH/Spa-1 cells were serum starved to be arrested in the G1/G0 phase of the cell cycle, however, they, unlike the control cells, exhibited progressive Spa-1 p68 accumulation, and following the addition of serum they showed cell death resembling mitotic catastrophes of the S phase during cell cycle progression. The results indicate that the novel nuclear protein Spa-1, with a potentially active Ran GAP domain, severely hampers the mitogen-induced cell cycle progression when abnormally and/or prematurely expressed. Functions of the Spa-1 protein and its regulation are discussed in the context of its possible interaction with the Ran/RCC-1 system, which is involved in the coordinated nuclear functions, including cell division.  相似文献   

12.
Ran GTPase is required for nucleocytoplasmic transport of many types of cargo. Several proteins that recognize Ran in its GTP-bound state (Ran x GTP) possess a conserved Ran-binding domain (RanBD). Ran-binding protein-1 (RanBP1) has a single RanBD and is required for RanGAP-mediated GTP hydrolysis and release of Ran from nuclear transport receptors (karyopherins). In budding yeast (Saccharomyces cerevisiae), RanBP1 is encoded by the essential YRB1 gene; expression of mouse RanBP1 cDNA rescues the lethality of Yrb1-deficient cells. We generated libraries of mouse RanBP1 mutants and examined 11 mutants in vitro and for their ability to complement a temperature-sensitive yrb1 mutant (yrb1-51(ts)) in vivo. In 9 of the mutants, the alteration was a change in a residue (or 2 residues) that is conserved in all known RanBDs. However, 4 of these 9 mutants displayed biochemical properties indistinguishable from that of wild-type RanBP1. These mutants bound to Ran x GTP, stimulated RanGAP, inhibited the exchange activity of RCC1, and rescued growth of the yrb1-51(ts) yeast cells. Two of the 9 mutants altered in residues thought to be essential for interaction with Ran were unable to rescue growth of the yrb1(ts) mutant and did not bind detectably to Ran in vitro. However, one of these 2 mutants (and 2 others that were crippled in other RanBP1 functions) retained some ability to co-activate RanGAP. A truncated form of RanBP1 (lacking its nuclear export signal) was able to complement the yrb1(ts) mutation. When driven from the YRB1 promoter, 4 of the 5 mutants most impaired for Ran binding were unable to rescue growth of the yrb1(ts) cells; remarkably, these mutants could nevertheless form ternary complexes with importin-5 or importin-beta and Ran-GTP. The same mutants stimulated only inefficiently RanGAP-mediated GTP hydrolysis of the Ran x GTP x importin-5 complex. Thus, the essential biological activity of RanBP1 in budding yeast correlates not with Ran x GTP binding per se or with the ability to form ternary complexes with karyopherins, but with the capacity to potentiate RanGAP activity toward GTP-bound Ran in these complexes.  相似文献   

13.
The ran GTPase regulates mitotic spindle assembly.   总被引:28,自引:0,他引:28  
Ran is an abundant nuclear GTPase with a clear role in nuclear transport during interphase but with roles in mitotic regulation that are less well understood. The nucleotide-binding state of Ran is regulated by a GTPase activating protein, RanGAP1, and by a guanine nucleotide exchange factor, RCC1. Ran also interacts with a guanine nucleotide dissociation inhibitor, RanBP1. RanBP1 has a high affinity for GTP-bound Ran, and it acts as a cofactor for RanGAP1, increasing the rate of GAP-mediated GTP hydrolysis on Ran approximately tenfold. RanBP1 levels oscillate during the cell cycle [4], and increased concentrations of RanBP1 prolong mitosis in mammalian cells and in Xenopus egg extracts (our unpublished observations). We investigated how increased concentrations of RanBP1 disturb mitosis. We found that spindle assembly is dramatically disrupted when exogenous RanBP1 is added to M phase Xenopus egg extracts. We present evidence that the role of Ran in spindle assembly is independent of nuclear transport and is probably mediated through changes in microtubule dynamics.  相似文献   

