首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by the selective death of motor neurons. Mutations in the SOD1 gene are responsible for a familial form of ALS (FALS). Although many studies suggest that mutant SOD1 proteins are cytotoxic, the mechanism is not fully understood. To investigate the role of mutant SOD1 in FALS, human SOD1 genes were fused with a PEP-1 peptide in a bacterial expression vector to produce in-frame PEP-1-SOD fusion proteins (wild type and mutants). The expressed and purified PEP-1-SOD fusion proteins were efficiently transduced into neuronal cells. Neurones harboring the A4V, G93A, G85R, and D90A mutants of PEP-1-SOD were more vulnerable to oxidative stress induced by paraquat than those harboring wild-type proteins. Moreover, neurones harboring the mutant SOD proteins had lower heat shock protein (Hsp) expression levels than those harboring wild-type SOD. The effects of the transduced SOD1 fusion proteins may provide an explanation for the association of SOD1 with FALS, and Hsps could be candidate agents for the treatment of ALS.  相似文献   

3.
Macroautophagy/autophagy is the main intracellular catabolic pathway in neurons that eliminates misfolded proteins, aggregates and damaged organelles associated with ageing and neurodegeneration. Autophagy is regulated by both MTOR-dependent and -independent pathways. There is increasing evidence that autophagy is compromised in neurodegenerative disorders, which may contribute to cytoplasmic sequestration of aggregation-prone and toxic proteins in neurons. Genetic or pharmacological modulation of autophagy to promote clearance of misfolded proteins may be a promising therapeutic avenue for these disorders. Here, we demonstrate robust autophagy induction in motor neuronal cells expressing SOD1 or TARDBP/TDP-43 mutants linked to amyotrophic lateral sclerosis (ALS). Treatment of these cells with rilmenidine, an anti-hypertensive agent and imidazoline-1 receptor agonist that induces autophagy, promoted autophagic clearance of mutant SOD1 and efficient mitophagy. Rilmenidine administration to mutant SOD1G93A mice upregulated autophagy and mitophagy in spinal cord, leading to reduced soluble mutant SOD1 levels. Importantly, rilmenidine increased autophagosome abundance in motor neurons of SOD1G93A mice, suggesting a direct action on target cells. Despite robust induction of autophagy in vivo, rilmenidine worsened motor neuron degeneration and symptom progression in SOD1G93A mice. These effects were associated with increased accumulation and aggregation of insoluble and misfolded SOD1 species outside the autophagy pathway, and severe mitochondrial depletion in motor neurons of rilmenidine-treated mice. These findings suggest that rilmenidine treatment may drive disease progression and neurodegeneration in this mouse model due to excessive mitophagy, implying that alternative strategies to beneficially stimulate autophagy are warranted in ALS.  相似文献   

4.

Background

By mechanisms yet to be discerned, the co-expression of high levels of wild-type human superoxide dismutase 1 (hSOD1) with variants of hSOD1 encoding mutations linked familial amyotrophic lateral sclerosis (fALS) hastens the onset of motor neuron degeneration in transgenic mice. Although it is known that spinal cords of paralyzed mice accumulate detergent insoluble forms of WT hSOD1 along with mutant hSOD1, it has been difficult to determine whether there is co-deposition of the proteins in inclusion structures.

Methodology/Principal Findings

In the present study, we use cell culture models of mutant SOD1 aggregation, focusing on the A4V, G37R, and G85R variants, to examine interactions between WT-hSOD1 and misfolded mutant SOD1. In these studies, we fuse WT and mutant proteins to either yellow or red fluorescent protein so that the two proteins can be distinguished within inclusions structures.

Conclusions/Significance

Although the interpretation of the data is not entirely straightforward because we have strong evidence that the nature of the fused fluorophores affects the organization of the inclusions that form, our data are most consistent with the idea that normal dimeric WT-hSOD1 does not readily interact with misfolded forms of mutant hSOD1. We also demonstrate the monomerization of WT-hSOD1 by experimental mutation does induce the protein to aggregate, although such monomerization may enable interactions with misfolded mutant SOD1. Our data suggest that WT-hSOD1 is not prone to become intimately associated with misfolded mutant hSOD1 within intracellular inclusions that can be generated in cultured cells.  相似文献   

