首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tang XC  Nail SL  Pikal MJ 《AAPS PharmSciTech》2006,7(4):E105-E111
This article evaluates the procedures for determining the vial heat transfer coefficient and the extent of primary drying through manometric temperature measurement (MTM). The vial heat transfer coefficients (Kv) were calculated from the MTM-determined temperature and resistance and compared with Kv values determined by a gravimetric method. The differences between the MTM vial heat transfer coefficients and the gravimetric values are large at low shelf temperature but smaller when higher shelf temperatures were used. The differences also became smaller at higher chamber pressure and smaller when higher resistance materials were being freeze-dried. In all cases, using thermal shields greatly improved the accuracy of the MTM Kv measurement. With use of thermal shields, the thickness of the frozen layer calculated from MTM is in good agreement with values obtained gravimetrically. The heat transfer coefficient “error” is largely a direct result of the error in the dry layer resistance (ie, MTM-determined resistance is too low). This problem can be minimized if thermal shields are used for freeze-drying. With suitable use of thermal shields, accurate Kv values are obtained by MTM; thus allowing accurate calculations of heat and mass flow rates. The extent of primary drying can be monitored by real-time calculation of the amount of remaining ice using MTM data, thus providing a process analytical tool that greatly improves the freeze-drying process design and control.  相似文献   

2.
This study examines the factors that may cause systematic errors in the manometric temperature measurement (MTM) procedure used to evaluate product temperature during primary drying. MTM was conducted during primary drying using different vial loads, and the MTM product temperatures were compared with temperatures directly measured by thermocouples. To clarify the impact of freeze-drying load on MTM product temperatures, simulation of the MTM vapor pressure rise was performed, and the results were compared with the experimental results. The effect of product temperature heterogeneity in MTM product temperature determination was investigated by comparing the MTM product temperatures with directly measured thermocouple product temperatures in systems differing in temperature heterogeneity. Both the simulated and experimental results showed that at least 50 vials (5 mL) were needed to give sufficiently rapid pressure rise during the MTM data collection period (25 seconds) in the freeze dryer, to allow accurate determination of the product temperature. The product temperature is location dependent, with higher temperature for vials on the edge of the array and lower temperature for the vials in the center of the array. The product temperature heterogeneity is also dependent upon the freeze-drying conditions. In product temperature heterogeneous systems, MTM measures a temperature close to the coldest product temperature, even, if only a small fraction of the samples have the coldest product temperature. The MTM method is valid even at very low product temperature (−45°C). Published: February 10, 2006  相似文献   

3.
The objective of this research was to estimate differences in heat and mass transfer between freeze dryers due to inherent design characteristics using data obtained from sublimation tests. This study also aimed to provide guidelines for convenient scale-up of the freeze-drying process. Data obtained from sublimation tests performed on laboratory-scale, pilot, and production freeze dryers were used to evaluate various heat and mass transfer parameters: nonuniformity in shelf surface temperatures, resistance of pipe, refrigeration system, and condenser. Emissivity measurements of relevant surfaces such as the chamber wall and the freeze dryer door were taken to evaluate the impact of atypical radiation heat transfer during scale-up. “Hot” and “cold” spots were identified on the shelf surface of different freeze dryers, and the impact of variation in shelf surface temperatures on the primary drying time and the product temperature during primary drying was studied. Calculations performed using emissivity measurements on different freeze dryers suggest that a front vial in the laboratory lyophilizer received 1.8 times more heat than a front vial in a manufacturing freeze dryer operating at a shelf temperature of −25°C and a chamber pressure of 150 mTorr during primary drying. Therefore, front vials in the laboratory are much more atypical than front vials in manufacturing. Steady-state heat and mass transfer equations were used to study a combination of different scaleup issues pertinent during lyophilization cycles commonly used for the freeze-drying of pharmaceuticals.  相似文献   

