首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We prepared two dissected fragments of hen lysozyme and examined whether or not these two fragments associated to form a native-like structure. One (Fragment I) is the peptide fragment Asn59-homoserine-105 containing Cys64-Cys80 and Cys76-Cys94. The other (Fragment II) is the peptide fragment Lys1-homoserine-58 connected by two disulfide bridges, Cys6-Cys127 and Cys30-Cys115, to the peptide fragment Asn106-Leu129. It was found that the Fragment I immobilized in the cuvette formed an equimolar complex with Fragment II (K(d) = 3.3x10(-4) M at pH 8 and 25 degrees C) by means of surface plasmon resonance. Moreover, from analyses by circular dichroism spectroscopy and ion-exchange chromatography of the mixture of Fragments I and II at pH 8 under non-reducing conditions, it was suggested that these fragments associated to give the native-like structure. However, the mutant Fragment I in which Cys64-Cys80 and Cys76-Cys94 are lacking owing to the mutation of Cys to Ala, or the mutant fragment in which Trp62 is mutated to Gly, did not form the native-like species with Fragment II, because the mutant Fragment I derived from mutant lysozymes had no local conformation due to mutations. Considering our previous results where the preferential oxidation of two inside disulfide bonds, Cys64-Cys80 and Cys76-Cys94, occurred in the refolding of the fully reduced Fragment I, we suggest that the peptide region corresponding to Fragment I is an initiation site for hen lysozyme folding.  相似文献   

2.
To understand the relationship between the primary structure and function of varicella-zoster virus thymidine kinase (VZV TK; EC 2.7.1.21), we established rapid screening and phenotypic selection of mutant VZV TK genes in TK-deficient Escherichia coli C600 by using a constitutive pKK223-3 expression plasmid. In this screening system, mutant TK genes generated by random mutagenesis were identified by the sensitivity of E. coli-expressing VZV TKs to 5-bromo-2'-deoxyuridine and 1-beta-D-arabinofuranosyl-E-5-(2-bromovinyl) uracil. Twenty-four mutant clones with amino acid substitutions were isolated, and their nucleotide sequence and enzymatic activities were determined. Of the 24 clones, 20 had single amino acid substitutions, 2 clones had double amino acid substitutions, and 1 clone had triple amino acid substitutions. In 17 cases of single amino acid substitution, six mutations led to lost enzyme activity, and four of these six mutations centered in the ATP-binding site. The other 11 mutations resulted in reduction of both TK and thymidylate kinase activities or only thymidylate kinase activity and were located in scattered positions in the VZV TK gene, although 5 mutations showed a tendency to cluster in the region between positions 251 and 260.  相似文献   

3.
The material obtained from reduced hen egg white lysozyme after complete air oxidation at pH 8.0 and 37 degrees has yielded, by gel filtration on a Bio-Gel P-30 column, enzymically active species and an enzymically inactive form which eluted sooner than the active species but later than expected for a dimer of lysozyme. Reduced lysozyme also elutes at the same position as this inactive material. Examination of the fragments produced on CNBr cleavage of the inactive form indicates that at least 24% of the population contains incorrect disulfide bonds involving half-cystine residues 6, 30, 115, and 127. Tryptophan fluorescence and the intrinsic viscosity of the inactive form show an enlarged molecular domain with a disordered conformation. The yield of the inactive form increases as the oxidation of reduced lysozyme is accelerated using cupric ion. In the presence of 4 X 10(-5) M cupric ion, reduced lysozyme forms almost quantitatively the inactive form, which is almost completely converted to the native form by sulfhydryl-disulfide interchange catalyzed by thiol groups of either reduced lysozyme or beta-mercaptoethanol. The material trapped by alkylation of the free sulfhydryl groups with [1-14C]iodoacetic acid during the early stage of air oxidation of reduced lysozyme was fractionated by gel filtration to permit separation of the active species from the inactive form. Ion exchange chromatography of the active species yielded completely renatured lysozyme and three major enzymically active radioactive derivatives. Two of these derivatives contained approximately 2 mol of S-carboxymethylcysteine. Isolation and characterization of radioactive tryptic peptides from each of the three active forms, permitted the identification of Cys 6 and Cys 127, Cys 76 and 94, and Cys 80 as the sulfhydryl groups alkylated in these three incompletely oxidized, partially active forms. Thus, it appears that the interatomic interactions maintaining the compact three-dimensional structure of native lysozyme are operational even when one of these three native disulfide bonds between Cys 6 and Cys 127, Cys 76 and Cys 94, and Cys 64 and 80 is open.  相似文献   