5.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive motor neuron death. More than 90 mutations in the copper-zinc superoxide dismutase (SOD1) gene cause a subset of familial ALS. Toxic properties have been proposed for the ALS-linked SOD1 mutants, but the nature of the toxicity has not been clearly specified. Cytoplasmic inclusion bodies containing mutant SOD1 and a number of other proteins are a pathological hallmark of mutant SOD1-mediated familial ALS, but whether such aggregates are toxic to motor neurons remains unclear. In this study, we identified a dynein subunit as a component of the mutant SOD1-containing high molecular weight complexes using proteomic techniques. We further demonstrated interaction and colocalization between dynein and mutant SOD1, but not normal SOD1, in cultured cells and also in G93A and G85R transgenic rodent tissues. Moreover, the interaction occurred early, prior to the onset of symptoms in the ALS animal models and increased over the disease progression. Motor neurons with long axons are particularly susceptible to defects in axonal transport. Our results demonstrate a direct "gain-of-interaction" between mutant SOD1 and dynein, which may provide insights into the mechanism by which mutant SOD1 could contribute to a defect in retrograde axonal transport or other dynein functions. The aberrant interaction is potentially critical to the formation of mutant SOD1 aggregates as well as the toxic cascades leading to motor neuron degeneration in ALS.  相似文献   

6.
Misfolding of Cu/Zn-superoxide dismutase (SOD1) is emerging as a mechanism underlying motor neuron degeneration in individuals with amyotrophic lateral sclerosis (ALS) who carry a mutant SOD1 gene (SOD1 ALS). Here we describe a structure-guided approach to developing an antibody that specifically recognizes monomer-misfolded forms of SOD1. We raised this antibody to an epitope that is normally buried in the SOD1 native homodimer interface. The SOD1 exposed dimer interface (SEDI) antibody recognizes only those SOD1 conformations in which the native dimer is disrupted or misfolded and thereby exposes the hydrophobic dimer interface. Using the SEDI antibody, we established the presence of monomer-misfolded SOD1 in three ALS mouse models, with G37R, G85R and G93A SOD1 mutations, and in a human individual with an A4V SOD1 mutation. Despite ubiquitous expression, misfolded SOD1 was found primarily within degenerating motor neurons. Misfolded SOD1 appeared before the onset of symptoms and decreased at the end stage of the disease, concomitant with motor neuron loss.  相似文献   

7.
Mutations of cytosolic Cu/Zn superoxide dismutase 1 (SOD1) in humans and overexpression of mutant human SOD1 genes in transgenic mice are associated with the motor neuron degenerative condition known as amyotrophic lateral sclerosis (ALS; Lou Gehrig's disease). Gain-of-function toxicity from the mutant protein expressed in motor neurons, associated with its misfolding and aggregation, leads to dysfunction and cell death, associated with paralyzing disease. Here, using hydrogen-deuterium exchange in intact mice in vivo, we have addressed whether an ALS-associated mutant protein, G85R SOD1-YFP, is subject to the same rate of turnover in spinal cord both early in the course of the disease and later. We find that the mutant protein turns over about 10-fold faster than a similarly expressed wild-type fusion and that there is no significant change in the rate of turnover as animals age and disease progresses.  相似文献   

8.
Amyotrophic lateral sclerosis (ALS), the most common motor neuron disease in adults, is characterized by the selective degeneration and death of motor neurons leading to progressive paralysis and eventually death. Approximately 20% of familial ALS cases are associated with mutations in SOD1, the gene encoding Cu/Zn-superoxide dismutase (CuZnSOD). Previously, we reported that overexpression of the mitochondrial antioxidant manganese superoxide dismutase (MnSOD or SOD2) attenuates cytotoxicity induced by expression of the G37R-SOD1 mutant in a human neuroblastoma cell culture model of ALS. In the present study, we extended these earlier findings using several different SOD1 mutants (G93C, G85R, and I113T). Additionally, we tested the hypothesis that mutant SOD1 increases mitochondrial-produced superoxide (O(2) (*)) levels and that SOD2 overexpression protects neurons from mutant SOD1-induced toxicity by reducing O(2) (*) levels in mitochondria. In the present study, we demonstrate that SOD2 overexpression markedly attenuates the neuronal toxicity induced by adenovirus-mediated expression of all four SOD1 mutants (G37R, G93C, G85R, or I113T) tested. Utilizing the mitochondrial-targeted O(2) (*)-sensitive fluorogenic probe MitoSOX Red, we observed a significant increase in mitochondrial O(2) (*) levels in neural cells expressing mutant SOD1. These elevated O(2) (*) levels in mitochondria were significantly diminished by the overexpression of SOD2. These data suggest that mitochondrial-produced O(2) (*) radicals play a critical role in mutant SOD1-mediated neuronal toxicity and implicate mitochondrial-produced free radicals as potential therapeutic targets in ALS.  相似文献   