4.
This study aims to investigate the effect of the ice nucleation temperature on the primary drying process using an ice fog technique for temperature-controlled nucleation. In order to facilitate scale up of the freeze-drying process, this research seeks to find a correlation of the product resistance and the degree of supercooling with the specific surface area of the product. Freeze-drying experiments were performed using 5% wt/vol solutions of sucrose, dextran, hydroxyethyl starch (HES), and mannitol. Temperature-controlled nucleation was achieved using the ice fog technique where cold nitrogen gas was introduced into the chamber to form an “ice fog”, there-by facilitating nucleation of samples at the temperature of interest. Manometric temperature measurement (MTM) was used during primary drying to evaluate the product resistance as a function of cake thickness. Specific surface areas (SSA) of the freeze-dried cakes were determined. The ice fog technique was refined to successfully control the ice nucleation temperature of solutions within 1°C. A significant increase in product resistance was produced by a decrease in nucleation temperature. The SSA was found to increase with decreasing nucleation temperature, and the product resistance increased with increasing SSA. The ice fog technique can be refined into a viable method for nucleation temperature control. The SSA of the product correlates well with the degree of supercooling and with the resistance of the product to mass transfer (ie, flow of water vapor through the dry layer). Using this correlation and SSA measurements, one could predict scaleup drying differences and accordingly alter the freeze-drying process so as to bring about equivalence of product temperature history during lyophilization.  相似文献   

5.
A method to achieve controlled ice nucleation during the freeze-drying process using an ice fog technique was demonstrated in an earlier report. However, the time required for nucleation was about 5 min, even though only one shelf was used, which resulted in Ostwald ripening (annealing) in some of the vials that nucleated earlier than the others. As a result, the ice structure was not optimally uniform in all the vials. The objective of the present study is to introduce a simple variation of the ice fog method whereby a reduced pressure in the chamber is utilized to allow more rapid and uniform freezing which is also potentially easier to scale up. Experiments were conducted on a lab scale freeze dryer with sucrose as model compound at different concentration, product load, and fill volume. Product resistance during primary drying was measured using manometric temperature measurement. Specific surface area of the freeze-dried cake was also determined. No difference was observed either in average product resistance or specific surface area for the different experimental conditions studied, indicating that with use of the reduced pressure ice fog technique, the solutions nucleated at very nearly the same temperature (−10°C). The striking feature of the “Reduced Pressure Ice Fog Technique” is the rapid ice nucleation (less than a minute) under conditions where the earlier procedure required about 5 min; hence, effects of variable Ostwald ripening were not an issue.  相似文献   

6.
The purpose of this research was to evaluate a new wireless and battery-free sensor technology for invasive product temperature measurement during freeze-drying. Product temperature is the most critical process parameter in a freeze-drying process, in particular during primary drying. The product temperature over time profile and a precise detection of the endpoint of ice sublimation is crucial for comparison of freeze-drying cycles. Traditionally, thermocouples are used in laboratory scale units whereas resistance thermal detectors are applied in production scale freeze-dryers to evaluate temperature profiles. However, both techniques show demerits with regard to temperature comparability and biased measurements relative to vials without sensors. A new generation of wireless temperature sensors (Temperature Remote Interrogation System, TEMPRIS) were used in this study to investigate for the first time their value when applied to freeze-drying processes. Measurement accuracy, capability of accurate endpoint detection and effect of positioning were delineated by using product runs with sucrose, mannitol and trehalose. Data were compared to measurements with 36-gauge thermocouples as well as to non-invasive temperature measurement from Manometric Temperature Measurements. The results show that the TEMPRIS temperature profiles were in excellent agreement to thermocouple data when sensors were placed center bottom in a vial. In addition, TEMPRIS sensors revealed more reliable temperature profiles and endpoint indications relative to thermocouple data when vials in edge position were monitored. The results of this study suggest that TEMPRIS may become a valuable tool for cycle development, scale-up and routine manufacturing in the future.  相似文献   

