首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Plasmodium falciparum modifies the host erythrocyte's plasma membrane by the formation of electron-dense structures called knobs. We have produced monoclonal antibodies (McAbs) which specifically bind to the knobs in immunoelectron microscopic experiments with thin sections of parasitized erythrocytes. However, the McAbs fail to bind to the surface of live parasitized erythrocytes. Immunoblotting experiments with these McAbs show the antigen is localized to the erythrocyte plasma membrane. The antigen with which the McAbs react varies in mol. wt from 80 to 95 kd in different knob-producing isolates of P. falciparum and is absent in knobless variants. The McAbs react with the expressed product of a P. falciparum cDNA clone, thus demonstrating that the clone encodes part of this knob-associated protein. The sequence of the cDNA fragment partially overlaps a published cDNA sequence reported to encode the amino-terminal portion of the knob protein, and extends the predicted open reading frame by 190 amino acids. The carboxyl-terminal portion of the predicted amino acid sequence contains a highly charged stretch of approximately 100 amino acid residues. We suggest that this unusual, highly charged region participates in intermolecular salt bridging leading to dense packing of these molecules. This would create the electron-dense regions observed by electron microscopy and might also explain the insolubility of the knob-associated protein in the absence of strong ionic detergents or chaotropic agents.  相似文献   

2.
Infections with the human malaria Plasmodium falciparum are characterized by the retention of parasitized erythrocytes in tissue capillaries and venules. Erythrocytes containing trophozoites and schizonts attach to the endothelial cells that line these vessels by means of structurally identifiable excrescences present on the surface of the infected cell. Such excrescences, commonly called knobs, are visible by means of scanning or transmission electron microscopy. The biochemical mechanisms responsible for erythrocyte adherence to the endothelial cell are still undefined. In an attempt to identify the cytoadhesive molecule on the surface of the infected cell, we have prepared monoclonal antibodies to knob-bearing erythrocytes infected with the FCR-3 strain of P. falciparum. One of these monoclonal antibodies, designed 4A3, is an IgM that reacts (by means of immunofluorescence) with the surface of unfixed erythrocytes bearing mature parasites of the knobby line; it does not react with knobless lines or uninfected erythrocytes. By immunoelectron microscopy the monoclonal antibody 4A3 was localized to the knob region. In an in vitro cytoadherence assay, the monoclonal antibody partially blocked the binding of knob-bearing cells (FCR-3 strain) to formalin-fixed amelanotic melanoma cells. The monoclonal antibody was used to immunoprecipitate a protein from extracts of knobby erythrocytes that had been previously surface iodinated. By a two-dimensional peptide mapping technique, the antigen recognized by the monoclonal antibody was found to be structurally related to band 3 protein, the human erythrocyte anion transporter.  相似文献   

3.
The nature of the surface deformations of erythrocytes infected with the human malaria parasite Plasmodium falciparum was analyzed using scanning electron microscopy at two stages of the 48-h parasite maturation cycle. Infected cells bearing trophozoite-stage parasites (24-36 h) had small protrusions (knobs), with diameters varying from 160 to 110 nm, and a density ranging from 10 to 35 knobs X micron-2. When parasites were fully mature (schizont stage, 40-44 h), knob size decreased (100-70 nm), whereas density increased (45-70 knobs X micron-2). Size and density of the knobs varied inversely, suggesting that knob production (a) occurred throughout intraerythrocytic parasite development from trophozoite to schizont and (b) was related to dynamic changes of the erythrocyte membrane. Variation in the distribution of the knobs over the red cell surface was observed during parasite maturation. At the early trophozoite stage of parasite development, knobs appeared to be formed in particular domains of the cell surface. As the density of knobs increased and they covered the entire cell surface, their lateral distribution was dispersive (more-than-random); this was particularly evident at the schizont stage. Regional surface patterns of knobs (rows, circles) were seen throughout parasite development. The nature of the dynamic changes that occurred at the red cell surface during knob formation, as well as the nonrandom distribution of knobs, suggested that the red cell cytoskeleton may have played a key role in knob formation and patterning.  相似文献   