4.
In general, alpha-helical conformations in proteins depend in large part on the amino acid residues within the helix and their proximal interactions. For example, an alanine residue has a high propensity to adopt an alpha-helical conformation, whereas that of a glycine residue is low. The sequence preferences for beta-sheet formation are less obvious. To identify the factors that influence beta-sheet conformation, a series of scanning polyalanine mutations were made within the strands and associated turns of the beta-sheet region in T4 lysozyme. For each construct the stability of the folded protein was reduced substantially, consistent with removal of native packing interactions. However, the crystal structures showed that each of the mutants retained the beta-sheet conformation. These results suggest that the structure of the beta-sheet region of T4 lysozyme is maintained to a substantial extent by tertiary interactions with the surrounding parts of the protein. Such tertiary interactions may be important in determining the structures of beta-sheets in general.  相似文献   

5.
J M Sanz  P García  J L García 《Biochemistry》1992,31(36):8495-8499
The role of carboxylic amino acids Asp-9 and Glu-36 in the activity of CPL1 lysozyme was investigated by site-directed mutagenesis. The enzymatic activity of the single mutants D9E, D9N, D9H, D9K, D9A, E36D, E36Q, E36K, and E36A and of the double mutant D9A-E36A was analyzed using a highly sensitive radioactive assay. All mutants but D6K showed detectable activities. Interestingly, the mutants E36D and E36Q retained 67% and 37% activity, respectively. Amino acid replacements at position 9 turned out to be more critical for activity than at position 36. In analogy to the mechanism described for hen egg-white lysozyme, where the proton donor play a central role, we propose that, in the CPL1 lysozyme, Asp-9 might act as the proton donor for activation of the substrate, and Glu-36 could help in the stabilization of the intermediate oxocarbocation. The residual activity of lysozyme mutants lacking one or two of the acidic amino acids may be explained by the participation of a water molecule as proton donor and/or to electrostatic contributions in the active center stabilizing the transition state of the reaction. Our results are in agreement with the hypothesis that enzymes have been optimized during evolution from an ancestral protein able to bind more tightly the transition state of the substrate than the substrate itself, by the acquisition of amino acids serving a function in catalysis.  相似文献   

6.
Regeneration of enzymic activity from reduced hen egg lysozyme peptide 1-127 was effected with a glutathione oxidation-reduction buffer. The rate of regeneration was nearly as great for peptide 1-127 as for reduced lysozyme itself, and the yields were the same (greater than 80%). The regenerated fragment 1-127 was shown to be indistinguishable from fragment 1-127 before reduction by ion exchange chromatography, amino acid analysis, polyacrylamide gel electrophoresis, and disulfide analysis. These results show that the COOH-terminal dipeptide Arg-Leu is not essential for the acquisition of the native three-dimensional structure of lysozyme.  相似文献   