7.
The aim of this study is to determine whether radiation heat transfer is responsible for the position dependence of heat transfer known as the edge vial effect. Freeze drying was performed on a laboratory-scale freeze dryer using pure water with vials that were fully stoppered but had precision cut metal tubes inserted in them to ensure uniformity in resistance to vapor flow. Sublimation rates were determined gravimetrically. Vials were sputter-coated with gold and placed at selected positions on the shelf. Average sublimation rates were determined for vials located at the front, side, and center of an array of vials. Sublimation rates were also determined with and without the use of aluminum foil as a radiation shield. The effect of the guardrail material and its contribution to the edge vial effect by conduction heat transfer was studied by replacing the stainless steel band with a low-thermal conductivity material (styrofoam). The emissivities (ε) of relevant surfaces were measured using an infrared thermometer. Sublimation rate experiments were also conducted with vials suspended off the shelf to study the role of convection heat transfer. It was found that sublimation rates were significantly higher for vials located in the front compared to vials in the center. Additional radiation shields in the form of aluminum foil on the inside door resulted in a decrease in sublimation rates for the front vials and to a lesser extent, the center vials. There was a significant decrease in sublimation rate for goldcoated vials (ε≈0.4) placed at the front of an array when compared to that of clear vials (ε≈0.9). In the case of experiments with vials suspended off the shelf, the heat transfer coefficient was found to be independent of chamber pressure, indicating that pure convection plays no significant role in heat transfer. Higher sublimation rates were observed when the steel band was used instead of Styrofoam while the highest sublimation rates were obtained in the absence of the guardrail, indicating that the metal band can act as a thermal shield but also transmits some heat from the shelf via conduction and radiation. Atypical radiation heat transfer is responsible for higher sublimation rates for vials located at the front and side of an array. However, the guardrail contributes a little to heat transfer by conduction.  相似文献   

8.
Product temperature during the primary drying step of freeze-drying is controlled by a set point chamber pressure and shelf temperature. However, recent computational modeling suggests a possible variation in local chamber pressure. The current work presents an experimental verification of the local chamber pressure gradients in a lab-scale freeze-dryer. Pressure differences between the center and the edges of a lab-scale freeze-dryer shelf were measured as a function of sublimation flux and clearance between the sublimation front and the shelf above. A modest 3-mTorr difference in pressure was observed as the sublimation flux was doubled from 0.5 to 1.0 kg·h?1·m?2 at a clearance of 2.6 cm. Further, at a constant sublimation flux of 1.0 kg·h?1·m?2, an 8-fold increase in the pressure drop was observed across the shelf as the clearance was decreased from 4 to 1.6 cm. Scale-up of the pressure variation from lab- to a manufacturing-scale freeze-dryer predicted an increased uniformity in drying rates across the batch for two frequently used pharmaceutical excipients (mannitol and sucrose at 5% w/w). However, at an atypical condition of shelf temperature of +10°C and chamber pressure of 50 mTorr, the product temperature in the center vials was calculated to be a degree higher than the edge vial for a low resistance product, thus reversing the typical edge and center vial behavior. Thus, the effect of local pressure variation is more significant at the manufacturing-scale than at a lab-scale and accounting for the contribution of variations in the local chamber pressures can improve success in scale-up.  相似文献   

9.
This paper describes the amylolytic action pattern of Thermococcus hydrothermalis recombinant amylopullulanase (Th-ApuΔ2) [E.C 3.2.1.41]. A comparison was made between amylose hydrolysis catalyzed by this enzyme and by two other amylolytic enzymes: α-amylase [E.C 3.2.1.1] (from Aspergillus oryzae) and glucoamylase [E.C. 3.2.1.3] (from Aspergillus niger), respectively taken as models for “endo” and “exo” catalytic patterns. Different independent physico-chemical methods were used to characterize the hydrolysis products obtained with the studied enzymes. Viscosity results were correlated to reducing sugars analysis to show a similarity between glucoamylase [E.C. 3.2.1.3] and Th-ApuΔ2 [E.C 3.2.1.41] behavior. On the other hand, whereas α-amylase [E.C 3.2.1.1] action rapidly decreased the viscosity of medium, glucoamylase and Th-ApuΔ2 hydrolysates have only shown a negligible reduction in viscosity. Glass transition temperatures of glucoamylase and Th-ApuΔ2 hydrolysates were found comparable (225–226°C) and significantly different from that of α-amylase (197°C). Thin-layer chromatographic analysis of hydrolysates mainly revealed the presence of glucose in the case of glucoamylase and Th-ApuΔ2 activities and in addition to glucose the Th-ApuΔ2 chromatograms have shown oligosaccharides with polymerization degree ranging from 2 to 7. These results incite us to conclude that Th-ApuΔ2 has a dual “endo” and “exo” catalytic action pattern. Analysis of the Fourier transform infrared (FTIR) results shows a comparable general aspect for all spectra. The presence of more numerous differentiated and intense peaks in the spectrum of Th-ApuΔ2 hydrolysate reveals the presence of short-chain oligosaccharides. These results confirm thin-layer chromatography results and support a dual action pattern.  相似文献   