4.
We used the combination of an atomic force microscope and a light microscope equipped with epifluorescence to serially image Plasmodium falciparum-infected erythrocytes. This procedure allowed us to determine unambiguously the presence and developmental stage of the malaria parasite as well as the number and size of knobs in singly, doubly, and triply infected erythrocytes. Knobs are not present during the ring stage of a malaria infection but a lesion resulting from invasion by a merozoite is clearly visible on the erythrocyte surface. This lesion is visible into the late trophozoite stage of infection. Knobs begin to form during the early trophozoite stage of infection and have a single-unit structure. Our data suggest the possibility that a two-unit structure of knobs, which was reported by Aikawa et al. (1996, Exp. Parasitol. 84, 339-343) using atomic force microscopy, appears to be a double-tipped image. The number of knobs per unit of host cell surface area is directly proportional to parasite number in both early and late trophozoite stages. These results indicate that knob formation by one parasite does not influence knob formation by other parasites in a multiply infected erythrocyte. In addition, knob volume is not influenced by either parasite stage or number at the late trophozoite stage, indicating that the number of component molecules per knob is constant throughout the parasite maturation process.  相似文献   

5.
A 33-kDa soluble antigen identified in the culture supernatant by patient serum and monoclonal antibodies was present in rings, trophozoites, schizonts, and merozoites of Plasmodium falciparum. The antigen which is released into the culture supernatant by growing parasites was also observed in the host cells of trophozoites and schizonts and could be localized on the host cell surface. Its specificity for the surface of trophozoites and schizonts was observed to decrease with increased duration without subculture. The antigen could then be detected on the surface of noninfected erythrocytes. The antigenicity of the 33-kDa antigen was destroyed by heating at 65 degrees C. Monoclonal and polyclonal specific antibodies weakly inhibited parasite growth in vitro. The antigen was present in both knob positive and knob negative parasites in all the P. falciparum isolates tested.  相似文献   

6.
Knobs, knob proteins and cytoadherence in falciparum malaria.   总被引:1,自引:0,他引:1  
1. The sequestration of trophozoite and schizont infected erythrocytes (IRBC) in post-capillary venules of host internal organs causes most of the morbidity and mortality in falciparum malaria. It is a knob mediated cytoadherence phenomenon where knobs act as the focal junction between IRBC and host endothelial cell. Knobless (K-) parasites, isolated from cultures (not yet isolated from in vivo), do not cause virulent infections. Knobs thus play an important role in pathophysiology of falciparum malaria. 2. The chemical composition of knobs is partly explored, several proteins (Known as knob proteins) have been identified. According to their function they can be classified as (a) knob-inducing protein, "KAHRP" (b) knob-associated cytoadherent proteins, e.g. PFEMP-1, modified band 3 and an antigen recognized by monoclonal 33G2 and (c) knob-associated structural protein, e.g. PFEMP-2/MESA/PP-300. Most of them show size polymorphism among different isolates. Only KAHRP and MESA/PFEMP-2 have been studied at molecular level. Their chromosomal locations have been identified such as KAHRP on chromosome 2 and MESA/PFEMP-2 on chromosomes 5 and 6. 3. The receptor molecules on endothelial cells for knob ligands have been identified and partially characterized. 4. Knob ligands and their receptor molecules can play an important role in developing the immunotherapeutic reagents. 5. Based on the available data a tentative hypothesis has been proposed about the loss of knobs in vitro. Nevertheless, this needs further support from other experimental evidence. 6. Future work should be directed towards the structure and function of knob proteins and their interactions with each other as well as with host proteins. Regulation of expression of knobs and knob protein(s), evaluation of knob antigens for immunotherapy of severe falciparum malaria and for a malaria vaccine also require further investigations.  相似文献   

7.
ABSTRACT It has been suggested that several Trypanosoma cruzi antigens have possible protective epitopes which may be suitable vaccine candidates. We found previously that animals resistant to T. cruzi infection produced antibodies against the 75-77-kDa parasite antigen. To test the ability of the recombinant form of this antigen to protect animals from T. cruzi infection, the cDNA which encodes a portion of the 75-77-kDa antigen was cloned using a cDNA library constructed in an orientation-specific bacteriophage expression vector (λgt11) from poly (A)+ RNA of Brazil strain epimastigotes. One clone, named SFS-40, was selected by screening the library using affinity purified antibodies specific for the 75-77-kDa parasite antigen as probe. The cDNA corresponding to the 1.7-kilobase insert of SFS-40 was subcloned into plasmid vectors and characterized. The cDNA sequence encodes a polypeptide of about 40 kDa. The putative product of the cDNA was homologous to members of the 70-kDa stress protein family. When epimastigotes were shifted from 29° C to 37° C, there was no change in the level of SFS-40 mRNA. In contrast, the 70-kDa heat shock protein mRNA of the parasite was increased about four fold by this treatment.  相似文献   