9.
10.
Mutant superoxide dismutase-1 (SOD1) has an unidentified toxic property that provokes ALS. Several ALS-linked SOD1 mutations cause long C-terminal truncations, which suggests that common cytotoxic SOD1 conformational species should be misfolded and that the C-terminal end cannot be involved. The cytotoxicity may arise from interaction of cellular proteins with misfolded SOD1 species. Here we specifically immunocaptured misfolded SOD1 by the C-terminal end, from extracts of spinal cords from transgenic ALS model mice. Associated proteins were identified with proteomic techniques. Two transgenic models expressing SOD1s with contrasting molecular properties were examined: the stable G93A mutant, which is abundant in the spinal cord with only a tiny subfraction misfolded, and the scarce disordered truncation mutant G127insTGGG. For comparison, proteins in spinal cord extracts with affinity for immobilized apo G93A mutant SOD1 were determined. Two-dimensional gel patterns with a limited number of bound proteins were found, which were similar for the two SOD1 mutants. Apart from neurofilament light, the proteins identified were all chaperones and by far most abundant was Hsc70. The immobilized apo G93A SOD1, which would populate a variety of conformations, was found to bind to a considerable number of additional proteins. A substantial proportion of the misfolded SOD1 in the spinal cord extracts appeared to be chaperone-associated. Still, only about 1% of the Hsc70 appeared to be associated with misfolded SOD1. The results argue against the notion that chaperone depletion is involved in ALS pathogenesis in the transgenic models and in humans carrying SOD1 mutations.  相似文献   

11.
Mutations in the gene encoding superoxide dismutase 1 (SOD1) account for about 20% of the cases of familial amyotrophic lateral sclerosis (fALS). It is well established that mutations in SOD1, associated with fALS, heighten the propensity of the protein to misfold and aggregate. Although aggregation appears to be a factor in the toxicity of mutant SOD1s, the precise nature of this toxicity has not been elucidated. A number of other studies have now firmly established that raising the levels of wild-type (WT) human SOD1 (hSOD1) proteins can in some manner augment the toxicity of mutant hSOD1 proteins. However, a recent study demonstrated that raising the levels of WT-hSOD1 did not affect disease in mice that harbor a mouse Sod1 gene (mSod1) encoding a well characterized fALS mutation (G86R). In the present study, we sought a potential explanation for the differing effects with WT-hSOD1 on the toxicity of mutant hSOD1 versus mutant mSod1. In the cell culture models used here, we observe poor interactions between WT-hSOD1 and misfolded G86R-mSod1, possibly explaining why over-expression of WT-hSOD1 does not synergize with mutant mSod1 to accelerate the course of the disease in mice.  相似文献   

12.
13.
Mutations in Cu/Zn superoxide dismutase (SOD) are associated with familial amyotrophic lateral sclerosis (FALS), a neurodegenerative disease that is characterized by the selective death of motor neurons. Despite the genetic association made between the protein and the disease, the mechanism by which the mutant SOD proteins become toxic is still a mystery. Using wild-type SOD and three pathogenic mutants (A4V, G37R, and G85R), we show that the copper-induced oxidation of metal-depleted SOD causes its in vitro aggregation into pore-like structures, as determined by atomic force microscopy. Because toxic pores have been recently implicated in the pathogenic mechanism of other neurodegenerative diseases, these results raise the possibility that the aberrant self-assembly of oxidatively damaged SOD mutants into toxic oligomers or pores may have a pathological role in FALS.  相似文献   