7.
Phage lysozyme has catalytic activity similar to that of hen egg white lysozyme, but the amino acid sequences of the two enzymes are completely different.The binding to phage lysozyme of several saccharides including N-acetylglucosamine (GlcNAc), N-acetylmuramic acid (MurNAc) and (GlcNAc)3 have been determined crystallographically and shown to occupy the pronounced active site cleft. GlcNAc binds at a single location analogous to the C site of hen egg white lysozyme. MurNAc binds at the same site. (GlcNAc)3 clearly occupies sites B and C, but the binding in site A is ill-defined.Model building suggests that, with the enzyme in the conformation seen in the crystal structure, a saccharide in the normal chair configuration cannot be placed in site D without incurring unacceptable steric interference between sugar and protein. However, as with hen egg white lysozyme, the bad contacts can be avoided by assuming the saccharide to be in the sofa conformation. Also Asp20 in T4 lysozyme is located 3 Å from carbon C(1) of saccharide D, and is in a position to stabilize the developing positive charge on a carbonium ion intermediate. Prior genetic evidence had indicated that Asp20 is critically important for catalysis. This suggests that in phage lysozyme catalysis is promoted by a combination of steric and electronic effects, acting in concert, The enzyme shape favors the binding in site D of a saccharide with the geometry of the transition state, while Asp20 stabilizes the positive charge on the oxocarbonium ion of this intermediate. Tn phage lysozyme, the identity of the proton donor is uncertain. In contrast to hen egg white lysozyme, where Glu35 is 3 Å from the glycosidic DOE bond, and is in a non-polar environment, phage lysozyme has an ion pair, Glull … Arg145, 5 Å away from the glycosidic oxygen. Possibly Glull undergoes a conformational adjustment in the presence of bound substrate, and acts as the proton donor. Alternatively, the proton might come from a bound water molecule.  相似文献   

8.
Tryptophan at the 62nd position (Trp62) of hen egg-white lysozyme is an amino acid residue whose action is essential for its enzymatic activity. Its indole ring may possibly come into direct contact with sugar residues of the substrate, and thus contribute significantly to substrate binding. For further elucidation of its role in catalytic processes, this amino acid was converted to other aromatic residues, such as Tyr, Phe, and His, by site-directed mutagenesis. All the mutations were found to enhance the bacteriolytic activity but to decrease the hydrolytic activity toward an artificial substrate, glycol chitin. Such a change in substrate preference appears remarkable considering the smaller size of the aromatic residue on the mutant enzyme at the 62nd position.  相似文献   

9.
Twenty-five different temperature-sensitive point mutations at 20 sites in the lysozyme gene of bacteriophage T4 have been identified. All of the mutations alter amino acid side chains that have lower than average crystallographic thermal factors and reduced solvent accessibility in the folded protein. This suggests that the amino acids with well-defined conformations can form specific intramolecular interactions that make relatively large contributions to the thermal stability of the protein. Residues with high mobility or high solvent accessibility are much less susceptible to destabilizing substitutions, suggesting that, in general, such amino acids contribute less to protein stability. The pattern of the sites of ts substitutions observed in the folded conformation of T4 lysozyme suggests that severe destabilizing mutations that primarily affect the free energy of the unfolded state are rare. These results indicate that proteins can be stabilized by adding new interactions to regions that are rigid or buried in the folded conformation.  相似文献   

10.
Recombinant microbial transglutaminase (rMTG), an enzyme useful for the cross-linking or the posttranslational modification of (therapeutic) proteins, was optimized by random mutagenesis for the first time. A screening method was developed which, in addition to state-of-the-art procedures, includes a proteolytic activation step of the expressed soluble pro-enzyme. The library of 5,500 clones was screened for variants with increased thermostability and heat-sensitivity, respectively. Mutant enzymes were overproduced, isolated and characterized. After just one round of mutagenesis, nine variants with a single amino acid exchange showed a remarkably increased thermostability at 60 degrees C. The exchange of a serine residue close to the N-terminus against proline resulted in an rMTG mutant (S2P) with 270% increased half-life. Seven variants exhibited an increased heat-sensitivity at 60 degrees C of which one mutant (G25S) retained its specific activity between 10 and 40 degrees C. The mutations responsible for the increased thermostability and the heat-sensitivity were identified and assigned to the three-dimensional (3D) structure. All single point mutations related to changed thermal properties of rMTG are located in the N-terminal domain (i.e. the left side wall of the active site cleft of the front view of the MTG as defined by the literature [Kashiwagi, T., Yokoyama, K., Ishikawa, K., Ono, K., Ejima, D., Matsui, H., Suzuki, E., 2002. Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense. J. Biol. Chem. 277, 44252-44260] showing the importance of this part of the protein.  相似文献   