8.
A cDNA library was constructed in pBR322 using mRNA from blood stages of a Papua New Guinean isolate of Plasmodium falciparum. Expression of parasite antigens was not directly detectable by conventional immunological assays. To circumvent this, mice were immunized with lysates of cDNA clones, and the antisera raised were assayed for anti-parasite reactivity. One cDNA clone was identified which reliably elicited antibodies to P. falciparum. The mouse antisera were used to characterize the native P. falciparum protein as a 120-kd protein, which is antigenic during natural infection. The protein occurs in late trophozoite and schizont stages and is found in isolates of the parasite from widely separated geographical areas. The genomic context of the antigen gene is conserved in the different isolates.  相似文献   

9.
Fluorescence in situ hybridization analyses were conducted to examine the presence or absence of the 180- and 350-bp knob-associated tandem repeats in maize strains previously defined as "one-knob" or "knobless." Multiple loci were found to hybridize to these two repeats in all maize lines analyzed. Our results show that the number of 180- and 350-bp repeat loci do not correlate with the number of knobs in maize and that these tandem repeats are not independently sufficient to confer knob heterochromatin, even when present at megabase sizes.  相似文献   

10.
Plasmodium falciparum: cytoadherence of a knobless clone   总被引:6,自引:0,他引:6  
Sequestration of Plasmodium falciparum-infected erythrocytes is crucial to parasite survival as it prevents destruction in the liver and spleen. Knobs have been considered necessary but not sufficient for cytoadherence to vascular endothelial cells in vivo and to melanoma or umbilical vein endothelial cells in vitro. We describe here a knobless clone that cytoadheres strongly to C32 melanoma cells. This clone cannot express the knob-associated histidine-rich protein (KAHRP) due to the deletion of the KAHRP gene. Our results raise the possibility of an alternative mechanism for in vitro cytoadherence and suggest that the use of long term cultured isolates and melanoma cells as a model for cytoadherence in vivo may be misleading.  相似文献   

11.
P Acharya  S Chaubey  M Grover  U Tatu 《PloS one》2012,7(9):e44605
Cell surface structures termed knobs are one of the most important pathogenesis related protein complexes deployed by the malaria parasite Plasmodium falciparum at the surface of the infected erythrocyte. Despite their relevance to the disease, their structure, mechanisms of traffic and their process of assembly remain poorly understood. In this study, we have explored the possible role of a parasite-encoded Hsp40 class of chaperone, namely PFB0090c/PF3D7_0201800 (KAHsp40) in protein trafficking in the infected erythrocyte. We found the gene coding for PF3D7_0201800 to be located in a chromosomal cluster together with knob components KAHRP and PfEMP3. Like the knob components, KAHsp40 too showed the presence of PEXEL motif required for transport to the erythrocyte compartment. Indeed, sub-cellular fractionation and immunofluorescence analysis (IFA) showed KAHsp40 to be exported in the erythrocyte cytoplasm in a stage dependent manner localizing as punctuate spots in the erythrocyte periphery, distinctly from Maurer's cleft, in structures which could be the reminiscent of knobs. Double IFA analysis revealed co-localization of PF3D7_0201800 with the markers of knobs (KAHRP, PfEMP1 and PfEMP3) and components of the PEXEL translocon (Hsp101, PTEX150). KAHsp40 was also found to be in a complex with KAHRP, PfEMP3 and Hsp101 as confirmed by co-immunoprecipitation assay. Our results suggest potential involvement of a parasite encoded Hsp40 in chaperoning knob assembly in the erythrocyte compartment.  相似文献   