14.
We observed that 14 biologically metallated mutants of copper/zinc superoxide dismutase (SOD1) associated with familial amyotrophic lateral sclerosis all exhibited aberrantly accelerated mobility during partially denaturing PAGE and increased sensitivity to proteolytic digestion compared with wild type SOD1. Decreased metal binding site occupancy and exposure to the disulfide-reducing agents dithiothreitol, Tris(2-carboxyethyl)phosphine (TCEP), or reduced glutathione increased the fraction of anomalously migrating mutant SOD1 proteins. Furthermore, the incubation of mutant SOD1s with TCEP increased the accessibility to iodoacetamide of cysteine residues that normally participate in the formation of the intrasubunit disulfide bond (Cys-57 to Cys-146) or are buried within the core of the beta-barrel (Cys-6). SOD1 enzymes in spinal cord lysates from G85R and G93A mutant but not wild type SOD1 transgenic mice also exhibited abnormal vulnerability to TCEP, which exposed normally inaccessible cysteine residues to modification by maleimide conjugated to polyethylene glycol. These results implicate SOD1 destabilization under cellular disulfide-reducing conditions at physiological pH and temperature as a shared property that may be relevant to amyotrophic lateral sclerosis mutant neurotoxicity.  相似文献   

15.
Over 90 different mutations in the gene encoding copper/zinc superoxide dismutase (SOD1) cause approximately 2% of amyotrophic lateral sclerosis (ALS) cases by an unknown mechanism. We engineered 14 different human ALS-related SOD1 mutants and obtained high yields of biologically metallated proteins from an Sf21 insect cell expression system. Both the wild type and mutant "as isolated" SOD1 variants were deficient in copper and were heterogeneous by native gel electrophoresis. By contrast, although three mutant SOD1s with substitutions near the metal binding sites (H46R, G85R, and D124V) were severely deficient in both copper and zinc ions, zinc deficiency was not a consistent feature shared by the as isolated mutants. Eight mutants (A4V, L38V, G41S, G72S, D76Y, D90A, G93A, and E133 Delta) exhibited normal SOD activity over pH 5.5-10.5, per equivalent of copper, consistent with the presumption that bound copper was in the proper metal-binding site and was fully active. The H48Q variant contained a high copper content yet was 100-fold less active than the wild type enzyme and exhibited a blue shift in the visible absorbance peak of bound Cu(II), indicating rearrangement of the Cu(II) coordination geometry. Further characterization of these as-isolated SOD1 proteins may provide new insights regarding mutant SOD1 enzyme toxicity in ALS.  相似文献   

16.
Point mutations scattered throughout the sequence of Cu,Zn superoxide dismutase (SOD1) cause a subset of amyotrophic lateral sclerosis (ALS) cases. SOD1 is a homodimer in which each subunit binds one copper atom and one zinc atom. Inclusions containing misfolded SOD1 are seen in motor neurons of SOD1-associated ALS cases. The mechanism by which these diverse mutations cause misfolding and converge on the same disease is still not well understood. Previously, we developed several time-resolved techniques to monitor structural changes in SOD1 as it unfolds in guanidine hydrochloride. By measuring the rates of Cu and Zn release using an absorbance-based assay, dimer dissociation through chemical cross-linking, and β-barrel conformation changes by tryptophan fluorescence, we established that wild-type SOD1 unfolds by a branched pathway involving a Zn-deficient monomer as the dominant intermediate of the major pathway, and with various metal-loaded and Cu-deficient dimers populated along the minor pathway. We have now compared the unfolding pathway of wild-type SOD1 with those of A4V, G37R, G85R, G93A, and I113T ALS-associated mutant SOD1. The kinetics of unfolding of the mutants were generally much faster than those of wild type. However, all of the mutants utilize the minority pathway to a greater extent than the wild-type protein, leading to greater populations of Cu-deficient intermediates and decreases in Zn-deficient intermediates relative to the wild-type protein. The greater propensity of the mutants to populate Cu-deficient states potentially implicates these species as a pathogenic form of SOD1 in SOD1-associated ALS and provides a novel target for therapeutic intervention.  相似文献   

17.
Mutations in superoxide dismutase (SOD1) are causative for inherited amyotrophic lateral sclerosis. A proportion of SOD1 mutant protein is misfolded onto the cytoplasmic face of mitochondria in one or more spinal cord cell types. By construction of mice in which mitochondrially targeted enhanced green fluorescent protein is selectively expressed in motor neurons, we demonstrate that axonal mitochondria of motor neurons are primary in vivo targets for misfolded SOD1. Mutant SOD1 alters axonal mitochondrial morphology and distribution, with dismutase active SOD1 causing mitochondrial clustering at the proximal side of Schmidt-Lanterman incisures within motor axons and dismutase inactive SOD1 producing aberrantly elongated axonal mitochondria beginning pre-symptomatically and increasing in severity as disease progresses. Somal mitochondria are altered by mutant SOD1, with loss of the characteristic cylindrical, networked morphology and its replacement by a less elongated, more spherical shape. These data indicate that mutant SOD1 binding to mitochondria disrupts normal mitochondrial distribution and size homeostasis as early pathogenic features of SOD1 mutant-mediated ALS.  相似文献   