10.
Okayasu T  Sorimachi K 《Amino acids》2009,36(2):261-271
We recently classified 23 bacteria into two types based on their complete genomes; “S-type” as represented by Staphylococcus aureus and “E-type” as represented by Escherichia coli. Classification was characterized by concentrations of Arg, Ala or Lys in the amino acid composition calculated from the complete genome. Based on these previous classifications, not only prokaryotic but also eukaryotic genome structures were investigated by amino acid compositions and nucleotide contents. Organisms consisting of 112 bacteria, 15 archaea and 18 eukaryotes were classified into two major groups by cluster analysis using GC contents at the three codon positions calculated from complete genomes. The 145 organisms were classified into “AT-type” and “GC-type” represented by high A or T (low G or C) and high G or C (low A or T) contents, respectively, at every third codon position. Reciprocal changes between G or C and A or T contents at the third codon position occurred almost synchronously in every codon among the organisms. Correlations between amino acid concentrations (Ala, Ile and Lys) and the nucleotide contents at the codon position were obtained in both “AT-type” and “GC-type” organisms, but with different regression coefficients. In certain correlations of amino acid concentrations with GC contents, eukaryotes, archaea and bacteria showed different behaviors; thus these kingdoms evolved differently. All organisms are basically classifiable into two groups having characteristic codon patterns; organisms with low GC and high AT contents at the third codon position and their derivatives, and organisms with an inverse relationship.  相似文献   

11.
Female gray short-tailed opossums (Monodelphis domestica) lack an estrous cycle and are induced into estrus by exposure to a pheromone in male scent marks. Behavioral and physiological responses of females to the volatile and nonvolatile components of scent marks were examined in two experiments. Young females (n = 9) were tested prior to and during their first estrus for behavioral responses to scent marks, collected on a 7-ml glass vial rubbed over the suprasternal gland of a mature male. The response to volatile components of the scent mark, recorded when marked and unmarked vials were covered with a perforated shield, was compared to the response to these vials when unshielded. Estrous females nuzzled the shields over marked vials (55.8 ± 8.5 nuzzles/10 min) more than the shielded clean vial (10.9 ± 2.4) (P < 0.05); a similar response was observed in anestrous females. Nuzzling of unshielded, scent-marked vials was higher (P < 0.05) during anestrus than in the same females when in estrus. The role of nonvolatile pheromones in reproductive activation was tested in adult females (n = 11) exposed for up to 14 days to a shielded, marked vial or to an unshielded, marked vial in a crossover design. All females exposed to unshielded vials expressed estrus, and 10 copulated. Only 2 females expressed estrus (significantly fewer, P < 0.05), when exposed to shielded marked vials, and neither copulated. These results demonstrate that females detect and respond behaviorally to both volatile and nonvolatile components of male suprasternal gland secretion, but the estrus-inducing pheromone in these secretions is nonvolatile.  相似文献   

12.
Water represents the major component of most food systems. During thermal or high-pressure processing, physical and chemical properties of water are changed. The p–T diagram represents an obvious presentation of isoproperty lines and their pressure and temperature dependencies. In this work, 15 different properties of pure water are shown as isoproperty lines in the pressure–temperature landscape. By using functional relationships from the “International Association for the Properties of Water and Steam” and databases from the “National Institute of Standards and Technology,” highest accuracy is guaranteed. Applying the generated graphs, a compact overview is given and a wide range of thermal and high-pressure processes can easily be compared. The different pressure and temperature dependencies of all properties showed the complexity of medium conditions during thermal and high-pressure processing. An extended understanding of pressure–temperature dependencies will improve process concepts as well as industrial applications at high temperature and high isostatic pressure.  相似文献   