11.
Human lysozyme has a structure similar to that of hen lysozyme and differs in amino acid sequence by 51 out of 129 residues with one insertion at the position between 47 and 48 in hen lysozyme. The backbone dynamics of free or (NAG)3-bound human lysozyme has been determined by measurements of 15N nuclear relaxation. The relaxation data were analyzed using the Lipari-Szabo formalism and were compared with those of hen lysozyme, which was already reported (Mine S et al.. 1999, J Mol Biol 286:1547-1565). In this paper, it was found that the backbone dynamics of free human and hen lysozymes showed very similar behavior except for some residues, indicating that the difference in amino acid sequence did not affect the behavior of entire backbone dynamics, but the folded pattern was the major determinant of the internal motion of lysozymes. On the other hand, it was also found that the number of residues in (NAG)3-bound human and hen lysozymes showed an increase or decrease in the order parameters at or near active sites on the binding of (NAG)3, indicating the increase in picosecond to nanosecond. These results suggested that the immobilization of residues upon binding (NAG)3 resulted in an entropy penalty and that this penalty was compensated by mobilizing other residues. However, compared with the internal motions between both ligand-bound human and hen lysozymes, differences in dynamic behavior between them were found at substrate binding sites, reflecting a subtle difference in the substrate-binding mode or efficiency of activity between them.  相似文献   

12.
13.
Usui M  Shimizu T  Goto Y  Saito A  Kato A 《FEBS letters》2004,557(1-3):169-173
Various mutant lysozymes were constructed by genetic modification and secreted in yeast expression system to evaluate the changes in the antigenicity of hen egg lysozyme (HEL). Although Arg68, the most critical residue to antigenicity of HEL, was substituted with Gln, the binding of monoclonal antibodies (mAbs) with the mutant lysozyme did not critically reduce, remaining 60% of the binding with mAb. In contrast, glycosylated mutant lysozyme G49N whose glycine was substituted with asparagine dramatically reduced the binding with mAb. The oligomannosyl type of G49N lysozyme reduced binding with mAb to one-fifth, while the polymannosyl type of G49N lysozyme completely diminished the binding with mAb. This suggests that the site-specific glycosylation of lysozyme in the interfacial region of lysozyme-antibody complex is more effective to reduce the antigenicity than the mutation of single amino acid substitution in the interfacial region.  相似文献   

14.
Otten LG  Sio CF  Reis CR  Koch G  Cool RH  Quax WJ 《The FEBS journal》2007,274(21):5600-5610
There is strong interest in creating an enzyme that can deacylate natural cephalosporins such as cephalosporin C in order to efficiently acquire the starting compound for the industrial production of semisynthetic cephalosporin antibiotics. In this study, the active site of the glutaryl acylase from Pseudomonas SY-77 was randomized rationally. Several mutations that were found in previous studies to enhance the activity of the enzyme towards adipyl-7-aminodesacetoxycephalosporanic acid (ADCA) and cephalosporin C have now been combined, and libraries have been made in which random amino acid substitutions at these positions are joined. The mutants were expressed in a leucine-deficient Escherichia coli strain and subjected to growth selection with adipyl-leucine or amino-adipyl-leucine as sole leucine source. The mutants growing on these media were selected and purified, and their hydrolysis activities towards adipyl-7-ADCA and cephalosporin C were tested. Several mutants with highly improved activities towards the desired substrates were found in these rationally randomized libraries. The best mutant was selected from a library of totally randomized residues: 178, 266, and 375. This mutant comprises two mutations, Y178F + F375H, which synergistically improve the catalytic efficiency towards adipyl-7-ADCA 36-fold. The activity of this mutant towards adipyl-7-ADCA is 50% of the activity of the wild-type enzyme towards the preferred substrate glutaryl-7-aminocephalosporanic acid, and therefore the characteristics of this mutant approach those needed for industrial application.  相似文献   