12.
13.
14.
The human malaria parasite Plasmodium falciparum utilises a mechanism of antigenic variation to avoid the antibody response of its human host and thereby generates a long-term, persistent infection. This process predominantly results from systematic changes in expression of the primary erythrocyte surface antigen, a parasite-produced protein called PfEMP1 that is encoded by a repertoire of over 60 var genes in the P. falciparum genome. var genes exhibit extensive sequence diversity, both within a single parasite's genome as well as between different parasite isolates, and thus provide a large repertoire of antigenic determinants to be alternately displayed over the course of an infection. Whilst significant work has recently been published documenting the extreme level of diversity displayed by var genes found in natural parasite populations, little work has been done regarding the mechanisms that lead to sequence diversification and heterogeneity within var genes. In the course of producing transgenic lines from the original NF54 parasite isolate, we cloned and characterised a parasite line, termed E5, which is closely related to but distinct from 3D7, the parasite used for the P. falciparum genome nucleotide sequencing project. Analysis of the E5 var gene repertoire, as well as that of the surrounding rif and stevor multi-copy gene families, identified examples of frequent recombination events within these gene families, including an example of a duplicative transposition which indicates that recombination events play a significant role in the generation of diversity within the antigen encoding genes of P. falciparum.  相似文献   

15.
An in vitro correlate of the binding in vivo of Plasmodium falciparum-infected erythrocytes to capillary and venular endothelium, using cultured human endothelial cells and amelanotic melanoma cells, was previously developed. The effects of different times in continuous culture on binding of erythrocytes infected with nine different isolates of P. falciparum is now reported. Four isolates, which bound at the time they were first tested, rapidly lost the ability to bind after 26-43 days in culture. One of these, the Cameroun isolate, tested 12 h after the blood was obtained from the patient, had the highest rate of binding of all isolates (680 infected erythrocytes per 100 melanoma cells). After 37 days in culture, only 18 infected erythrocytes per 100 melanoma cells bound. Three isolates first tested after 30-62 days in culture bound poorly. In contrast, two others, the Vietnam (VI) and Brazil (It), continued to bind during the period of study. The Brazil (It) isolate studied after 43 days in culture bound 505 infected erythrocytes per 100 melanoma cells; its clone ItG2G1 continued to bind equally well after 400 days in culture. The ultrastructural morphology of knobs on the binding and nonbinding infected erythrocytes were indistinguishable. Since evidence from other studies indicates that knobs are necessary for binding to endothelium, it is proposed that some parasites in continuous culture may not express the molecules responsible for binding, although the morphologic knobs are still present.  相似文献   

16.
The variant surface antigens expressed on Plasmodium falciparum-infected erythrocytes are potentially important targets of immunity to malaria and are encoded, at least in part, by a family of var genes, about 60 of which are present within every parasite genome. Here we use semi-conserved regions within short var gene sequence "tags" to make direct comparisons of var gene expression in 12 clinical parasite isolates from Kenyan children. A total of 1,746 var clones were sequenced from genomic and cDNA and assigned to one of six sequence groups using specific sequence features. The results show the following. (1) The relative numbers of genomic clones falling in each of the sequence groups was similar between parasite isolates and corresponded well with the numbers of genes found in the genome of a single, fully sequenced parasite isolate. In contrast, the relative numbers of cDNA clones falling in each group varied considerably between isolates. (2) Expression of sequences belonging to a relatively conserved group was negatively associated with the repertoire of variant surface antigen antibodies carried by the infected child at the time of disease, whereas expression of sequences belonging to another group was associated with the parasite "rosetting" phenotype, a well established virulence determinant. Our results suggest that information on the state of the host-parasite relationship in vivo can be provided by measurements of the differential expression of different var groups, and need only be defined by short stretches of sequence data.  相似文献   

17.

Background

The virulence of Plasmodium falciparum malaria is related to the parasite’s ability to evade host immunity through clonal antigenic variation and tissue-specific adhesion of infected erythrocytes (IEs). The P. falciparum erythrocyte membrane protein 1 (PfEMP1) family expressed on dome-shaped protrusions called knobs on the IE surface is central to both. Differences in receptor specificity and affinity of expressed PfEMP1 are important for IE adhesiveness, but it is not known whether differences in the number and size of the knobs on which the PfEMP1 proteins are expressed also play a role. Therefore, the aim of this study was to provide detailed information on isolate- and time-dependent differences in knob size and density.