13.
The inheritance of resistance to Plum pox virus (PPV) has been studied in 1,178 apricot hybrids. Seven hundred and eighteen F1 hybrids, obtained from controlled crosses between the susceptible Greek cultivar “Bebecou” and the resistant PPV cultivars of American origin (“Stark Early Orange,” ‘NJA2,” ‘Veecot,” “Sunglo,” “Harlayne,” and “Orangered”) were evaluated for resistance to the PPV-M (Marcus) strain, 8 years after artificial inoculation. The inheritance of resistance to PPV has been additionally studied for the first time in a BC1 population of 95 apricot hybrids for four vegetative periods. Reaction of each hybrid to PPV-M was scored through visual symptoms, indexing onto GF-305 and double-antibody sandwich enzyme-linked immunosorbent assay tests. Segregation within the hybrids, determined by Chi-squared analysis, fits a 1:1 ratio (P ≤ 0.05) of the resistant vs susceptible, indicating that resistance to PPV is controlled by a single dominant gene locus and that the above six resistant cultivars are heterozygous for the trait. Plants carrying this gene may initially develop disease symptoms on leaves but eventually recover and no virus can be detected in leaves. Susceptible plants show similar symptoms initially but remain symptomatic. Inheritance of resistance to PPV also has been studied in 365 F1 hybrids by crossing the resistant cultivar “Stella” with the susceptible “Bebecou” and the resistant cultivars “Sunglo” and “NJA2,” for 8 years after inoculation. The segregation ratio was 1:0 (resistant/susceptible) suggesting that “Stella” is homozygous for the resistance trait. The purpose of this work was the enhancement of the knowledge of inheritance of resistance to PPV for the selection of new cultivars.  相似文献   

14.
15.
In the late 1960s, I identified an aspect of the kinetics of chlorophyll fluorescence in algal cells that I was unable to explain in terms of photochemical quenching. I proposed a novel regulatory mechanism for the distribution of light energy to photosystems I and II, which is now known by the term of “state transitions.” I also examined the “cation-dependent redistribution of light energy” to photosystems I and II and the “energy-dependent quenching” of chlorophyll fluorescence. At that time, financial constraints prevented me from measuring the emission and action spectra of chlorophyll fluorescence at liquid-nitrogen temperature and the light quality-dependent changes in the yield of chlorophyll fluorescence at room temperature. The financial problems were solved by constructing several pieces of electronic equipment using skills obtained by repairing radios when I was a high-school and college student.  相似文献   

16.
The goal of the work described in this publication was to evaluate a new, small, material-sparing freeze dryer, denoted as the “mini-freeze dryer or mini-FD”, capable of reproducing the product temperature history of larger freeze dryers, thereby facilitating scale-up. The mini-FD wall temperatures can be controlled to mimic loading procedures and dryer process characteristics of larger dryers. The mini-FD is equipped with a tunable diode laser absorption spectroscopy (TDLAS) water vapor mass flow monitor and with other advanced process analytical technology (PAT) sensors. Drying experiments were performed to demonstrate scalability to larger freeze dryers, including the determination of vial heat transfer coefficients, K v . Product temperature histories during K v runs were evaluated and compared with those obtained with a commercial laboratory-scale freeze dryer (LyoStar II) for sucrose and mannitol product formulations. When the mini-FD wall temperature was set at the LyoStar II band temperature (? 20°C) to mimic lab dryer edge vials, edge vial drying in the mini-FD possessed an average K v within 5% of those obtained during drying in the LyoStar II. When the wall temperature of the mini-FD was set equal to the central vial product temperature, edge vials behaved as center vials, possessing a K v value within 5% of those measured in the LyoStar II. During both K v runs and complete product freeze drying runs, the temperature-time profiles for the average edge vials and central vial in the mini-FD agreed well with the average edge and average central vials of the LyoStar II.  相似文献   

17.
Optimization of the freeze-drying process needs to characterize the physical state of frozen and dried products. A protocol to measure the collapse temperature of complex biological media such as concentrated lactic acid bacteria using freeze-drying microscopy was first elaborated. Afterward, aqueous solutions of one or several components as well as concentrated lactic acid bacterial suspensions were analyzed in order to study how the structure of these materials is degraded during freeze-drying. A similar behavior toward collapse was observed for all aqueous solutions, which was characterized by two temperatures: the "microcollapse" temperature (T(microc), beginning of a local loss of structure) and the "collapse" temperature (T(c), beginning of an overall loss of structure). For aqueous solutions, these two temperatures were close, differing by less than 3 degrees C. Nevertheless, when lactic acid bacteria were added to aqueous solutions, the collapse temperatures increased. Moreover, the interval between microcollapse and collapse temperatures became larger. Lactic acid bacterial cells gave a kind of "robustness" to the freeze-dried product. Finally, comparing glass transition, measured by differential scanning calorimetry (DSC) and collapse temperature for aqueous solutions with noncrystallizable solutes, showed that these values belonged to the same temperature range (differing by less than 5 degrees C). As suggested in the literature, the glass transition temperature can thus be used as a first approximation of the collapse temperature of these media. However, for lactic acid bacterial suspensions, because the difference between collapse and glass transition temperatures was about 10 degrees C, this approximation was not justified. An elegant physical appearance of the dried cakes and an acceptable acidification activity recovery were obtained, when applying operating conditions during freeze-drying in vials that allowed the product temperature to be maintained during primary drying at a level lower than the collapse temperature of lactic acid bacterial suspensions. Consequently, the collapse temperature T(c) was proposed as the maximal product temperature preserving the structure from macroscopic collapse and an acceptable biological activity of cells.  相似文献   