15.
Beta-Lactamase is a bacterial protein that provides resistance against beta-lactam antibiotics. TEM-1 beta-lactamase is the most prevalent plasmid-mediated beta-lactamase in gram-negative bacteria. Normally, this enzyme has high levels of hydrolytic activity for penicillins, but mutant beta-lactamases have evolved with activity toward a variety of beta-lactam antibiotics. It has been shown that active site substitutions are responsible for changes in the substrate specificity. Since mutant beta-lactamases pose a serious threat to antimicrobial therapy, the mechanisms by which mutations can alter the substrate specificity of TEM-1 beta-lactamase are of interest. Previously, screens of random libraries encompassing 31 of 55 active site amino acid positions enabled the identification of the residues responsible for maintaining the substrate specificity of TEM-1 beta-lactamase. In addition to substitutions found in clinical isolates, many other specificity-altering mutations were also identified. Interestingly, many nonspecific substitutions in the N-terminal half of the active site omega loop were found to increase ceftazidime hydrolytic activity and decrease ampicillin hydrolytic activity. To complete the active sight study, eight additional random libraries were constructed and screened for specificity-altering mutations. All additional substitutions found to alter the substrate specificity were located in the C-terminal half of the active site loop. These mutants, much like the N-terminal omega loop mutants, appear to be less stable than the wild-type enzyme. Further analysis of a 165-YYG-167 triple mutant, selected for high levels of ceftazidime hydrolytic activity, provides an example of the correlation which exists between enzyme instability and increased ceftazidime hydrolytic activity in the ceftazidime-selected omega loop mutants.  相似文献   

16.
Model-free approaches (error-prone PCR to introduce random mutations, DNA shuffling to combine positive mutations, and screening of the resultant mutant libraries) have been used to enhance the catalytic activity and thermostability of alpha-aspartyl dipeptidase from Salmonella typhimurium, which is uniquely able to hydrolyze Asp-X dipeptides (where X is any amino acid) and one tripeptide (Asp-Gly-Gly). Under double selective pressures of activity and thermostability, through two rounds of error-prone PCR and three sequential generations of DNA shuffling, coupled with screening, a mutant pepEM3074 with approximately 47-fold increased enzyme activity compared with its wild-type parent was obtained. Moreover, the stability of pepEM3074 is increased significantly. Three amino acid substitutions (Asn89His, Gln153Glu, and Leu205Arg), two of them are near the active site and substrate binding pocket, were identified by sequencing the genes encoding this evolved enzyme. The mechanism of the enhancement of activity and stability was analyzed in this paper.  相似文献   