14.
Kim SH  Roux SJ 《Planta》2003,216(6):1047-1052
Ran-binding proteins (RanBPs) are a group of proteins that bind to Ran (Ras-related nuclear small GTP-binding protein), and thus either control the GTP/GDP-bound states of Ran or help couple the Ran GTPase cycle to a cellular process. AtRanBP1c is a Ran-binding protein from Arabidopsis thaliana (L.) Heynh. that was recently shown to be critically involved in the regulation of auxin-induced mitotic progression [S.-H. Kim et al. (2001) Plant Cell 13:2619-2630]. Here we report that AtRanBP1c inhibits the EDTA-induced release of GTP from Ran and serves as a co-activator of Ran-GTPase-activating protein (RanGAP) in vitro. Transient expression of AtRanBP1c fused to a beta-glucuronidase (GUS) reporter reveals that the protein localizes primarily to the cytosol. Neither the N- nor C-terminus of AtRanBP1c, which flank the Ran-binding domain (RanBD), is necessary for the binding of PsRan1-GTP to the protein, but both are needed for the cytosolic localization of GUS-fused AtRanBP1c. These findings, together with a previous report that AtRanBP1c is critically involved in root growth and development, imply that the promotion of GTP hydrolysis by the Ran/RanGAP/AtRanBP1c complex in the cytoplasm, and the resulting concentration gradient of Ran-GDP to Ran-GTP across the nuclear membrane could be important in the regulation of auxin-induced mitotic progression in root tips of A. thaliana.  相似文献   

15.
The cell cycle is an intricate process of DNA replication and cell division thatconcludes with the formation of two genetically equivalent daughter cells. In thisprogression, the centrosome is duplicated once and only once during the G1/S transitionto produce the bipolar spindle and ensure proper chromosome segregation. The presenceof multiple centrosomes in cancer cells suggests that this process is mis-regulated duringcarcinogenesis. This suggests that certain factors exist that license the progression ofcentrosome duplication and serve to inhibit further duplications during a single cell cycle.Recent studies suggest that the Ran/Crm1 complex not only regulates nucleocytoplasmictransport but is also independently involved in mitotic spindle assembly. Factors that arecapable of interacting with Ran/Crm1 through their nuclear export sequences, such ascyclins/cdks, p53 and Brca1/2, may potentially function as centrosome checkpoints akinto the G1/S and G2/M checkpoints of the cell cycle. Our recent findings indicate thatnucleophosmin, a protein whose trafficking is mediated by the Ran/Crm1 network, is oneof such checkpoint factors for maintaining proper centrosome duplication. We proposethat Ran/Crm1 may act as a ‘loading dock’ to coordinate various checkpoint factors inregulating the fidelity of centrosome duplication during cell cycle progression, and thedisruption of these processes may lead to genomic instability and an acceleration ofoncogenesis.  相似文献   

16.
The small GTPase Ran is required for the trafficking of macromolecules into and out of the nucleus. Ran also has been implicated in cell cycle control, specifically in mitotic spindle assembly. In interphase cells, Ran is predominately nuclear and thought to be GTP bound, but it is also present in the cytoplasm, probably in the GDP-bound state. Nuclear transport factor 2 (NTF2) has been shown to import RanGDP into the nucleus. Here, we examine the in vivo role of NTF2 in Ran import and the effect that disruption of Ran imported into the nucleus has on the cell cycle. A temperature-sensitive (ts) mutant of Saccharomyces cerevisiae NTF2 that does not bind to Ran is unable to import Ran into the nucleus at the nonpermissive temperature. Moreover, when Ran is inefficiently imported into the nucleus, cells arrest in G(2) in a MAD2 checkpoint-dependent manner. These findings demonstrate that NTF2 is required to transport Ran into the nucleus in vivo. Furthermore, we present data that suggest that depletion of nuclear Ran triggers a spindle-assembly checkpoint-dependent cell cycle arrest.  相似文献   