18.
Clusterin, a protein chaperone found at high levels in physiological fluids, is expressed in nervous tissue and upregulated in several neurological diseases. To assess relevance to amyotrophic lateral sclerosis (ALS) and other motor neuron disorders, clusterin expression was evaluated using long-term dissociated cultures of murine spinal cord and SOD1G93A transgenic mice, a model of familial ALS. Motor neurons and astrocytes constitutively expressed nuclear and cytoplasmic forms of clusterin, and secreted clusterin accumulated in culture media. Although clusterin can be stress inducible, heat shock failed to increase levels in these neural cell compartments despite robust upregulation of stress-inducible Hsp70 (HspA1) in non-neuronal cells. In common with HSPs, clusterin was upregulated by treatment with the Hsp90 inhibitor, geldanamycin, and thus could contribute to the neuroprotection previously identified for such compounds in disease models. Clusterin expression was not altered in cultured motor neurons expressing SOD1G93A by gene transfer or in presymptomatic SOD1G93A transgenic mice; however, clusterin immunolabeling was weakly increased in lumbar spinal cord of overtly symptomatic mice. More striking, mutant SOD1 inclusions, a pathological hallmark, were strongly labeled by anti-clusterin. Since secreted, as well as intracellular, mutant SOD1 contributes to toxicity, the extracellular chaperoning property of clusterin could be important for folding and clearance of SOD1 and other misfolded proteins in the extracellular space. Evaluation of chaperone-based therapies should include evaluation of clusterin as well as HSPs, using experimental models that replicate the control mechanisms operant in the cells and tissue of interest.  相似文献   

19.
More than 100 different mutations in the gene encoding Cu,Zn-superoxide dismutase (SOD1) cause preferential motor neuron degeneration in familial amyotrophic lateral sclerosis (ALS). Although the cellular target(s) of mutant SOD1 toxicity have not been precisely specified, evidence to date supports the hypothesis that ALS-related mutations may increase the burden of partially unfolded SOD1 species. Influences that may destabilize SOD1 in vivo include impaired metal ion binding, reduction of the intrasubunit disulfide bond, or oxidative modification. In this study, we observed that metal-deficient as-isolated SOD1 mutants (H46R, G85R, D124V, D125H, and S134N) with disordered electrostatic and zinc-binding loops exhibited aberrant binding to hydrophobic beads in the absence of other destabilizing agents. Other purified ALS-related mutants that can biologically incorporate nearly normal amounts of stabilizing zinc ions (A4V, L38V, G41S, D90A, and G93A) exhibited maximal hydrophobic behavior after exposure to both a disulfide reducing agent and a metal chelator, while normal SOD1 was more resistant to these agents. Moreover, we detected hydrophobic SOD1 species in lysates from affected tissues in G85R and G93A mutant but not wildtype SOD1 transgenic mice. These findings suggest that a susceptibility to the cellular disulfide reducing environment and zinc loss may convert otherwise stable SOD1 mutants into metal-deficient forms with locally destabilized electrostatic and zinc-binding loops. These abnormally hydrophobic SOD1 species may promote aberrant interactions of the enzyme with itself or with other cellular constituents to produce toxicity in familial ALS.  相似文献   

20.
The appearance of protein aggregates is a characteristic of protein misfolding disorders including familial amyotrophic lateral sclerosis, a neurodegenerative disease caused by inherited mutations in Cu/Zn superoxide dismutase 1 (SOD1). Here, we use live cell imaging of neuronal and nonneuronal cells to show that SOD1 mutants (G85R and G93A) form an aggregate structure consisting of immobile scaffolds, through which noninteracting cellular proteins can diffuse. Hsp70 transiently interacts, in a chaperone activity-dependent manner, with these mutant SOD1 aggregate structures. In contrast, the proteasome is sequestered within the aggregate structure, an event associated with decreased degradation of a proteasomal substrate. Through the use of time-lapse microscopy of individual cells, we show that nearly all (90%) aggregate-containing cells express higher levels of mutant SOD1 and died within 48 h, whereas 70% of cells expressing a soluble mutant SOD1 survived. Our results demonstrate that SOD1 G85R and G93A mutants form a distinct class of aggregate structures in cells destined for neuronal cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号