17.
Crystal structures of pheasant and guinea fowl egg-white lysozymes.   总被引:2,自引:2,他引:0       下载免费PDF全文
The crystal structures of pheasant and guinea fowl lysozymes have been determined by X-ray diffraction methods. Guinea fowl lysozyme crystallizes in space group P6(1)22 with cell dimensions a = 89.2 A and c = 61.7 A. The structure was refined to a final crystallographic R-factor of 17.0% for 8,854 observed reflections in the resolution range 6-1.9 A. Crystals of pheasant lysozyme are tetragonal, space group P4(3)2(1)2, with a = 98.9 A, c = 69.3 A and 2 molecules in the asymmetric unit. The final R-factor is 17.8% to 2.1 A resolution. The RMS deviation from ideality is 0.010 A for bond lengths and 2.5 degrees for bond angles in both models. Three amino acid positions beneath the active site are occupied by Thr 40, Ile 55, and Ser 91 in hen, pheasant, and other avian lysozymes, and by Ser 40, Val 55, and Thr 91 in guinea fowl and American quail lysozymes. In spite of their internal location, the structural changes associated with these substitutions are small. The pheasant enzyme has an additional N-terminal glycine residue, probably resulting from an evolutionary shift in the site of cleavage of prelysozyme. In the 3-dimensional structure, this amino acid partially fills a cleft on the surface of the molecule, close to the C alpha atom of Gly 41 and absent in lysozymes from other species (which have a large side-chain residue at position 41: Gln, His, Arg, or Lys). The overall structures are similar to those of other c-type lysozymes, with the largest deviations occurring in surface loops. Comparison of the unliganded and antibody-bound models of pheasant lysozyme suggests that surface complementarity of contacting surfaces in the antigen-antibody complex is the result of local, small rearrangements in the epitope. Structural evidence based upon this and other complexes supports the notion that antigenic variation in c-type lysozymes is primarily the result of amino acid substitutions, not of gross structural changes.  相似文献   

18.
目的 构建产天然防腐剂苯乳酸的工程菌。方法 分析超耐热菌(Aquifex aeolicus,A.aeolicus )D-乳酸脱氢酶(D-LDH)的三维构象,并与构建的可视化突变体三维模型进行对比,通过比较酶活性中心氨基酸残基与底物的空间构象,优选最佳模型进行定点突变,克隆、表达和苯乳酸发酵实验。结果 优选到F49A和Y297S两个单突变模型和一个F49A/Y297S双突变模型;分别进行定点突变和工程菌构建,三个突变工程菌,均能发酵产生苯乳酸。结论 可视化定点突变乳酸脱氢酶可作为构建高产苯乳酸工程菌的有效方法。  相似文献   

19.
Human airway lysozyme, purified from pathological bronchial secretions, is characterized by a specific activity 3-fold higher than that of hen egg-white lysozyme. The amino acid composition of human airway lysozyme is identical to that of other human lysozymes. The laser Raman spectra of human airway lysozyme and hen egg-white lysozyme in phosphate buffer solution (pH 7.2) are recorded in the range 300-1900 cm-1 at 488 nm. Drastic intensity differences are observed between the spectra analyzed in the ranges characteristic of the peptide backbone (e.g., beta-sheet; C alpha-C, C alpha-N), and of the aromatic side-chain vibrations (tyrosine, tryptophan). The deconvolution of the Raman amide I band gives secondary structures of 38% and 39% alpha-helix, 25% and 20% beta-sheet, and 37% and 41% undefined structure for the human and hen lysozymes, respectively.  相似文献   

20.
To investigate the ability of a protein to accommodate potentially destabilizing amino acid substitutions, and also to investigate the steric requirements for catalysis, proline was substituted at different sites within the long alpha-helix that connects the amino-terminal and carboxyl-terminal domains of T4 lysozyme. Of the four substitutions attempted, three yielded folded, functional proteins. The catalytic activities of these three mutant proteins (Q69P, D72P, and A74P) were 60-90% that of wild-type. Their melting temperatures were 7-12 degrees C less than that of wild-type at pH 6.5. Mutant D72P formed crystals isomorphous with wild-type allowing the structure to be determined at high resolution. In the crystal structure of wild-type lysozyme the interdomain alpha-helix has an overall bend angle of 8.5 degrees. In the mutant structure the introduction of the proline causes this bend angle to increase to 14 degrees and also causes a corresponding rotation of 5.5 degrees of carboxyl-terminal domain relative to the amino-terminal one. Except for the immediate location of the proline substitution there is very little change in the geometry of the interdomain alpha-helix. The results support the view that protein structures are adaptable and can compensate for potentially destabilizing amino acid substitutions. The results also suggest that the precise shape of the active site cleft of T4 lysozyme is not critical for catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号