Methodology/Principal Findings

We used atomic force microscopy to characterize knobs on the surface of P. falciparum-infected erythrocytes. Fourteen ex vivo isolates from Ghanaian children with malaria and 10 P. falciparum isolates selected in vitro for expression of a particular PfEMP1 protein (VAR2CSA) were examined. Knob density increased from ∼20 h to ∼35 h post-invasion, with significant variation among isolates. The knob density ex vivo, which was about five-fold higher than following long-term in vitro culture, started to decline within a few months of culture. Although knob diameter and height varied among isolates, we did not observe significant time-dependent variation in these dimensions.

Conclusions/Significance

The density of knobs on the P. falciparum-IE surface depends on time since invasion, but is also determined by the infecting isolate in a time-independent manner. This is the first study to quantitatively evaluate knob densities and dimensions on different P. falciparum isolates, to examine ex vivo isolates from humans, and to compare ex vivo and long-term in vitro-cultured isolates. Our findings contribute to the understanding of the interaction between P. falciparum parasites and the infected host.  相似文献   

18.
A knobless (K-) line of the FCR-3 isolate of Plasmodium falciparum was obtained by gelatin flotation. Immunofluorescent staining and immunoblots indicated that both the K-line and the K+ (knobby) line from which it was derived contained similar forms of potentially adhesive modified band 3 protein. When the K+ and K-lines were assayed for their cytoadherent and rosetting abilities the K+ line showed a high level of CD36 dependent cytoadherence, whereas the K-line demonstrated a marked pH dependent increase in rosetting. Rosetting was inhibited by the addition of peptides based on band 3 motifs, suggesting that cytoadherence and rosetting involve the same adhesin but that the presence of knobs affects whether the adherent preference of the infected erythrocyte is uninfected red cells or endothelial/C32 amelanotic melanoma cells.  相似文献   

19.
A DNA segment carrying viral DNA was cloned from a rat cell line transformed by the cloned EcoRI-C fragment (0 to 16.4 map units) of human adenovirus type 12(Ad12), and the viral sequence in the clone was analysed. The cloned segment contained the region from nucleotide positions 118 to 3520 of the Ad12 genome in the middle. No unique structure was found at the viral and non-viral DNA junctions. When examined the transforming activity, the conserved viral sequence was able to transform rat 3Y1 cells efficiently. Southern blotting analysis of the viral sequence in five re-transformed cell lines showed that the viral sequence was inserted at different sites of cellular DNA. These results indicate that (I) the Ad12 DNA moiety from the enhancer-promoter region of the E1A gene to the end of the E1B gene contains enough information for efficient transformation of the rat cell, and (II) integration of the viral sequence at unique cellular sites is not prerequisite for transformation.  相似文献   

20.
R F Howard  H A Stanley  R T Reese 《Gene》1988,64(1):65-75
During its intra-erythrocytic cycle, Plasmodium falciparum synthesizes a protein of apparent Mr 250,000-300,000. Its precise size is dependent on the P. falciparum isolate examined. This protein contains phosphate covalently bound to one or more serine residues and hence is termed PP300. Monoclonal antibody, McAb4-1F, binds to PP300 on immunoblots of protein extracts from all parasite isolates tested, both those exhibiting and those lacking the knob phenotype. Using McAb4-1F, the polypeptide was shown to be physically associated with the plasma membrane in a membrane-isolation procedure. However, in an indirect immunofluorescence assay the McAb appeared to bind to antigen associated with the erythrocyte plasma membrane in parasitized cells. However, it reacted only to fixed, not unfixed, parasitized erythrocytes indicating that the epitope is not normally exposed to extracellular antibodies. Clone 29-2 was isolated by a McAb4-1F immunoscreen of a P. falciparum complementary DNA (cDNA) expression library created in pUC8. Rat anti-clone serum which was raised to the purified protein encoded by the lacZ-29-2 fusion in pUC8 reacted with PP300 in immunoblots of parasite antigen. In Southern-blot analyses of parasite DNA digested with EcoRI, HindIII, or EcoRV, the 29-2 DNA insert hybridized to more than one fragment even though the insert lacked internal sites for these enzymes. In addition, hybridization studies were conducted using two oligodeoxy-nucleotides which were constructed based on the sequence of a cDNA clone which encoded part of a similar high-molecular-weight P. falciparum protein [Coppel et al., Mol. Biochem. Parasitol. 20 (1986) 265-277]. Analysis of these results indicates that the two cDNA sequences are parts of the same gene or a family of related genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号