18.
Hybridization of gametophytes, continuous self-crossing and targeted selection were utilized to breed a new Laminaria variety. After five-generation selection breeding, the new variety “Rongfu” was obtained. Its male parent “Yuanza No.10” was the high-yield cultivation variety, and its female parent was variety “Fujian” which could tolerate relatively high seawater temperature. “Yuanza No.10” and “Fujian” were different but complement in their morphological characteristics and biological habits. Variety “Rongfu” was bred through their hybridization which exhibited high-yield potential and high seawater temperature tolerance. The results of traits evaluation in consecutive years showed that “Rongfu” attained higher yields by 24–27% compared to the control (widely used commercial variety) and also contained considerable amounts of iodine, mannitol, and algin. When seawater temperature was 18–21°C, the blade growth of “Rongfu” was maintained and tissue loss by abrasion was significantly lower than the control. Since the adoption of variety “Rongfu” in 2001, its cultivation areas have been extended to Shandong, Fujian and Guangdong province and have reached 14,133 ha currently, i.e., almost one-tenth of the total cultivation areas of Laminaria in China. The results of Random Amplified Polymorphic DNA analysis showed that the relationship between “Rongfu” and other cultivation varieties in China was very close.  相似文献   

19.
Turbidimetric method with spectrophotometric detection of changes in density of test bacteriaS. aureus strain SA 812 for determination of bacteriolytic activity of lysostaphin was employed. Results of two evaluations are compared: (1) calculation of the relative value of turbidity decrease on the basis of the difference of absolute values ofA 540 at the beginning of reaction and after the incubation period, (2) following of time changes inA 540 by monitoring the course of reaction directly in the constant-temperature cuvette of the spectrophotometer at 37°C. Both arrangements yielded identical results, within the significance level of 0.05. With concentrated samples both methods yield reliable results; with diluted samples the accuracy of the “absolute” method decreases together with decreasing lysostaphin concentration much faster than with the “registration” method. The registration method makes it possible to detect even minute amounts of the lytic enzyme and thus to distinguish the values of activity in dilute samples even when data obtained by means of the “absolute” method cannot be considered as reliable. A unit of bacteriolytic activity can be expressed from the kinetic curve as an amount of enzyme preparation causing ΔA 540/min=0.01.  相似文献   

20.
1,3-Propanediol (1,3-PD) is a bivalent alcohol, used in a number of chemical syntheses. It could be produced from glycerol in course of microbial fermentation by Klebsiella pneumoniae along with more than five minor liquid products. With the purpose to enhance 1,3-PD production and to eliminate by-products formation, principally new pH control on the process was applied. The method, named “forced pH fluctuations” was realized by consecutive raisings of pH with definite ΔpH amplitude (ranging from 1.0 to 2.0) at time intervals between 2 and 4 h, during a series of fed batch processes. The fermentation performed by forced pH fluctuations with ΔpH = 1.0, risen at every 3 h was evaluated as the most successful. Increase by 10% of the maximal amount of 1,3-PD (g/l), 22% higher productivity [g/(l h)], and 29% increase in 1,3-PD molar yield were achieved, compared to the referent fed batch (with constant pH = 7.0). In addition, significant decrease in by-products formation was obtained. The most important reduction was observed in the lactic and acetic acids yields, where 50 and 70% decrease were reached. The results suggested the potential of pH to manage the share and quantity of product spectrum in mixed diols–acids fermentations. The application of “forced pH fluctuations method” achieves the desirable increase in 1,3-PD formation and decrease in by-products accumulation at the same time by a comparatively simple approach by adjustment of one bioprocess parameter only.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号