17.
The Ran-GTPase cycle is important for nucleus-cytosol exchange of macromolecules and other nuclear processes. We employed the two-hybrid method to identify proteins interacting with Ran and the Ran GTP/GDP exchange factor. Using PRP20, encoding the Ran GTP/GDP exchange factor, we identified YRB1, previously identified as a protein able to interact with human Ran GTP/GDP exchange factor RCC1 in the two-hybrid system. Using GSP1, encoding the yeast Ran, as bait, we isolated YRB2. YRB2 encodes a protein containing a Ran-binding motif similar to that found in Yrb1p and Nup2p. Yrb1p is located in the cytosol whereas Nup2p is nuclear. Similar to Yrb1p, Yrb2p bound to GTP-Gsp1p but not to GDP-Gsp1p and enhanced the GTPase-activating activity of Rna1p. However, unlike Yrb1p, Yrb2p did not inhibit the nucleotide-releasing activity of Prp20p. While overproduction of Yrb1p inhibited the growth of a mutant possessing a PRP20 mutation (srm1-1) and suppressed the rna1-1 mutation, overproduction of Yrb2p showed no effect on the growth of these mutants. Disruption of YRB2 made yeast cold sensitive and was synthetically lethal with rna1-1 but not with nup2delta. Nuclear protein import and the mRNA export were normal in strains possessing mutations of YRB2. We propose that Yrb2p is involved in the nuclear processes of the Ran-GTPase cycle which are not related to nucleus-cytosol exchange of macromolecules.  相似文献   

18.
19.
Ran (Ras-related nuclear) protein, a member of the Ras superfamily of GTPases, is best known for its roles in nucleocytoplasmic transport, mitotic spindle fiber assembly, and nuclear envelope formation. Recently, we have shown that the overexpression of Ran in fibroblasts induces cellular transformation and tumor formation in mice (Ly, T. K., Wang, J., Pereira, R., Rojas, K. S., Peng, X., Feng, Q., Cerione, R. A., and Wilson, K. F. (2010) J. Biol. Chem. 285, 5815-5826). Here, we describe a novel activated Ran mutant, Ran(K152A), which is capable of an increased rate of GDP-GTP exchange and an accelerated GTP binding/GTP hydrolytic cycle compared with wild-type Ran. We show that its expression in NIH-3T3 fibroblasts induces anchorage-independent growth and stimulates cell invasion, as well as activates signaling pathways that lead to extracellular regulated kinase (ERK) activity. Furthermore, Ran(K152A) expression in the human mammary SKBR3 adenocarcinoma cell line gives rise to an enhanced transformed phenotype and causes a robust stimulation of both ERK and the N-terminal c-Jun kinase (JNK). Microarray analysis reveals that the expression of the gene encoding SMOC-2 (secreted modular calcium-binding protein-2), which has been shown to synergize with different growth factors, is increased by at least 50-fold in cells stably expressing Ran(K152A) compared with cells expressing control vector. Knocking down SMOC-2 expression greatly reduces the ability of Ran(K152A) to stimulate anchorage-independent growth in NIH-3T3 cells and in SKBR3 cells and also inhibits cell invasion in fibroblasts. Collectively, our findings highlight a novel connection between the hyper-activation of the small GTPase Ran and the matricellular protein SMOC-2 that has important consequences for oncogenic transformation.  相似文献   

20.
During the life cycle of human papillomaviruses (HPVs), the L1 capsid proteins seem to enter the nucleus twice: once after the virions infect the cells, and later during the productive phase when they assemble the replicated HPV genomic DNA into infectious virions. We established for the high-risk HPV45 that when digitonin-permeabilized HeLa cells were incubated with L1 homopentameric capsomers, the HPV45 L1 protein was imported into the nucleus in a receptor-mediated manner. In contrast, intact capsids were not able to enter the nucleus. Immunoisolation assays showed that HPV45 L1 capsomers interact with cytosolic karyopherin alpha 2 beta 1 heterodimers. HPV45 L1 bound strongly to karyopherin alpha 2, and weakly to karyopherin beta 1, as did its nuclear localization signal (NLS). Nuclear import of HPV45 L1, or of a GST-NLS(HPV45L1) fusion protein was efficiently mediated by karyopherin alpha 2 beta 1 heterodimers, and only weakly by karyopherin beta 1. Nuclear import required RanGDP, but was independent of GTP hydrolysis by Ran. Together, these data suggest that the major nuclear import pathway for HPV45 L1 major capsid protein in infected host cells is mediated by karyopherin alpha 2 beta 1 heterodimers and that GTP hydrolysis by Ran is not required for import. Remarkably, HPV45 L1 capsomers can interact nonspecifically with different types of HPV-DNA, and the DNA binding region of HPV45 L1 overlaps with its NLS sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号